Feasibility of Targeting Glioblastoma Stem Cells: From Concept to Clinical Trials

Page: [2974 - 2984] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Objective: Glioblastoma is a highly aggressive and invasive brain and Central Nervous System (CNS) tumor. Current treatment options do not prolong overall survival significantly because the disease is highly prone to relapse. Therefore, research to find new therapies is of paramount importance. It has been discovered that glioblastomas contain a population of cells with stem-like properties and that these cells are may be responsible for tumor recurrence.

Methods: A review of relevant papers and clinical trials in the field was conducted. A PubMed search with related keywords was used to gather the data. For example, “glioblastoma stem cells AND WNT signaling” is an example used to find information on clinical trials using the database ClinicalTrials.gov.

Results: Cancer stem cell research has several fundamental issues and uncertainties that should be taken into consideration. Theoretically, a number of treatment options that target glioblastoma stem cells are available for patients. However, only a few of them have obtained promising results in clinical trials. Several strategies are still under investigation.

Conclusion: The majority of treatments to target cancer stem cells have failed during clinical trials. Taking into account a number of biases in the field and the number of unsuccessful investigations, the application of the cancer stem cells concept is questionable in clinical settings, at least with respect to glioblastoma.

Keywords: Glioblastoma, Cancer stem cells, Brain tumor, Stem cell self-renewal, Molecular targeted therapy, Vaccine therapy, CAR T-cell therapy.

Graphical Abstract

[1]
Dolecek, T.A.; Propp, J.M.; Stroup, N.E.; Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-oncol., 2012, 14(Suppl. 5), v1-v49.
[http://dx.doi.org/10.1093/neuonc/nos218] [PMID: 23095881]
[2]
Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: a clinical review. JAMA, 2013, 310(17), 1842-1850.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[3]
Wijdeven, R.H.; Pang, B.; Assaraf, Y.G.; Neefjes, J. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat., 2016, 28, 65-81.
[http://dx.doi.org/10.1016/j.drup.2016.07.001] [PMID: 27620955]
[4]
Chen, J.; Li, Y.; Yu, T.S.; McKay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 2012, 488(7412), 522-526.
[http://dx.doi.org/10.1038/nature11287] [PMID: 22854781]
[5]
Beck, B.; Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer, 2013, 13(10), 727-738.
[http://dx.doi.org/10.1038/nrc3597] [PMID: 24060864]
[6]
Valent, P.; Bonnet, D.; De Maria, R.; Lapidot, T.; Copland, M.; Melo, J.V.; Chomienne, C.; Ishikawa, F.; Schuringa, J.J.; Stassi, G.; Huntly, B.; Herrmann, H.; Soulier, J.; Roesch, A.; Schuurhuis, G.J.; Wöhrer, S.; Arock, M.; Zuber, J.; Cerny-Reiterer, S.; Johnsen, H.E.; Andreeff, M.; Eaves, C. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer, 2012, 12(11), 767-775.
[http://dx.doi.org/10.1038/nrc3368] [PMID: 23051844]
[7]
Kelly, P.N.; Dakic, A.; Adams, J.M.; Nutt, S.L.; Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science, 2007, 317(5836), 337.
[http://dx.doi.org/10.1126/science.1142596] [PMID: 17641192]
[8]
Kennedy, J.A.; Barabé, F.; Poeppl, A.G.; Wang, J.C.; Dick, J.E. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science, 2007, 318(5857), 1722. [author reply]
[http://dx.doi.org/10.1126/science.1149590] [PMID: 18079385]
[9]
Medema, J.P. Cancer stem cells: the challenges ahead. Nat. Cell Biol., 2013, 15(4), 338-344.
[http://dx.doi.org/10.1038/ncb2717] [PMID: 23548926]
[10]
Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev., 2015, 29(12), 1203-1217.
[http://dx.doi.org/10.1101/gad.261982.115] [PMID: 26109046]
[11]
Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: an evolving concept. Nat. Rev. Cancer, 2012, 12(2), 133-143.
[http://dx.doi.org/10.1038/nrc3184] [PMID: 22237392]
[12]
Wang, F.; Wang, A.Y.; Chesnelong, C.; Yang, Y.; Nabbi, A.; Thalappilly, S.; Alekseev, V.; Riabowol, K. ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways. Oncogene, 2018, 37(3), 286-301.
[http://dx.doi.org/10.1038/onc.2017.324] [PMID: 28925404]
[13]
Vora, P.; Venugopal, C.; McFarlane, N.; Singh, S.K. Culture and isolation of brain tumor initiating cells. Curr. Protoc. Stem Cell Biol., 2015, 34(3), 1-13.
[http://dx.doi.org/10.1002/9780470151808.sc0303s34]
[14]
Lenkiewicz, M.; Li, N.; Singh, S.K. Culture and isolation of brain tumor initiating cells. Curr. Protoc. Stem Cell Biol., 2009, 3(3), 1-3.
[http://dx.doi.org/10.1002/9780470151808.sc0303s11]
[15]
Tilghman, J.; Schiapparelli, P.; Lal, B.; Ying, M.; Quinones-Hinojosa, A.; Xia, S.; Laterra, J. Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia, 2016, 18(3), 185-198.
[http://dx.doi.org/10.1016/j.neo.2016.02.003] [PMID: 26992919]
[16]
Galli, R.; Binda, E.; Orfanelli, U.; Cipelletti, B.; Gritti, A.; De Vitis, S.; Fiocco, R.; Foroni, C.; Dimeco, F.; Vescovi, A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res., 2004, 64(19), 7011-7021.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1364] [PMID: 15466194]
[17]
Beier, D.; Hau, P.; Proescholdt, M.; Lohmeier, A.; Wischhusen, J.; Oefner, P.J.; Aigner, L.; Brawanski, A.; Bogdahn, U.; Beier, C.P. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res., 2007, 67(9), 4010-4015.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4180] [PMID: 17483311]
[18]
Kelly, J.J.; Stechishin, O.; Chojnacki, A.; Lun, X.; Sun, B.; Senger, D.L.; Forsyth, P.; Auer, R.N.; Dunn, J.F.; Cairncross, J.G.; Parney, I.F.; Weiss, S. Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens. Stem Cells, 2009, 27(8), 1722-1733.
[http://dx.doi.org/10.1002/stem.98] [PMID: 19544433]
[19]
Wang, J.; Sakariassen, P.Ø.; Tsinkalovsky, O.; Immervoll, H.; Bøe, S.O.; Svendsen, A.; Prestegarden, L.; Røsland, G.; Thorsen, F.; Stuhr, L.; Molven, A.; Bjerkvig, R.; Enger, P.Ø. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer, 2008, 122(4), 761-768.
[http://dx.doi.org/10.1002/ijc.23130] [PMID: 17955491]
[20]
Pallini, R.; Ricci-Vitiani, L.; Banna, G.L.; Signore, M.; Lombardi, D.; Todaro, M.; Stassi, G.; Martini, M.; Maira, G.; Larocca, L.M.; De Maria, R. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin. Cancer Res., 2008, 14(24), 8205-8212.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0644] [PMID: 19088037]
[21]
Pastrana, E.; Silva-Vargas, V.; Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 2011, 8(5), 486-498.
[http://dx.doi.org/10.1016/j.stem.2011.04.007] [PMID: 21549325]
[22]
Schulte, A.; Günther, H.S.; Martens, T.; Zapf, S.; Riethdorf, S.; Wülfing, C.; Stoupiec, M.; Westphal, M.; Lamszus, K. Glioblastoma stem-like cell lines with either maintenance or loss of high-level EGFR amplification, generated via modulation of ligand concentration. Clin. Cancer Res., 2012, 18(7), 1901-1913.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3084] [PMID: 22316604]
[23]
Li, G.; Chen, Z.; Hu, Y.D.; Wei, H.; Li, D.; Ji, H.; Wang, D.L. Autocrine factors sustain glioblastoma stem cell self-renewal. Oncol. Rep., 2009, 21(2), 419-424.
[PMID: 19148517]
[24]
van der Valk, J.; Bieback, K.; Buta, C.; Cochrane, B.; Dirks, W.G.; Fu, J.; Hickman, J.J.; Hohensee, C.; Kolar, R.; Liebsch, M.; Pistollato, F.; Schulz, M.; Thieme, D.; Weber, T.; Wiest, J.; Winkler, S.; Gstraunthaler, G. Fetal bovine serum (FBS): past - present - future. ALTEX, 2018, 35(1), 99-118.
[http://dx.doi.org/10.14573/altex.1705101] [PMID: 28800376]
[25]
Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; Park, J.K.; Fine, H.A. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006, 9(5), 391-403.
[http://dx.doi.org/10.1016/j.ccr.2006.03.030] [PMID: 16697959]
[26]
Rycaj, K.; Tang, D.G. Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res., 2015, 75(19), 4003-4011.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0798] [PMID: 26292361]
[27]
Tirosh, I.; Venteicher, A.S.; Hebert, C.; Escalante, L.E.; Patel, A.P.; Yizhak, K.; Fisher, J.M.; Rodman, C.; Mount, C.; Filbin, M.G.; Neftel, C.; Desai, N.; Nyman, J.; Izar, B.; Luo, C.C.; Francis, J.M.; Patel, A.A.; Onozato, M.L.; Riggi, N.; Livak, K.J.; Gennert, D.; Satija, R.; Nahed, B.V.; Curry, W.T.; Martuza, R.L.; Mylvaganam, R.; Iafrate, A.J.; Frosch, M.P.; Golub, T.R.; Rivera, M.N.; Getz, G.; Rozenblatt-Rosen, O.; Cahill, D.P.; Monje, M.; Bernstein, B.E.; Louis, D.N.; Regev, A.; Suvà, M.L. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature, 2016, 539(7628), 309-313.
[http://dx.doi.org/10.1038/nature20123] [PMID: 27806376]
[28]
Manini, I.; Caponnetto, F.; Bartolini, A.; Ius, T.; Mariuzzi, L.; Di Loreto, C.; Beltrami, A.P.; Cesselli, D. Role of microenvironment in glioma invasion: what we learned from in vitro models. Int. J. Mol. Sci., 2018, 19(1) E147
[http://dx.doi.org/10.3390/ijms19010147] [PMID: 29300332]
[29]
Raju, E.N.; Kuechler, J.; Behling, S.; Sridhar, S.; Hirseland, E.; Tronnier, V.; Zechel, C. Maintenance of stemlike glioma cells and microglia in an organotypic glioma slice model. Neurosurgery, 2015, 77(4), 629-643.
[http://dx.doi.org/10.1227/NEU.0000000000000891] [PMID: 26308638]
[30]
Baiocchi, M.; Biffoni, M.; Ricci-Vitiani, L.; Pilozzi, E.; De Maria, R. New models for cancer research: human cancer stem cell xenografts. Curr. Opin. Pharmacol., 2010, 10(4), 380-384.
[http://dx.doi.org/10.1016/j.coph.2010.05.002] [PMID: 20561817]
[31]
Ranganathan, P.; Weaver, K.L.; Capobianco, A.J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat. Rev. Cancer, 2011, 11(5), 338-351.
[http://dx.doi.org/10.1038/nrc3035] [PMID: 21508972]
[32]
Nowell, C.S.; Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer, 2017, 17(3), 145-159.
[http://dx.doi.org/10.1038/nrc.2016.145] [PMID: 28154375]
[33]
Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol., 2015, 12(8), 445-464.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[34]
Ferrarotto, R.; Eckhardt, G.; Patnaik, A.; LoRusso, P.; Faoro, L.; Heymach, J.V.; Kapoun, A.M.; Xu, L.; Munster, P. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann. Oncol., 2018, 29(7), 1561-1568.
[http://dx.doi.org/10.1093/annonc/mdy171] [PMID: 29726923]
[35]
Floyd, D.H.; Kefas, B.; Seleverstov, O.; Mykhaylyk, O.; Dominguez, C.; Comeau, L.; Plank, C.; Purow, B. Alpha-secretase inhibition reduces human glioblastoma stem cell growth in vitro and in vivo by inhibiting Notch. Neuro-oncol., 2012, 14(10), 1215-1226.
[http://dx.doi.org/10.1093/neuonc/nos157] [PMID: 22962413]
[36]
Fan, X.; Khaki, L.; Zhu, T.S.; Soules, M.E.; Talsma, C.E.; Gul, N.; Koh, C.; Zhang, J.; Li, Y.M.; Maciaczyk, J.; Nikkhah, G.; Dimeco, F.; Piccirillo, S.; Vescovi, A.L.; Eberhart, C.G. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells, 2010, 28(1), 5-16.
[PMID: 19904829]
[37]
Chu, Q.; Orr, B.A.; Semenkow, S.; Bar, E.E.; Eberhart, C.G. Prolonged inhibition of glioblastoma xenograft initiation and clonogenic growth following in vivo Notch blockade. Clin. Cancer Res., 2013, 19(12), 3224-3233.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2119] [PMID: 23630166]
[38]
Lin, J.; Zhang, X.M.; Yang, J.C.; Ye, Y.B.; Luo, S.Q. γ-secretase inhibitor-I enhances radiosensitivity of glioblastoma cell lines by depleting CD133+ tumor cells. Arch. Med. Res., 2010, 41(7), 519-529.
[http://dx.doi.org/10.1016/j.arcmed.2010.10.006] [PMID: 21167391]
[39]
Gilbert, C.A.; Daou, M.C.; Moser, R.P.; Ross, A.H. Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res., 2010, 70(17), 6870-6879.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1378] [PMID: 20736377]
[40]
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT01122901 (Accessed on 2019.)
[41]
Xu, R.; Shimizu, F.; Hovinga, K.; Beal, K.; Karimi, S.; Droms, L.; Peck, K.K.; Gutin, P.; Iorgulescu, J.B.; Kaley, T.; DeAngelis, L.; Pentsova, E.; Nolan, C.; Grommes, C.; Chan, T.; Bobrow, D.; Hormigo, A.; Cross, J.R.; Wu, N.; Takebe, N.; Panageas, K.; Ivy, P.; Supko, J.G.; Tabar, V.; Omuro, A. Molecular and clinical effects of notch inhibition in glioma patients: A Phase 0/I Trial. Clin. Cancer Res., 2016, 22(19), 4786-4796.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0048] [PMID: 27154916]
[42]
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01189240 (Accessed on 2019.)
[43]
Rheinbay, E.; Suvà, M.L.; Gillespie, S.M.; Wakimoto, H.; Patel, A.P.; Shahid, M.; Oksuz, O.; Rabkin, S.D.; Martuza, R.L.; Rivera, M.N.; Louis, D.N.; Kasif, S.; Chi, A.S.; Bernstein, B.E. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep., 2013, 3(5), 1567-1579.
[http://dx.doi.org/10.1016/j.celrep.2013.04.021] [PMID: 23707066]
[44]
Hu, B.; Wang, Q.; Wang, Y.A.; Hua, S.; Sauvé, C.G.; Ong, D.; Lan, Z.D.; Chang, Q.; Ho, Y.W.; Monasterio, M.M.; Lu, X.; Zhong, Y.; Zhang, J.; Deng, P.; Tan, Z.; Wang, G.; Liao, W.T.; Corley, L.J.; Yan, H.; Zhang, J.; You, Y.; Liu, N.; Cai, L.; Finocchiaro, G.; Phillips, J.J.; Berger, M.S.; Spring, D.J.; Hu, J.; Sulman, E.P.; Fuller, G.N.; Chin, L.; Verhaak, R.G.W.; DePinho, R.A. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell, 2016, 167(5), 1281-1295.e18.
[http://dx.doi.org/10.1016/j.cell.2016.10.039] [PMID: 27863244]
[45]
Anastas, J.N.; Moon, R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer, 2013, 13(1), 11-26.
[http://dx.doi.org/10.1038/nrc3419] [PMID: 23258168]
[46]
De Robertis, A.; Valensin, S.; Rossi, M.; Tunici, P.; Verani, M.; De Rosa, A.; Giordano, C.; Varrone, M.; Nencini, A.; Pratelli, C.; Benicchi, T.; Bakker, A.; Hill, J.; Sangthongpitag, K.; Pendharkar, V.; Liu, B.; Ng, F.M.; Then, S.W.; Jing Tai, S.; Cheong, S.M.; He, X.; Caricasole, A.; Salerno, M. Identification and characterization of a small-molecule inhibitor of Wnt signaling in glioblastoma cells. Mol. Cancer Ther., 2013, 12(7), 1180-1189.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1176-T] [PMID: 23619303]
[47]
Kim, Y.; Kim, K.H.; Lee, J.; Lee, Y.A.; Kim, M.; Lee, S.J.; Park, K.; Yang, H.; Jin, J.; Joo, K.M.; Lee, J.; Nam, D.H. Wnt activation is implicated in glioblastoma radioresistance. Lab. Invest., 2012, 92(3), 466-473.
[http://dx.doi.org/10.1038/labinvest.2011.161] [PMID: 22083670]
[48]
Shao, J.; Jung, C.; Liu, C.; Sheng, H. Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J. Biol. Chem., 2005, 280(28), 26565-26572.
[http://dx.doi.org/10.1074/jbc.M413056200] [PMID: 15899904]
[49]
Sareddy, G.R.; Kesanakurti, D.; Kirti, P.B.; Babu, P.P. Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/β-catenin/Tcf signaling pathway in human glioblastoma cells. Neurochem. Res., 2013, 38(11), 2313-2322.
[http://dx.doi.org/10.1007/s11064-013-1142-9] [PMID: 24013885]
[50]
Penas-Prado, M.; Hess, K.R.; Fisch, M.J.; Lagrone, L.W.; Groves, M.D.; Levin, V.A.; De Groot, J.F.; Puduvalli, V.K.; Colman, H.; Volas-Redd, G.; Giglio, P.; Conrad, C.A.; Salacz, M.E.; Floyd, J.D.; Loghin, M.E.; Hsu, S.H.; Gonzalez, J.; Chang, E.L.; Woo, S.Y.; Mahajan, A.; Aldape, K.D.; Yung, W.K.; Gilbert, M.R. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro-oncol., 2015, 17(2), 266-273.
[http://dx.doi.org/10.1093/neuonc/nou155] [PMID: 25239666]
[51]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/study/NCT00504660 (Accessed 2019.)
[52]
Kesari, S.; Schiff, D.; Henson, J.W.; Muzikansky, A.; Gigas, D.C.; Doherty, L.; Batchelor, T.T.; Longtine, J.A.; Ligon, K.L.; Weaver, S.; Laforme, A.; Ramakrishna, N.; Black, P.M.; Drappatz, J.; Ciampa, A.; Folkman, J.; Kieran, M.; Wen, P.Y. Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro-oncol., 2008, 10(3), 300-308.
[http://dx.doi.org/10.1215/15228517-2008-005] [PMID: 18403492]
[53]
Clement, V.; Sanchez, P.; de Tribolet, N.; Radovanovic, I.; Ruiz i Altaba, A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol., 2007, 17(2), 165-172.
[http://dx.doi.org/10.1016/j.cub.2006.11.033] [PMID: 17196391]
[54]
Briscoe, J.; Thérond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol., 2013, 14(7), 416-429.
[http://dx.doi.org/10.1038/nrm3598] [PMID: 23719536]
[55]
Sekulic, A.; Migden, M.R.; Oro, A.E.; Dirix, L.; Lewis, K.D.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; Marmur, E.; Rudin, C.M.; Chang, A.L.; Low, J.A.; Mackey, H.M.; Yauch, R.L.; Graham, R.A.; Reddy, J.C.; Hauschild, A. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med., 2012, 366(23), 2171-2179.
[http://dx.doi.org/10.1056/NEJMoa1113713] [PMID: 22670903]
[56]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/results/NCT00980343 (Accessed 2019.)
[57]
Wick, W.; Dettmer, S.; Berberich, A.; Kessler, T.; Karapanagiotou-Schenkel, I.; Wick, A.; Winkler, F.; Pfaff, E.; Brors, B.; Debus, J.; Unterberg, A.; Bendszus, M.; Herold-Mende, C.; Eisenmenger, A.; von Deimling, A.; Jones, D.T.W.; Pfister, S.M.; Sahm, F.; Platten, M. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro-oncol., 2019, 21(1), 95-105.
[http://dx.doi.org/10.1093/neuonc/noy161] [PMID: 30277538]
[58]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT03466450 (Accessed 2019.)
[59]
Gray, G.K.; McFarland, B.C.; Nozell, S.E.; Benveniste, E.N. NF-κB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev. Neurother., 2014, 14(11), 1293-1306.
[http://dx.doi.org/10.1586/14737175.2014.964211] [PMID: 25262780]
[60]
Sherry, M.M.; Reeves, A.; Wu, J.K.; Cochran, B.H. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells, 2009, 27(10), 2383-2392.
[http://dx.doi.org/10.1002/stem.185] [PMID: 19658181]
[61]
Villalva, C.; Martin-Lannerée, S.; Cortes, U.; Dkhissi, F.; Wager, M.; Le Corf, A.; Tourani, J.M.; Dusanter-Fourt, I.; Turhan, A.G.; Karayan-Tapon, L. STAT3 is essential for the maintenance of neurosphere-initiating tumor cells in patients with glioblastomas: a potential for targeted therapy? Int. J. Cancer, 2011, 128(4), 826-838.
[http://dx.doi.org/10.1002/ijc.25416] [PMID: 20473906]
[62]
Ashizawa, T.; Miyata, H.; Iizuka, A.; Komiyama, M.; Oshita, C.; Kume, A.; Nogami, M.; Yagoto, M.; Ito, I.; Oishi, T.; Watanabe, R.; Mitsuya, K.; Matsuno, K.; Furuya, T.; Okawara, T.; Otsuka, M.; Ogo, N.; Asai, A.; Nakasu, Y.; Yamaguchi, K.; Akiyama, Y. Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. Int. J. Oncol., 2013, 43(1), 219-227.
[http://dx.doi.org/10.3892/ijo.2013.1916] [PMID: 23612755]
[63]
Garner, J.M.; Fan, M.; Yang, C.H.; Du, Z.; Sims, M.; Davidoff, A.M.; Pfeffer, L.M. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J. Biol. Chem., 2013, 288(36), 26167-26176.
[http://dx.doi.org/10.1074/jbc.M113.477950] [PMID: 23902772]
[64]
Stechishin, O.D.; Luchman, H.A.; Ruan, Y.; Blough, M.D.; Nguyen, S.A.; Kelly, J.J.; Cairncross, J.G.; Weiss, S. On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro-oncol., 2013, 15(2), 198-207.
[http://dx.doi.org/10.1093/neuonc/nos302] [PMID: 23262510]
[65]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT01904123 (Accessed 2019.)
[66]
Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol., 2012, 13(3), 195-203.
[http://dx.doi.org/10.1038/nrm3290] [PMID: 22358332]
[67]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[68]
Zheng, H.; Ying, H.; Yan, H.; Kimmelman, A.C.; Hiller, D.J.; Chen, A.J.; Perry, S.R.; Tonon, G.; Chu, G.C.; Ding, Z.; Stommel, J.M.; Dunn, K.L.; Wiedemeyer, R.; You, M.J.; Brennan, C.; Wang, Y.A.; Ligon, K.L.; Wong, W.H.; Chin, L.; DePinho, R.A. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 2008, 455(7216), 1129-1133.
[http://dx.doi.org/10.1038/nature07443] [PMID: 18948956]
[69]
Duan, S.; Yuan, G.; Liu, X.; Ren, R.; Li, J.; Zhang, W.; Wu, J.; Xu, X.; Fu, L.; Li, Y.; Yang, J.; Zhang, W.; Bai, R.; Yi, F.; Suzuki, K.; Gao, H.; Esteban, C.R.; Zhang, C.; Izpisua Belmonte, J.C.; Chen, Z.; Wang, X.; Jiang, T.; Qu, J.; Tang, F.; Liu, G.H. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat. Commun., 2015, 6, 10068.
[http://dx.doi.org/10.1038/ncomms10068] [PMID: 26632666]
[70]
Saito, N.; Hirai, N.; Aoki, K.; Suzuki, R.; Fujita, S.; Nakayama, H.; Hayashi, M.; Ito, K.; Sakurai, T.; Iwabuchi, S. The oncogene addiction switch from NOTCH to PI3K requires simultaneous targeting of NOTCH and PI3K pathway inhibition in glioblastoma. Cancers (Basel), 2019, 11(1)E121
[http://dx.doi.org/10.3390/cancers11010121] [PMID: 30669546]
[71]
Gallia, G.L.; Tyler, B.M.; Hann, C.L.; Siu, I.M.; Giranda, V.L.; Vescovi, A.L.; Brem, H.; Riggins, G.J. Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol. Cancer Ther., 2009, 8(2), 386-393.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0680] [PMID: 19208828]
[72]
Dahan, P.; Martinez Gala, J.; Delmas, C.; Monferran, S.; Malric, L.; Zentkowski, D.; Lubrano, V.; Toulas, C.; Cohen-Jonathan Moyal, E.; Lemarie, A. Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis., 2014, 5e1543
[http://dx.doi.org/10.1038/cddis.2014.509] [PMID: 25429620]
[73]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT01100931 (Accessed 2019.)
[74]
Wen, P.Y.; Touat, M.; Alexander, B.M.; Mellinghoff, I.K.; Ramkissoon, S.; McCluskey, C.S.; Pelton, K.; Haidar, S.; Basu, S.S.; Gaffey, S.C.; Brown, L.E.; Martinez-Ledesma, J.E.; Wu, S.; Kim, J.; Wei, W.; Park, M.A.; Huse, J.T.; Kuhn, J.G.; Rinne, M.L.; Colman, H.; Agar, N.Y.R.; Omuro, A.M.; DeAngelis, L.M.; Gilbert, M.R.; de Groot, J.F.; Cloughesy, T.F.; Chi, A.S.; Roberts, T.M.; Zhao, J.J.; Lee, E.Q.; Nayak, L.; Heath, J.R.; Horky, L.L.; Batchelor, T.T.; Beroukhim, R.; Chang, S.M.; Ligon, A.H.; Dunn, I.F.; Koul, D.; Young, G.S.; Prados, M.D.; Reardon, D.A.; Yung, W.K.A.; Ligon, K.L. Buparlisib in patients with recurrent glioblastoma harboring phosphatidylinositol 3-kinase pathway activation: an open-label, multicenter, multi-arm, phase ii trial. J. Clin. Oncol., 2019, 37(9), 741-750.
[http://dx.doi.org/10.1200/JCO.18.01207] [PMID: 30715997]
[75]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT01934361 (Accessed 2019.)
[76]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT01870726 (Accessed 2019.)
[77]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/results/NCT01349660 (Accessed 2019.)
[78]
Pitz, M.W.; Eisenhauer, E.A.; MacNeil, M.V.; Thiessen, B.; Easaw, J.C.; Macdonald, D.R.; Eisenstat, D.D.; Kakumanu, A.S.; Salim, M.; Chalchal, H.; Squire, J.; Tsao, M.S.; Kamel-Reid, S.; Banerji, S.; Tu, D.; Powers, J.; Hausman, D.F.; Mason, W.P. Phase II study of PX-866 in recurrent glioblastoma. Neuro-oncol., 2015, 17(9), 1270-1274.
[http://dx.doi.org/10.1093/neuonc/nou365] [PMID: 25605819]
[79]
Jhanwar-Uniyal, M.; Jeevan, D.; Neil, J.; Shannon, C.; Albert, L.; Murali, R. Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Adv. Biol. Regul., 2013, 53(2), 202-210.
[http://dx.doi.org/10.1016/j.jbior.2012.10.001] [PMID: 23231881]
[80]
Dolma, S.; Selvadurai, H.J.; Lan, X.; Lee, L.; Kushida, M.; Voisin, V.; Whetstone, H.; So, M.; Aviv, T.; Park, N.; Zhu, X.; Xu, C.; Head, R.; Rowland, K.J.; Bernstein, M.; Clarke, I.D.; Bader, G.; Harrington, L.; Brumell, J.H.; Tyers, M.; Dirks, P.B. Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell, 2016, 29(6), 859-873.
[http://dx.doi.org/10.1016/j.ccell.2016.05.002] [PMID: 27300435]
[81]
Kahn, J.; Hayman, T.J.; Jamal, M.; Rath, B.H.; Kramp, T.; Camphausen, K.; Tofilon, P.J. The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro-oncol., 2014, 16(1), 29-37.
[http://dx.doi.org/10.1093/neuonc/not139] [PMID: 24311635]
[82]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT02619864 (Accessed 2019.)
[83]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT03522298 (Accessed 2019.)
[84]
Zhao, H.F.; Wang, J.; Shao, W.; Wu, C.P.; Chen, Z.P.; To, S.T.; Li, W.P. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol. Cancer, 2017, 16(1), 100.
[http://dx.doi.org/10.1186/s12943-017-0670-3] [PMID: 28592260]
[85]
Wise-Draper, T.M.; Moorthy, G.; Salkeni, M.A.; Karim, N.A.; Thomas, H.E.; Mercer, C.A.; Beg, M.S.; O’Gara, S.; Olowokure, O.; Fathallah, H.; Kozma, S.C.; Thomas, G.; Rixe, O.; Desai, P.; Morris, J.C. A phase Ib Study of the dual PI3K/mTOR Inhibitor Dactolisib (BEZ235) combined with everolimus in patients with advanced solid malignancies. Target. Oncol., 2017, 12(3), 323-332.
[http://dx.doi.org/10.1007/s11523-017-0482-9] [PMID: 28357727]
[86]
Li, M.; Gao, K.; Chu, L.; Zheng, J.; Yang, J. The role of Aurora-A in cancer stem cells. Int. J. Biochem. Cell Biol., 2018, 98, 89-92.
[http://dx.doi.org/10.1016/j.biocel.2018.03.007] [PMID: 29544896]
[87]
Hong, X.; O’Donnell, J.P.; Salazar, C.R.; Van Brocklyn, J.R.; Barnett, K.D.; Pearl, D.K.; deCarvalho, A.C.; Ecsedy, J.A.; Brown, S.L.; Mikkelsen, T.; Lehman, N.L. The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemother. Pharmacol., 2014, 73(5), 983-990.
[http://dx.doi.org/10.1007/s00280-014-2430-z] [PMID: 24627220]
[88]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT02186509 (Accessed 2019.)
[89]
Binda, E.; Visioli, A.; Giani, F.; Lamorte, G.; Copetti, M.; Pitter, K.L.; Huse, J.T.; Cajola, L.; Zanetti, N.; DiMeco, F.; De Filippis, L.; Mangiola, A.; Maira, G.; Anile, C.; De Bonis, P.; Reynolds, B.A.; Pasquale, E.B.; Vescovi, A.L. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell, 2012, 22(6), 765-780.
[http://dx.doi.org/10.1016/j.ccr.2012.11.005] [PMID: 23238013]
[90]
Lassman, A.B.; Pugh, S.L.; Gilbert, M.R.; Aldape, K.D.; Geinoz, S.; Beumer, J.H.; Christner, S.M.; Komaki, R.; DeAngelis, L.M.; Gaur, R.; Youssef, E.; Wagner, H.; Won, M.; Mehta, M.P. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro-oncol., 2015, 17(7), 992-998.
[http://dx.doi.org/10.1093/neuonc/nov011] [PMID: 25758746]
[91]
Schiff, D.; Sarkaria, J. Dasatinib in recurrent glioblastoma: failure as a teacher. Neuro-oncol., 2015, 17(7), 910-911.
[http://dx.doi.org/10.1093/neuonc/nov086] [PMID: 25964312]
[92]
Schroeder, H.W., Jr; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol., 2010, 125(2 (Suppl. 2), S41-S52.
[http://dx.doi.org/10.1016/j.jaci.2009.09.046] [PMID: 20176268]
[93]
Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 2018, 18(3), 168-182.
[http://dx.doi.org/10.1038/nri.2017.131] [PMID: 29226910]
[94]
Fenstermaker, R.A.; Ciesielski, M.J.; Qiu, J.; Yang, N.; Frank, C.L.; Lee, K.P.; Mechtler, L.R.; Belal, A.; Ahluwalia, M.S.; Hutson, A.D. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol. Immunother., 2016, 65(11), 1339-1352.
[http://dx.doi.org/10.1007/s00262-016-1890-x] [PMID: 27576783]
[95]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT02455557 (Accessed 2019.)
[96]
Vik-Mo, E.O.; Nyakas, M.; Mikkelsen, B.V.; Moe, M.C.; Due-Tønnesen, P.; Suso, E.M.; Sæbøe-Larssen, S.; Sandberg, C.; Brinchmann, J.E.; Helseth, E.; Rasmussen, A.M.; Lote, K.; Aamdal, S.; Gaudernack, G.; Kvalheim, G.; Langmoen, I.A. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother., 2013, 62(9), 1499-1509.
[http://dx.doi.org/10.1007/s00262-013-1453-3] [PMID: 23817721]
[97]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT03548571 (Accessed 2019.)
[98]
Olin, M.R.; Low, W.; McKenna, D.H.; Haines, S.J.; Dahlheimer, T.; Nascene, D.; Gustafson, M.P.; Dietz, A.B.; Clark, H.B.; Chen, W.; Blazar, B.; Ohlfest, J.R.; Moertel, C. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J. Immunother. Cancer, 2014, 2, 4.
[http://dx.doi.org/10.1186/2051-1426-2-4] [PMID: 24829761]
[99]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT01567202 (Accessed 2019.)
[100]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT02010606 (Accessed 2019.).
[101]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT00890032 (Accessed 2019.).
[102]
Yao, Y.; Luo, F.; Tang, C.; Chen, D.; Qin, Z.; Hua, W.; Xu, M.; Zhong, P.; Yu, S.; Chen, D.; Ding, X.; Zhang, Y.; Zheng, X.; Yang, J.; Qian, J.; Deng, Y.; Hoon, D.S.B.; Hu, J.; Chu, Y.; Zhou, L. Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. Cancer Immunol. Immunother., 2018, 67(11), 1777-1788.
[http://dx.doi.org/10.1007/s00262-018-2232-y] [PMID: 30159779]
[103]
Jackson, H.J.; Rafiq, S.; Brentjens, R.J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol., 2016, 13(6), 370-383.
[http://dx.doi.org/10.1038/nrclinonc.2016.36] [PMID: 27000958]
[104]
Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature, 2017, 545(7655), 423-431.
[http://dx.doi.org/10.1038/nature22395] [PMID: 28541315]
[105]
ClinicalTrials.gov.. https://clinicaltrials.gov/ct2/show/NCT03423992 (Accessed 2019)