Mechanism and Development of Modern General Anesthetics

Page: [2842 - 2854] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Before October 1846, surgery and pain were synonymous but not thereafter. Conquering pain must be one of the very few strategies that has potentially affected every human being in the world of all milestones in medicine.

Methods: This review article describes how various general anesthetics were discovered historically and how they work in the brain to induce sedative, hypnosis and immobility. Their advantages and disadvantages will also be discussed.

Results: Anesthesia is a relatively young field but is rapidly evolving. Currently used general anesthetics are almost invariably effective, but nagging side effects, both short (e.g., cardiac depression) and long (e.g., neurotoxicity) term, have reawakened the call for new drugs.

Conclusion: Based on the deepening understanding of historical development and molecular targets and actions of modern anesthetics, novel general anesthetics are being investigated as potentially improved sedative-hypnotics or a key to understand the mechanism of anesthesia.

Keywords: General anesthetics, Development, Mechanism, GABAA receptors, Chloroform, Ethec.

Graphical Abstract

[1]
Ohry, A. A short history of anaesthesia. Korot, 1983, 8(7-8), 281-283.
[PMID: 11630954]
[2]
Pine, M.; Holt, K.D.; Lou, Y-B. Surgical mortality and type of anesthesia provider. AANA J., 2003, 71(2), 109-116.
[PMID: 12776638]
[3]
Scott, J.; Baker, P.A. How did the Macintosh laryngoscope become so popular? Paediatr. Anaesth., 2009, 19(Suppl. 1), 24-29.
[http://dx.doi.org/10.1111/j.1460-9592.2009.03026.x] [PMID: 19572841]
[4]
Rosenberg, M. Ether Day: The Strange Tale of America’s Greatest Medical Discovery and the Haunted Man Who Made It. Anesth. Prog., 2001, 48, 133-134.
[5]
Miller, R.D. Miller’s Anesthesia, 9th ed; Elsevier: Amsterdam, 2019.
[6]
Robinson, D.H.; Toledo, A.H. Historical development of modern anesthesia. J. Invest. Surg., 2012, 25(3), 141-149.
[http://dx.doi.org/10.3109/08941939.2012.690328] [PMID: 22583009]
[7]
Sekhar, K.C. A philatelic history of anesthesiology. J. Anaesthesiol. Clin. Pharmacol., 2013, 29(1), 19-25.
[http://dx.doi.org/10.4103/0970-9185.105788] [PMID: 23492850]
[8]
Lavigne, J-G.; Marchand, C. The role of metabolism in chloroform hepatotoxicity. Toxicol. Appl. Pharmacol., 1974, 29(2), 312-326.
[http://dx.doi.org/10.1016/0041-008X(74)90068-4] [PMID: 4283696]
[9]
Smith, J.H.; Maita, K.; Sleight, S.D.; Hook, J.B. Effect of sex hormone status on chloroform nephrotoxicity and renal mixed function oxidases in mice. Toxicology, 1984, 30(4), 305-316.
[http://dx.doi.org/10.1016/0300-483X(84)90141-0] [PMID: 6729829]
[10]
el-Shenawy, N.S.; Abdel-Rahman, M.S. Evaluation of chloroform cardiotoxicity utilizing a modified isolated rat cardiac myocytes. Toxicol. Lett., 1993, 69(3), 249-256.
[http://dx.doi.org/10.1016/0378-4274(93)90030-2] [PMID: 8212065]
[11]
Antkowiak, B. How do general anaesthetics work? Naturwissenschaften, 2001, 88(5), 201-213.
[http://dx.doi.org/10.1007/s001140100230] [PMID: 11482433]
[12]
Haseneder, R.; Kratzer, S.; Kochs, E.; Mattusch, C.; Eder, M.; Rammes, G. Xenon attenuates excitatory synaptic transmission in the rodent prefrontal cortex and spinal cord dorsal horn. Anesthesiology, 2009, 111(6), 1297-1307.
[http://dx.doi.org/10.1097/ALN.0b013e3181c14c05] [PMID: 19934875]
[13]
Haseneder, R.; Kratzer, S.; Kochs, E.; Eckle, V-S.; Zieglgänsberger, W.; Rammes, G. Xenon reduces N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission in the amygdala. Anesthesiology, 2008, 109(6), 998-1006.
[http://dx.doi.org/10.1097/ALN.0b013e31818d6aee] [PMID: 19034096]
[14]
Nishikawa, K.; MacIver, M.B. Agent-selective effects of volatile anesthetics on GABAA receptor-mediated synaptic inhibition in hippocampal interneurons. Anesthesiology, 2001, 94(2), 340-347.
[http://dx.doi.org/10.1097/00000542-200102000-00025] [PMID: 11176100]
[15]
Peters, J.H.; McDougall, S.J.; Mendelowitz, D.; Koop, D.R.; Andresen, M.C. Isoflurane differentially modulates inhibitory and excitatory synaptic transmission to the solitary tract nucleus. Anesthesiology, 2008, 108(4), 675-683.
[http://dx.doi.org/10.1097/ALN.0b013e318167af9a] [PMID: 18362600]
[16]
Cheng, V.Y.; Martin, L.J.; Elliott, E.M.; Kim, J.H.; Mount, H.T.J.; Taverna, F.A.; Roder, J.C.; Macdonald, J.F.; Bhambri, A.; Collinson, N.; Wafford, K.A.; Orser, B.A. Alpha5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J. Neurosci., 2006, 26(14), 3713-3720.
[http://dx.doi.org/10.1523/JNEUROSCI.5024-05.2006] [PMID: 16597725]
[17]
Caraiscos, V.B.; Newell, J.G.; You-Ten, K.E.; Elliott, E.M.; Rosahl, T.W.; Wafford, K.A.; MacDonald, J.F.; Orser, B.A. Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J. Neurosci., 2004, 24(39), 8454-8458.
[http://dx.doi.org/10.1523/JNEUROSCI.2063-04.2004] [PMID: 15456818]
[18]
McKernan, R.M.; Whiting, P.J. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci., 1996, 19(4), 139-143.
[http://dx.doi.org/10.1016/S0166-2236(96)80023-3] [PMID: 8658597]
[19]
Krogsgaard-Larsen, P.; Frølund, B.; Liljefors, T. GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Adv. Pharmacol., 2006, 54, 53-71.
[http://dx.doi.org/10.1016/S1054-3589(06)54003-7] [PMID: 17175810]
[20]
Sonner, J.M.; Antognini, J.F.; Dutton, R.C.; Flood, P.; Gray, A.T.; Harris, R.A.; Homanics, G.E.; Kendig, J.; Orser, B.; Raines, D.E.; Rampil, I.J.; Trudell, J.; Vissel, B.; Eger, E.I., II Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth. Analg., 2003, 97(3), 718-740.
[http://dx.doi.org/10.1213/01.ANE.0000081063.76651.33] [PMID: 12933393]
[21]
Pearce, R.A. General Anesthetic Effects on GABAA Receptors.In: Neural Mechanisms of Anesthesia; Antognini, J.F.; Carstens, E.; Raines, D.E., Eds.; Humana Press: Totowa, NJ: Contemporary Clinical Neuroscience., 2003, pp. 265-282.
[22]
Son, Y. Molecular mechanisms of general anesthesia. Korean J. Anesthesiol., 2010, 59(1), 3-8.
[http://dx.doi.org/10.4097/kjae.2010.59.1.3] [PMID: 20651990]
[23]
Campagna, J.A.; Miller, K.W.; Forman, S.A. Mechanisms of actions of inhaled anesthetics. N. Engl. J. Med., 2003, 348(21), 2110-2124.
[http://dx.doi.org/10.1056/NEJMra021261] [PMID: 12761368]
[24]
Hemmings, H.C., Jr; Akabas, M.H.; Goldstein, P.A.; Trudell, J.R.; Orser, B.A.; Harrison, N.L. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol. Sci., 2005, 26(10), 503-510.
[http://dx.doi.org/10.1016/j.tips.2005.08.006] [PMID: 16126282]
[25]
Orser, B.A.; Canning, K.J.; Macdonald, J.F. Mechanisms of general anesthesia. Curr. Opin. Anaesthesiol., 2002, 15(4), 427-433.
[http://dx.doi.org/10.1097/00001503-200208000-00004] [PMID: 17019234]
[26]
Franks, N.P. Molecular targets underlying general anaesthesia. Br. J. Pharmacol., 2006, 147(Suppl. 1), S72-S81.
[http://dx.doi.org/10.1038/sj.bjp.0706441] [PMID: 16402123]
[27]
Franks, N.P.; Honoré, E. The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol. Sci., 2004, 25(11), 601-608.
[http://dx.doi.org/10.1016/j.tips.2004.09.003] [PMID: 15491783]
[28]
Ouyang, W.; Wang, G.; Hemmings, H.C., Jr Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol. Pharmacol., 2003, 64(2), 373-381.
[http://dx.doi.org/10.1124/mol.64.2.373] [PMID: 12869642]
[29]
Kamatchi, G.L.; Chan, C.K.; Snutch, T.; Durieux, M.E.; Lynch, C. III Volatile anesthetic inhibition of neuronal Ca channel currents expressed in Xenopus oocytes. Brain Res., 1999, 831(1-2), 85-96.
[http://dx.doi.org/10.1016/S0006-8993(99)01401-8] [PMID: 10411986]
[30]
Sneyd, J.R. Thiopental to desflurane - an anaesthetic journey. Where are we going next? Br. J. Anaesth., 2017, 119(suppl_1), i44-i52.
[http://dx.doi.org/10.1093/bja/aex328] [PMID: 29161390]
[31]
Holmstedt, B.; Liljestrand, G. Readings in Pharmacology. Ther. Drug Monit., 1982, 4, 110.
[http://dx.doi.org/10.1097/00007691-198204000-00018]
[32]
Butler, T.C. The metabolic fate of chloral hydrate. J. Pharmacol. Exp. Ther., 1948, 92(1), 49-58.
[PMID: 18917452]
[33]
Krasowski, M.D. Contradicting a unitary theory of general anesthetic action: a history of three compounds from 1901 to 2001. Bull. Anesth. Hist., 2003, 21(3), 1.
[34]
Jira, R.; Kopp, E.; McKusick, B.C.; Röderer, G.; Bosch, A.; Fleischmann, G. Chloroacetaldehydes.In: Ullmann’s Encyclopedia of Industrial Chemistry; American Cancer Society, 2007.
[http://dx.doi.org/10.1002/14356007.a06_527.pub2]
[35]
Geddes, M. John; Price, J.; McKnight, R.; Gelder, M.G.P. Psychiatry, 4th ed; Oxford University Press: Oxford, 2012.
[36]
Lu, J.; Greco, M.A. Sleep circuitry and the hypnotic mechanism of GABAA drugs. J. Clin. Sleep Med., 2006, 2(2), S19-S26.
[PMID: 17557503]
[37]
Jones, A.W. Early drug discovery and the rise of pharmaceutical chemistry. Drug Test. Anal., 2011, 3(6), 337-344.
[http://dx.doi.org/10.1002/dta.301] [PMID: 21698778]
[38]
López-Muñoz, F.; Ucha-Udabe, R.; Alamo, C. The history of barbiturates a century after their clinical introduction. Neuropsychiatr. Dis. Treat., 2005, 1(4), 329-343.
[PMID: 18568113]
[39]
Ellis, T.A., II; Narr, B.J.; Bacon, D.R. Developing a specialty: J.S. Lundy’s three major contributions to anesthesiology. J. Clin. Anesth., 2004, 16(3), 226-229.
[http://dx.doi.org/10.1016/j.jclinane.2003.07.005] [PMID: 15217667]
[40]
Morgan, D.J.; Blackman, G.L.; Paull, J.D.; Wolf, L.J. Pharmacokinetics and plasma binding of thiopental. II: Studies at cesarean section. Anesthesiology, 1981, 54(6), 474-480.
[http://dx.doi.org/10.1097/00000542-198106000-00006] [PMID: 7235275]
[41]
Chiara, D.C.; Jayakar, S.S.; Zhou, X.; Zhang, X.; Savechenkov, P.Y.; Bruzik, K.S.; Miller, K.W.; Cohen, J.B. Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. J. Biol. Chem., 2013, 288(27), 19343-19357.
[http://dx.doi.org/10.1074/jbc.M113.479725] [PMID: 23677991]
[42]
Weber, M.; Motin, L.; Gaul, S.; Beker, F.; Fink, R.H.A.; Adams, D.J. Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons. Br. J. Pharmacol., 2005, 144(1), 98-107.
[http://dx.doi.org/10.1038/sj.bjp.0705942] [PMID: 15644873]
[43]
Franks, N.P.; Lieb, W.R. Which molecular targets are most relevant to general anaesthesia? Toxicol. Lett., 1998, 100-101, 1-8.
[http://dx.doi.org/10.1016/S0378-4274(98)00158-1] [PMID: 10049127]
[44]
Godefroi, E.F.; Janssen, P.A.; Vandereycken, C.A.; Vanheertum, A.H.; Niemegeers, C.J. DL-1-(1-arylalkyl)imidazole-5-carboxylate esters. a novel type of hypnotic agents. J. Med. Chem., 1965, 8, 220-223.
[http://dx.doi.org/10.1021/jm00326a017] [PMID: 14332665]
[45]
Heykants, J.J.; Meuldermans, W.E.; Michiels, L.J.; Lewi, P.J.; Janssen, P.A. Comparative Study of (R)-. Distribution, metabolism and excretion of etomidate, a short-acting hypnotic drug, in the rat. Comparative study of (R)-(+)-(--)-Etomidate. Arch. Int. Pharmacodyn. Ther., 1975, 216(1), 113-129.
[PMID: 1164098]
[46]
Forman, S.A. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707.
[http://dx.doi.org/10.1097/ALN.0b013e3181ff72b5] [PMID: 21263301]
[47]
Edbrooke, D.L.; Newby, D.M.; Mather, S.J.; Dixon, A.M.; Hebron, B.S. Safer sedation for ventilated patients. A new application for etomidate. Anaesthesia, 1982, 37(7), 765-771.
[http://dx.doi.org/10.1111/j.1365-2044.1982.tb01319.x] [PMID: 7048991]
[48]
Watt, I.; Ledingham, I.M. Mortality amongst multiple trauma patients admitted to an intensive therapy unit. Anaesthesia, 1984, 39(10), 973-981.
[http://dx.doi.org/10.1111/j.1365-2044.1984.tb08885.x] [PMID: 6496912]
[49]
Preziosi, P.; Vacca, M. Etomidate and corticotrophic axis. Arch. Int. Pharmacodyn. Ther., 1982, 256(2), 308-310.
[PMID: 7103618]
[50]
Wagner, R.L.; White, P.F. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology, 1984, 61(6), 647-651.
[http://dx.doi.org/10.1097/00000542-198412000-00003] [PMID: 6095700]
[51]
Allolio, B.; Stuttmann, R.; Leonhard, U.; Fischer, H.; Winkelmann, W. Adrenocortical suppression by a single induction dose of etomidate. Klin. Wochenschr., 1984, 62(21), 1014-1017.
[http://dx.doi.org/10.1007/BF01711723] [PMID: 6096626]
[52]
Wanscher, M.; Tønnesen, E.; Hüttel, M.; Larsen, K. Etomidate infusion and adrenocortical function. A study in elective surgery. Acta Anaesthesiol. Scand., 1985, 29(5), 483-485.
[http://dx.doi.org/10.1111/j.1399-6576.1985.tb02238.x] [PMID: 4036533]
[53]
Uchida, I.; Kamatchi, G.; Burt, D.; Yang, J. Etomidate potentiation of GABAA receptor gated current depends on the subunit composition. Neurosci. Lett., 1995, 185(3), 203-206.
[http://dx.doi.org/10.1016/0304-3940(95)11263-V] [PMID: 7753491]
[54]
Rüsch, D.; Zhong, H.; Forman, S.A. Gating allosterism at a single class of etomidate sites on alpha1beta2gamma2L GABA A receptors accounts for both direct activation and agonist modulation. J. Biol. Chem., 2004, 279(20), 20982-20992.
[http://dx.doi.org/10.1074/jbc.M400472200] [PMID: 15016806]
[55]
Zhong, H.; Rüsch, D.; Forman, S.A. Photo-activated azi-etomidate, a general anesthetic photolabel, irreversibly enhances gating and desensitization of γ-aminobutyric acid type A receptors. Anesthesiology, 2008, 108(1), 103-112.
[http://dx.doi.org/10.1097/01.anes.0000296074.33999.52] [PMID: 18156888]
[56]
Yang, J.; Uchida, I. Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience, 1996, 73(1), 69-78.
[http://dx.doi.org/10.1016/0306-4522(96)00018-8] [PMID: 8783230]
[57]
Tomlin, S.L.; Jenkins, A.; Lieb, W.R.; Franks, N.P. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals. Anesthesiology, 1998, 88(3), 708-717.
[http://dx.doi.org/10.1097/00000542-199803000-00022] [PMID: 9523815]
[58]
Hill-Venning, C.; Belelli, D.; Peters, J.A.; Lambert, J.J. Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor. Br. J. Pharmacol., 1997, 120(5), 749-756.
[http://dx.doi.org/10.1038/sj.bjp.0700927] [PMID: 9138677]
[59]
Matta, J.A.; Cornett, P.M.; Miyares, R.L.; Abe, K.; Sahibzada, N.; Ahern, G.P. General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl. Acad. Sci. USA, 2008, 105(25), 8784-8789.
[http://dx.doi.org/10.1073/pnas.0711038105] [PMID: 18574153]
[60]
Sternbach, L.H. The benzodiazepine story. J. Med. Chem., 1979, 22(1), 1-7.
[http://dx.doi.org/10.1021/jm00187a001] [PMID: 34039]
[61]
Wick, J.Y. The history of benzodiazepines. Consult Pharm., 2013, 28(9), 538-548.
[http://dx.doi.org/10.4140/TCP.n.2013.538] [PMID: 24007886]
[62]
Griffin, C.E., III; Kaye, A.M.; Bueno, F.R.; Kaye, A.D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J., 2013, 13(2), 214-223.
[PMID: 23789008]
[63]
Stevens, C.L. Aminoketones and methods for their production. US3254124A, 1966.
[64]
Li, L.; Vlisides, P.E. Ketamine: 50 years of modulating the mind. Front. Hum. Neurosci., 2016, 10, 612.
[http://dx.doi.org/10.3389/fnhum.2016.00612] [PMID: 27965560]
[65]
Chaki, S. Beyond ketamine: new approaches to the development of safer antidepressants. Curr. Neuropharmacol., 2017, 15(7), 963-976.
[http://dx.doi.org/10.2174/1570159X15666170221101054] [PMID: 28228087]
[66]
Antkowiak, B. Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABA(A) receptor. Anesthesiology, 1999, 91(2), 500-511.
[http://dx.doi.org/10.1097/00000542-199908000-00025] [PMID: 10443614]
[67]
Thomson, A.M.; West, D.C.; Lodge, D. An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: a site of action of ketamine? Nature, 1985, 313(6002), 479-481.
[http://dx.doi.org/10.1038/313479a0] [PMID: 2982106]
[68]
Cavazzuti, M.; Porro, C.A.; Biral, G.P.; Benassi, C.; Barbieri, G.C. Ketamine effects on local cerebral blood flow and metabolism in the rat. J. Cereb. Blood Flow Metab., 1987, 7(6), 806-811.
[http://dx.doi.org/10.1038/jcbfm.1987.138] [PMID: 3121648]
[69]
Glen, J.B.I. The discovery and development of propofol anesthesia: the 2018 lasker-debakey clinical medical research award. JAMA, 2018, 320(12), 1235-1236.
[http://dx.doi.org/10.1001/jama.2018.12756] [PMID: 30208399]
[70]
Yadav, G.D.; Salgaonkar, S.S. Selectivity engineering of 2,6-diisopropylphenol in isopropylation of Phenol over Cs2.5H0.5PW12O40/K-10 Clay. Ind. Eng. Chem. Res., 2005, 44, 1706-1715.
[http://dx.doi.org/10.1021/ie049141q]
[71]
Gunawardene, R.D.; White, D.C. Propofol and Emesis. Anaesthesia, 1988, 43(Suppl.), 65-67.
[http://dx.doi.org/10.1111/j.1365-2044.1988.tb09074.x]
[72]
Rosenberg, M.B. Propofol for anesthesia in a patient susceptible to malignant hyperthermia. Anesth. Prog., 1991, 38(3), 96-98.
[PMID: 1839946]
[73]
Marik, P.E. Propofol: therapeutic indications and side-effects. Curr. Pharm. Des., 2004, 10(29), 3639-3649.
[http://dx.doi.org/10.2174/1381612043382846] [PMID: 15579060]
[74]
Trapani, G.; Altomare, C.; Liso, G.; Sanna, E.; Biggio, G. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr. Med. Chem., 2000, 7(2), 249-271.
[http://dx.doi.org/10.2174/0929867003375335] [PMID: 10637364]
[75]
Kobayashi, M.; Oi, Y. Actions of propofol on neurons in the cerebral cortex. J. Nippon Med. Sch., 2017, 84, 165-169.
[http://dx.doi.org/10.1272/jnms.84.165]
[76]
Rabelo, F.A.W.; Küpper, D.S.; Sander, H.H.; Fernandes, R.M.F.; Valera, F.C.P. Polysomnographic evaluation of propofol-induced sleep in patients with respiratory sleep disorders and controls. Laryngoscope, 2013, 123(9), 2300-2305.
[http://dx.doi.org/10.1002/lary.23664] [PMID: 23801248]
[77]
Clarke, K.W.; Hall, L.W. “Xylazine”--a new sedative for horses and cattle. Vet. Rec., 1969, 85(19), 512-517.
[http://dx.doi.org/10.1136/vr.85.19.512] [PMID: 5349241]
[78]
Bobošíková, M.; Mathia, F.; Végh, D.; Marchalín, Š.; Halinkovičová, M. Synthetic approaches to dexmedetomidine. Acta Chim. Slov., 2013, 6, 240-244.
[http://dx.doi.org/10.2478/acs-2013-0037]
[79]
Skrobik, Y.; Duprey, M.S.; Hill, N.S.; Devlin, J.W. Low-dose nocturnal dexmedetomidine prevents ICU delirium. a randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med., 2018, 197(9), 1147-1156.
[http://dx.doi.org/10.1164/rccm.201710-1995OC] [PMID: 29498534]
[80]
Sun, L.; Guo, R.; Sun, L. Dexmedetomidine for preventing sevoflurane-related emergence agitation in children: a meta-analysis of randomized controlled trials. Acta Anaesthesiol. Scand., 2014, 58(6), 642-650.
[http://dx.doi.org/10.1111/aas.12292] [PMID: 24588393]
[81]
Metz, S.A.; Halter, J.B.; Robertson, R.P. Induction of defective insulin secretion and impaired glucose tolerance by clonidine. Selective stimulation of metabolic alpha-adrenergic pathways. Diabetes, 1978, 27(5), 554-562.
[http://dx.doi.org/10.2337/diab.27.5.554] [PMID: 648745]
[82]
Sheikh, I.; Aslam, S.; Ahmad, H.; Rauf, M. Balanced anesthesia. Prof. Med. J., 2019, 26(5)
[PMID: 19598820]
[83]
Robbins, B.H. Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J. Pharmacol. Exp. Ther., 1946, 86, 197-204.
[PMID: 21018256]
[84]
Eger, E.I., II; Saidman, L.J.; Brandstater, B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology, 1965, 26(6), 756-763.
[http://dx.doi.org/10.1097/00000542-196511000-00010] [PMID: 5844267]
[85]
Maher, T.J. Anesthetic agents: general and local anesthetics.In: Foye’s Principles of Medicinal Chemistry; S. William, Ed.; Wolters Kluwer: Alphenaan den Rijn, 2019, p. 508.
[86]
Boyd, J. Cyclopropane Anesthesia. Anesthesiol. J. Am. Soc. Anesthesiol., 1947, 8, 433-434.
[87]
Black, G.W. A review of the pharmacology of halothane. Br. J. Anaesth., 1965, 37(9), 688-705.
[http://dx.doi.org/10.1093/bja/37.9.688] [PMID: 5320091]
[88]
Burkle, C.M.; Zepeda, F.A.; Bacon, D.R.; Rose, S.H. A historical perspective on use of the laryngoscope as a tool in anesthesiology. Anesthesiology, 2004, 100(4), 1003-1006.
[http://dx.doi.org/10.1097/00000542-200404000-00034] [PMID: 15087639]
[89]
Lindenbaum, J.; Leifer, E. Hepatic necrosis associated with halothane anesthesia. N. Engl. J. Med., 1963, 268, 525-530.
[http://dx.doi.org/10.1056/NEJM196303072681004] [PMID: 13930795]
[90]
Terrell, R.C. The invention and development of enflurane, isoflurane, sevoflurane, and desflurane. Anesthesiology, 2008, 108(3), 531-533.
[http://dx.doi.org/10.1097/ALN.0b013e31816499cc] [PMID: 18292690]
[91]
Terrell, R.C. 1,1,2-Trifluoro-2-chloroethyl-difluoromethyl ether as an anesthetic agent. US3469011A 1969.
[92]
Yu, H.; Zhang, L.; Ma, Y.; Yu, H. Early postoperative recovery in operating room after desflurane anesthesia combined with Bispectral index (BIS) monitoring and warming in lengthy abdominal surgery: a randomized controlled study. BMC Anesthesiol., 2018, 18(1), 110.
[http://dx.doi.org/10.1186/s12871-018-0577-6] [PMID: 30115007]
[93]
Khan, J.; Liu, M. Desflurane In: StatPearls; StatPearls Publishing: Florida 2019.
[94]
Sivaramakrishnan, H.; Upare, A.A.; Satagopan, D.; Chambers, O.R. The preparation of desflurane by the vapor-phase fluorination of isoflurane. Org. Process Res. Dev., 2011, 15, 585-592.
[http://dx.doi.org/10.1021/op100318b]
[95]
Brohan, J.; Goudra, B.G. The role of GABA receptor agonists in anesthesia and sedation. CNS Drugs, 2017, 31(10), 845-856.
[http://dx.doi.org/10.1007/s40263-017-0463-7] [PMID: 29039138]
[96]
Péréon, Y.; Bernard, J-M. Nguyen The Tich, S.; Genet, R.; Petitfaux, F.; Guihéneuc, P. The effects of desflurane on the nervous system: from spinal cord to muscles. Anesth. Analg., 1999, 89(2), 490-495.
[PMID: 10439773]
[97]
Hawkley, T.F.; Maani, C.V. Isoflurane In: StatPearls; StatPearls Publishing: Treasure Island (FL) 2019.
[98]
O’Donnell, W.J.; Jr, P.M.; Sprague, L.G.; Elliott, A.J. Preparation of isoflurane by reaction of 2,2,2-trifluoroethyl difluoro-methyl ether and chlorine in added water, at low temperatures and/or at higher conversions. US6551468B1, 2003.
[99]
Reddy, V.P. Organofluorine Anesthetics.In: Organofluorine Compounds in Biology and Medicine; Reddy, V.P., Ed.; Elsevier: Amsterdam, 2015, pp. 179-199.
[100]
Adriani, J. Four decades of association with the pioneers of anesthesiology. Anesth. Analg., 1972, 51(5), 665-670.
[http://dx.doi.org/10.1213/00000539-197209000-00001] [PMID: 4560718]
[101]
Baker, M.T. Sevoflurane: are there differences in products? Anesth. Analg., 2007, 104(6), 1447-1451.
[http://dx.doi.org/10.1213/01.ane.0000263031.96011.36] [PMID: 17513639]
[102]
De Hert, S.; Moerman, A. Sevoflurane. F1000 Res, 2015, 4(F1000 Faculty Rev), 626.
[http://dx.doi.org/10.12688/f1000research.6288.1] [PMID: 26380072]
[103]
Brioni, J.D.; Varughese, S.; Ahmed, R.; Bein, B. A clinical review of inhalation anesthesia with sevoflurane: from early research to emerging topics. J. Anesth., 2017, 31(5), 764-778.
[http://dx.doi.org/10.1007/s00540-017-2375-6] [PMID: 28585095]
[104]
Li, F.; Yuan, Y. Meta-analysis of the cardioprotective effect of sevoflurane versus propofol during cardiac surgery. BMC Anesthesiol., 2015, 15, 128.
[http://dx.doi.org/10.1186/s12871-015-0107-8] [PMID: 26404434]
[105]
Lu, H.; Liufu, N.; Dong, Y.; Xu, G.; Zhang, Y.; Shu, L.; Soriano, S.G.; Zheng, H.; Yu, B.; Xie, Z. sevoflurane acts on ubiquitination-proteasome pathway to reduce postsynaptic density 95 protein levels in young mice. Anesthesiology, 2017, 127(6), 961-975.
[http://dx.doi.org/10.1097/ALN.0000000000001889] [PMID: 28968276]
[106]
Xu, G.; Lu, H.; Dong, Y.; Shapoval, D.; Soriano, S.G.; Liu, X.; Zhang, Y.; Xie, Z. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br. J. Anaesth., 2017, 119(3), 481-491.
[http://dx.doi.org/10.1093/bja/aex071] [PMID: 28482003]
[107]
Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Wilder, R.T.; Voigt, R.G.; Olson, M.D.; Sprung, J.; Weaver, A.L.; Schroeder, D.R.; Warner, D.O. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics, 2011, 128(5), e1053-e1061.
[http://dx.doi.org/10.1542/peds.2011-0351] [PMID: 21969289]
[108]
Sprung, J.; Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Barbaresi, W.J.; Bojanić, K.; Welch, T.L.; Olson, M.D.; Hanson, A.C.; Schroeder, D.R.; Wilder, R.T.; Warner, D.O. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin. Proc., 2012, 87(2), 120-129.
[http://dx.doi.org/10.1016/j.mayocp.2011.11.008] [PMID: 22305025]
[109]
Wilder, R.T.; Flick, R.P.; Sprung, J.; Katusic, S.K.; Barbaresi, W.J.; Mickelson, C.; Gleich, S.J.; Schroeder, D.R.; Weaver, A.L.; Warner, D.O. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology, 2009, 110(4), 796-804.
[http://dx.doi.org/10.1097/01.anes.0000344728.34332.5d] [PMID: 19293700]
[110]
Brown, E.N.; Pavone, K.J.; Naranjo, M. Multimodal General Anesthesia: Theory and Practice. Anesth. Analg., 2018, 127(5), 1246-1258.
[http://dx.doi.org/10.1213/ANE.0000000000003668] [PMID: 30252709]
[111]
Rosenberg, H.; Pollock, N.; Schiemann, A.; Bulger, T.; Stowell, K. Malignant hyperthermia: a review. Orphanet J. Rare Dis., 2015, 10, 93.
[http://dx.doi.org/10.1186/s13023-015-0310-1]
[112]
Deng, J.; Lei, C.; Chen, Y.; Fang, Z.; Yang, Q.; Zhang, H.; Cai, M.; Shi, L.; Dong, H.; Xiong, L. Neuroprotective gases--fantasy or reality for clinical use? Prog. Neurobiol., 2014, 115, 210-245.
[http://dx.doi.org/10.1016/j.pneurobio.2014.01.001] [PMID: 24440817]
[113]
Cotten, J.F.; Husain, S.S.; Forman, S.A.; Miller, K.W.; Kelly, E.W.; Nguyen, H.H.; Raines, D.E. Methoxycarbonyl-etomidate: a novel rapidly metabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression. Anesthesiology, 2009, 111(2), 240-249.
[http://dx.doi.org/10.1097/ALN.0b013e3181ae63d1] [PMID: 19625798]
[114]
Cotten, J.F.; Forman, S.A.; Laha, J.K.; Cuny, G.D.; Husain, S.S.; Miller, K.W.; Nguyen, H.H.; Kelly, E.W.; Stewart, D.; Liu, A.; Raines, D.E. Carboetomidate: a pyrrole analog of etomidate designed not to suppress adrenocortical function. Anesthesiology, 2010, 112(3), 637-644.
[http://dx.doi.org/10.1097/ALN.0b013e3181cf40ed] [PMID: 20179500]
[115]
Ge, R.; Pejo, E.; Husain, S.S.; Cotten, J.F.; Raines, D.E. Electroencephalographic and hypnotic recoveries after brief and prolonged infusions of etomidate and optimized soft etomidate analogs. Anesthesiology, 2012, 117(5), 1037-1043.
[http://dx.doi.org/10.1097/ALN.0b013e31826d3de2] [PMID: 22929726]
[116]
Eckenhoff, R.G. Gone Fishi. Anesthesiology, 2018, 129(3), 392-393.
[http://dx.doi.org/10.1097/ALN.0000000000002328] [PMID: 29965816]
[117]
Yang, X.; Jounaidi, Y.; Dai, J.B.; Marte-Oquendo, F.; Halpin, E.S.; Brown, L.E.; Trilles, R.; Xu, W.; Daigle, R.; Yu, B.; Schaus, S.E.; Porco, J.A., Jr; Forman, S.A. High-throughput screening in larval zebrafish identifies novel potent sedative-hypnotics. Anesthesiology, 2018, 129(3), 459-476.
[http://dx.doi.org/10.1097/ALN.0000000000002281] [PMID: 29894316]