The Effects of Amoxicillin, Cefazolin, and Gentamicin Antibiotics on the Antioxidant System in Mouse Heart Tissues

Page: [614 - 622] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Free radicals lead to destruction in various organs of the organism. The improper use of antibiotics increases the formation of free radicals and causes oxidative stress.

Objective: In this study, it was aimed to determine the effects of gentamicin, amoxicillin, and cefazolin antibiotics on the mouse heart.

Methods: 20 male mice were divided into 4 groups (1st control, 2nd amoxicillin, 3rd cefazolin, and 4th gentamicin groups). The mice in the experimental groups were administered antibiotics intraperitoneally at a dose of 100 mg / kg for 6 days. The control group received normal saline in the same way. The gene expression levels and enzyme activities of SOD, CAT, GPx, GR, GST, and G6PD antioxidant enzymes were investigated.

Results: GSH levels decreased in both the amoxicillin and cefazolin groups, while GR, CAT, and SOD enzyme activities increased. In the amoxicillin group, Gr, Gst, Cat, and Sod gene expression levels increased.

Conclusion: As a result, it was concluded that amoxicillin and cefazolin caused oxidative stress in the heart, however, gentamicin did not cause any effects.

Keywords: Antibiotic, antioxidant, enzyme activity, gene expression, oxidative stress, GSH levels.

Graphical Abstract

[1]
Elizalde-Velázquez, A.; Martínez-Rodríguez, H.; Galar-Martínez, M.; Dublán-García, O.; Islas-Flores, H.; Rodríguez-Flores, J.; Castañeda-Peñalvo, G.; Lizcano-Sanz, I.; Gómez-Oliván, L.M. Effect of amoxicillin exposure on brain, gill, liver, and kidney of common carp (Cyprinus carpio): The role of amoxicilloic acid. Environ. Toxicol., 2017, 32(4), 1102-1120.
[http://dx.doi.org/10.1002/tox.22307] [PMID: 27403921]
[2]
Sanei, H.; Asoodeh, A.; Hamedakbari-Tusi, S.; Chamani, J. Multispectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: Binary and ternary systems. J. Solution Chem., 2011, 40(11), 1905-1931.
[http://dx.doi.org/10.1007/s10953-011-9766-3]
[3]
Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M.R.; Chamani, J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J. Biomol. Struct. Dyn., 2014, 32(12), 1936-1952.
[http://dx.doi.org/10.1080/07391102.2013.843062] [PMID: 24125112]
[4]
Edelstein, A.I.; Okroj, K.T.; Rogers, T.; Della Valle, C.J.; Sporer, S.M. Nephrotoxicity after the treatment of periprosthetic joint infection with antibiotic-loaded cement spacers. J. Arthroplasty, 2018, 33(7), 2225-2229.
[http://dx.doi.org/10.1016/j.arth.2018.02.012] [PMID: 29526331]
[5]
Rosa, C.P.; Brancaglion, G.A.; Miyauchi-Tavares, T.M.; Corsetti, P.P.; de Almeida, L.A. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci., 2018, 207, 480-491.
[http://dx.doi.org/10.1016/j.lfs.2018.06.030] [PMID: 30056862]
[6]
Champagne-Jorgensen, K.; Kunze, W.A.; Forsythe, P.; Bienenstock, J.; McVey Neufeld, K.A. Antibiotics and the nervous system: More than just the microbes? Brain Behav. Immun., 2019, 77, 1-15.
[PMID: 30582961]
[7]
Altenburg, J.; de Graaff, C.S.; van der Werf, T.S.; Boersma, W.G. Immunomodulatory effects of macrolide antibiotics - part 2: Advantages and disadvantages of long-term, low-dose macrolide therapy. Respiration, 2011, 81(1), 75-87.
[8]
Salimi, A.; Eybagi, S.; Seydi, E.; Naserzadeh, P.; Kazerouni, N.P.; Pourahmad, J. Toxicity of macrolide antibiotics on isolated heart mitochondria: A justification for their cardiotoxic adverse effect. Xenobiotica, 2016, 46(1), 82-93.
[http://dx.doi.org/10.3109/00498254.2015.1046975] [PMID: 26068526]
[9]
Brunetti, L.; Lee, S.M.; Nahass, R.G.; Suh, D.; Miao, B.; Bucek, J.; Kim, D.; Kim, O.K.; Suh, D.C. The risk of cardiac events in patients who received concomitant levofloxacin and amiodarone. Int. J. Infect. Dis., 2019, 78, 50-56.
[http://dx.doi.org/10.1016/j.ijid.2018.10.017]
[10]
Strzępa, A.; Lobo, F.M.; Majewska-Szczepanik, M.; Szczepanik, M. Antibiotics and autoimmune and allergy diseases: Causative factor or treatment? Int. Immunopharmacol., 2018, 65, 328-341.
[http://dx.doi.org/10.1016/j.intimp.2018.10.021] [PMID: 30359934]
[11]
Wang, J.; Wu, X.P.; Song, X.M.; Han, C.R.; Chen, Z.; Chen, G.Y. F-01A, an antibiotic, inhibits lung cancer cells proliferation. Chin. J. Nat. Med., 2014, 12(4), 284-289.
[http://dx.doi.org/10.1016/S1875-5364(14)60055-8] [PMID: 24863353]
[12]
Wu, X.; Li, F.; Wang, X.; Li, C.; Meng, Q.; Wang, C.; Huang, J.; Chen, S.; Zhu, Z. Antibiotic bedaquiline effectively targets growth, survival and tumor angiogenesis of lung cancer through suppressing energy metabolism. Biochem. Biophys. Res. Commun., 2018, 495(1), 267-272.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.136] [PMID: 29107691]
[13]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[14]
Raguraman, V.; Abraham, S.; Jyotsna, J.; Palaniappan, S.; Gopal, S.; Thirugnanasambandam, R.; Kirubagaran, R. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. Carbohydr. Polym., 2019, 203, 441-449.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.056] [PMID: 30318233]
[15]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[16]
Parinandi, N.L.; Maulik, N.; Thirunavukkarasu, M.; McFadden, D.W. Antioxidants in longevity and medicine 2014. Oxid. Med. Cell. Longev., 2015, 2015 739417.
[http://dx.doi.org/10.1155/2015/739417] [PMID: 26078815]
[17]
Davoodbasha, M.; Park, B.R.; Rhee, W.J.; Lee, S.Y.; Kim, J.W. Antioxidant potentials of nanoceria synthesized by solution plasma process and its biocompatibility study. Arch. Biochem. Biophys., 2018, 645, 42-49.
[http://dx.doi.org/10.1016/j.abb.2018.02.003] [PMID: 29427590]
[18]
Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18(10), 872-879.
[http://dx.doi.org/10.1016/S0899-9007(02)00916-4] [PMID: 12361782]
[19]
Kocpinar, E.F.; Gonul Baltaci, N.; Ceylan, H.; Kalin, S.N.; Erdogan, O.; Budak, H. Effect of a prolonged dietary iron intake on the gene expression and activity of the testicular antioxidant defense system in rats. Biol. Trace Elem. Res., 2019.
[http://dx.doi.org/10.1007/s12011-019-01817-0] [PMID: 31309445]
[20]
Srivastava, A.K.; Pandey, N.R.; Blanc, A. Activation of mitogenactivated protein kinases and protein kinase B/Akt signaling by oxidative stress in vascular smooth muscle cells: Involvement in vascular pathophysiology. In: Pathophysiology of Cardiovascular Disease; Dhalla, N.S.; Rupp, H.; Angel, A.; Pierce, G.N., Eds.; Springer: Boston, MA, 2004; pp. 405-416.
[http://dx.doi.org/10.1007/978-1-4615-0453-5_30]
[21]
Zhang, D.X.; Gutterman, D.D. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(5), H2023-H2031.
[http://dx.doi.org/10.1152/ajpheart.01283.2006] [PMID: 17237240]
[22]
Elahi, M.M.; Kong, Y.X.; Matata, B.M. Oxidative stress as a mediator of cardiovascular disease. Oxid. Med. Cell. Longev., 2009, 2(5), 259-269.
[http://dx.doi.org/10.4161/oxim.2.5.9441] [PMID: 20716913]
[23]
Sugamura, K.; Keaney, J.F. Jr. Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med., 2011, 51(5), 978-992.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.004] [PMID: 21627987]
[24]
Taleb, A.; Ahmad, K.A.; Ihsan, A.U.; Qu, J.; Lin, N.; Hezam, K.; Koju, N.; Hui, L.; Qilong, D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother., 2018, 102, 689-698.
[http://dx.doi.org/10.1016/j.biopha.2018.03.140]
[25]
Yang, J.H.; Bening, S.C.; Collins, J.J. Antibiotic efficacy-context matters. Curr. Opin. Microbiol., 2017, 39, 73-80.
[http://dx.doi.org/10.1016/j.mib.2017.09.002] [PMID: 29049930]
[26]
Sharif-Barfeh, Z.; Beigoli, S.; Marouzi, S.; Rad, A.S.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems. J. Solution Chem., 2017, 46(2), 488-504.
[http://dx.doi.org/10.1007/s10953-017-0590-2]
[27]
Kalghatgi, S.; Spina, C.S.; Costello, J.C.; Liesa, M.; Morones-Ramirez, J.R.; Slomovic, S.; Molina, A.; Shirihai, O.S.; Collins, J.J. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med., 2013, 5(192), 192ra85.
[http://dx.doi.org/10.1126/scitranslmed.3006055] [PMID: 23825301]
[28]
Lesnefsky, E.J.; Gudz, T.I.; Moghaddas, S.; Migita, C.T.; Ikeda-Saito, M.; Turkaly, P.J.; Hoppel, C.L. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J. Mol. Cell. Cardiol., 2001, 33(1), 37-47.
[http://dx.doi.org/10.1006/jmcc.2000.1273] [PMID: 11133221]
[29]
Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5), 797-810.
[http://dx.doi.org/10.1016/j.cell.2007.06.049] [PMID: 17803904]
[30]
Pochini, L.; Galluccio, M.; Scumaci, D.; Giangregorio, N.; Tonazzi, A.; Palmieri, F.; Indiveri, C. Interaction of beta-lactam antibiotics with the mitochondrial carnitine/acylcarnitine transporter. Chem. Biol. Interact., 2008, 173(3), 187-194.
[http://dx.doi.org/10.1016/j.cbi.2008.03.003] [PMID: 18452908]
[31]
Versporten, A.; Bolokhovets, G.; Ghazaryan, L.; Abilova, V.; Pyshnik, G.; Spasojevic, T.; Korinteli, I.; Raka, L.; Kambaralieva, B.; Cizmovic, L.; Carp, A.; Radonjic, V.; Maqsudova, N.; Celik, H.D.; Payerl-Pal, M.; Pedersen, H.B.; Sautenkova, N.; Goossens, H. Antibiotic use in eastern Europe: A cross-national database study in coordination with the WHO Regional Office for Europe. Lancet Infect. Dis., 2014, 14(5), 381-387.
[http://dx.doi.org/10.1016/S1473-3099(14)70071-4] [PMID: 24657114]
[32]
Katzung, B.; Masters, S.B.; Trevor, A.J. Basic and Clinical Pharmacology; McGraw-Hill Medical Publishing Division: New York, NY, 2012.
[33]
Dhodi, J.B.; Thanekar, D.R.; Mestry, S.N.; Juvekar, A.R. Carissa carandas Linn. fruit extract ameliorates gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress. J. Acute Dis., 2015, 4(2), 135-140.
[http://dx.doi.org/10.1016/S2221-6189(15)30023-8]
[34]
Burch, D.G.S.; Sperling, D. Amoxicillin-current use in swine medicine. J. Vet. Pharmacol. Ther., 2018, 41(3), 356-368.
[http://dx.doi.org/10.1111/jvp.12482] [PMID: 29352469]
[35]
Temel, Y.; Ayna, A.; Hamdi Shafeeq, I.; Ciftci, M. In vitro effects of some antibiotics on glucose-6-phosphate dehydrogenase from rat (Rattus norvegicus) erythrocyte. Drug Chem. Toxicol. 2018. Epub ahead of print,
[http://dx.doi.org/10.1080/01480545.2018.1481083] [PMID: 29947262]
[36]
Kayaalp, O. Beta lactam antibiotics: Cephalosporins. Medical Pharmacology/Ankara. 2002, 18, 234-248.
[37]
El-Sherbiny, G.A.; Taye, A.; Abdel-Raheem, I.T. Role of ursodeoxycholic acid in prevention of hepatotoxicity caused by amoxicillin-clavulanic acid in rats. Ann. Hepatol., 2009, 8(2), 134-140.
[http://dx.doi.org/10.1016/S1665-2681(19)31792-2] [PMID: 19502657]
[38]
Aldahmash, B.A.; El-Nagar, D.M.; Ibrahim, K.E. Reno-protective effects of propolis on gentamicin-induced acute renal toxicity in swiss albino mice. Nefrologia, 2016, 36(6), 643-652.
[http://dx.doi.org/10.1016/j.nefro.2016.06.004] [PMID: 27575929]
[39]
Erjaee, H.; Azma, F.; Nazifi, S. Effect of caraway on gentamicininduced oxidative stress, inflammation and nephrotoxicity in rats. Vet. Sci Dev., 2015, 5(2)
[http://dx.doi.org/10.4081/vsd.2015.5896]]
[40]
Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M.; An, P.; Antonarakis, S.E.; Attwood, J.; Baertsch, R.; Bailey, J.; Barlow, K.; Beck, S.; Berry, E.; Birren, B.; Bloom, T.; Bork, P.; Botcherby, M.; Bray, N.; Brent, M.R.; Brown, D.G.; Brown, S.D.; Bult, C.; Burton, J.; Butler, J.; Campbell, R.D.; Carninci, P.; Cawley, S.; Chiaromonte, F.; Chinwalla, A.T.; Church, D.M.; Clamp, M.; Clee, C.; Collins, F.S.; Cook, L.L.; Copley, R.R.; Coulson, A.; Couronne, O.; Cuff, J.; Curwen, V.; Cutts, T.; Daly, M.; David, R.; Davies, J.; Delehaunty, K.D.; Deri, J.; Dermitzakis, E.T.; Dewey, C.; Dickens, N.J.; Diekhans, M.; Dodge, S.; Dubchak, I.; Dunn, D.M.; Eddy, S.R.; Elnitski, L.; Emes, R.D.; Eswara, P.; Eyras, E.; Felsenfeld, A.; Fewell, G.A.; Flicek, P.; Foley, K.; Frankel, W.N.; Fulton, L.A.; Fulton, R.S.; Furey, T.S.; Gage, D.; Gibbs, R.A.; Glusman, G.; Gnerre, S.; Goldman, N.; Goodstadt, L.; Grafham, D.; Graves, T.A.; Green, E.D.; Gregory, S.; Guigó, R.; Guyer, M.; Hardison, R.C.; Haussler, D.; Hayashizaki, Y.; Hillier, L.W.; Hinrichs, A.; Hlavina, W.; Holzer, T.; Hsu, F.; Hua, A.; Hubbard, T.; Hunt, A.; Jackson, I.; Jaffe, D.B.; Johnson, L.S.; Jones, M.; Jones, T.A.; Joy, A.; Kamal, M.; Karlsson, E.K.; Karolchik, D.; Kasprzyk, A.; Kawai, J.; Keibler, E.; Kells, C.; Kent, W.J.; Kirby, A.; Kolbe, D.L.; Korf, I.; Kucherlapati, R.S.; Kulbokas, E.J.; Kulp, D.; Landers, T.; Leger, J.P.; Leonard, S.; Letunic, I.; Levine, R.; Li, J.; Li, M.; Lloyd, C.; Lucas, S.; Ma, B.; Maglott, D.R.; Mardis, E.R.; Matthews, L.; Mauceli, E.; Mayer, J.H.; McCarthy, M.; McCombie, W.R.; McLaren, S.; McLay, K.; McPherson, J.D.; Meldrim, J.; Meredith, B.; Mesirov, J.P.; Miller, W.; Miner, T.L.; Mongin, E.; Montgomery, K.T.; Morgan, M.; Mott, R.; Mullikin, J.C.; Muzny, D.M.; Nash, W.E.; Nelson, J.O.; Nhan, M.N.; Nicol, R.; Ning, Z.; Nusbaum, C.; O’Connor, M.J.; Okazaki, Y.; Oliver, K.; Overton-Larty, E.; Pachter, L.; Parra, G.; Pepin, K.H.; Peterson, J.; Pevzner, P.; Plumb, R.; Pohl, C.S.; Poliakov, A.; Ponce, T.C.; Ponting, C.P.; Potter, S.; Quail, M.; Reymond, A.; Roe, B.A.; Roskin, K.M.; Rubin, E.M.; Rust, A.G.; Santos, R.; Sapojnikov, V.; Schultz, B.; Schultz, J.; Schwartz, M.S.; Schwartz, S.; Scott, C.; Seaman, S.; Searle, S.; Sharpe, T.; Sheridan, A.; Shownkeen, R.; Sims, S.; Singer, J.B.; Slater, G.; Smit, A.; Smith, D.R.; Spencer, B.; Stabenau, A.; Stange-Thomann, N.; Sugnet, C.; Suyama, M.; Tesler, G.; Thompson, J.; Torrents, D.; Trevaskis, E.; Tromp, J.; Ucla, C.; Ureta-Vidal, A.; Vinson, J.P.; Von Niederhausern, A.C.; Wade, C.M.; Wall, M.; Weber, R.J.; Weiss, R.B.; Wendl, M.C.; West, A.P.; Wetterstrand, K.; Wheeler, R.; Whelan, S.; Wierzbowski, J.; Willey, D.; Williams, S.; Wilson, R.K.; Winter, E.; Worley, K.C.; Wyman, D.; Yang, S.; Yang, S.P.; Zdobnov, E.M.; Zody, M.C.; Lander, E.S. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420(6915), 520-562.
[http://dx.doi.org/10.1038/nature01262] [PMID: 12466850]
[41]
Kile, B.T.; Hilton, D.J. The art and design of genetic screens: Mouse. Nat. Rev. Genet., 2005, 6(7), 557-567.
[http://dx.doi.org/10.1038/nrg1636] [PMID: 15951745]
[42]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[43]
Budak, H.; Gonul, N.; Ceylan, H.; Kocpinar, E.F. Impact of long term Fe3+ toxicity on expression of glutathione system in rat liver. Environ. Toxicol. Pharmacol., 2014, 37(1), 365-370.
[http://dx.doi.org/10.1016/j.etap.2013.12.007] [PMID: 24388910]
[44]
Karaman, M.; Budak, H.; Çiftci, M. Amoxicillin and gentamicin antibiotics treatment adversely influence the fertility and morphology through decreasing the Dazl gene expression level and increasing the oxidative stress. Arch. Physiol. Biochem., 2019, 125(5), 447-455.
[http://dx.doi.org/10.1080/13813455.2018.1482354] [PMID: 29925282]
[45]
Zhang, C.; Xue, P.; Gao, L.; Chen, X.; Lin, K.; Yang, X.; Dai, Y.; Xu, E.Y. Highly conserved epigenetic regulation of BOULE and DAZL is associated with human fertility. FASEB J., 2016, 30(10), 3424-3440.
[http://dx.doi.org/10.1096/fj.201500167R] [PMID: 27358391]
[46]
Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem., 1988, 34(3), 497-500.
[PMID: 3349599]
[47]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[48]
Carlberg, I.; Mannervik, B. Glutathione reductase. Methods Enzymol., 1985, 113, 484-490.
[http://dx.doi.org/10.1016/S0076-6879(85)13062-4] [PMID: 3003504]
[49]
Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 1967, 70(1), 158-169.
[PMID: 6066618]
[50]
Beutler, E. Red cell metabolism: A manual of biochemical methods; Grune & Stratton, Inc.: New York, NY, 1975.
[51]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249(22), 7130-7139.
[PMID: 4436300]
[52]
Karpecki, P.; Paterno, M.R.; Comstock, T.L. Limitations of current antibiotics for the treatment of bacterial conjunctivitis. Optom. Vis. Sci., 2010, 87(11), 908-919.
[http://dx.doi.org/10.1097/OPX.0b013e3181f6fbb3]
[53]
Champagne-Jorgensen, K.; Kunze, W.A.; Forsythe, P.; Bienenstock, J.; Neufeld, K.-A.M. Antibiotics and the nervous system: More than just the microbes? Brain Behav. Immun., 2019, 77, 7-15.
[PMID: 30582961]
[54]
Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol., 2018, 100, 1-19.
[http://dx.doi.org/10.1016/j.vph.2017.05.005] [PMID: 28579545]
[55]
Nie, X.P.; Liu, B.Y.; Yu, H.J.; Liu, W.Q.; Yang, Y.F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut., 2013, 172, 23-32.
[http://dx.doi.org/10.1016/j.envpol.2012.08.013] [PMID: 22982550]
[56]
Rowan, A.D.; Cabral, D.J.; Belenky, P. Bactericidal antibiotics induce programmed metabolic toxicity. Microb. Cell, 2016, 3(4), 178-180.
[http://dx.doi.org/10.15698/mic2016.04.493] [PMID: 28357350]
[57]
Sani, F.D.; Shakibapour, N.; Beigoli, S.; Sadeghian, H.; Hosainzadeh, M.; Chamani, J. Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations. J. Lumin., 2018, 203, 599-608.
[http://dx.doi.org/10.1016/j.jlumin.2018.06.083]
[58]
Shakibapour, N.; Dehghani-Sani, F.; Beigoli, S.; Sadeghian, H.; Chamani, J. Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: binary and ternary approaches. J. Biomol. Struct. Dyn., 2019, 37(2), 359-371.
[http://dx.doi.org/10.1080/07391102.2018.1427629] [PMID: 29338579]
[59]
Budak, H.; Ceylan, H.; Kocpinar, E.F.; Gonul, N.; Erdogan, O. Expression of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in oxidative stress induced by long-term iron toxicity in rat liver. J. Biochem. Mol. Toxicol., 2014, 28(5), 217-223.
[http://dx.doi.org/10.1002/jbt.21556] [PMID: 24599681]
[60]
Bozkurt, A.; Budak, H.; Erol, H. S.; Can, S.; Mercantepe, T.; Akin, Y.; Ozbey, I.; Cankaya, M.; Halici, M.B.; Coban, T. A. A novel therapeutics agent: antioxidant effects of hydroxylfasudil on rat kidney and liver tissues in a protamine sulphate-induced cystitis rat model; preliminary results. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 9-14.
[61]
Dasari, S.; Ganjayi, M.; Oruganti, L.; Balaji, H.; Meriga, B. Glutathione S-transferases detoxify endogenous and exogenous toxic agents-mini review. J. Dairy Vet. Anim. Res., 2017, 5(5), 00154.
[http://dx.doi.org/10.15406/jdvar.2017.05.00154]
[62]
McBean, G.J. Cysteine, glutathione, and thiol redox balance in astrocytes. Antioxidants, 2017, 6(3) E62.
[http://dx.doi.org/10.3390/antiox6030062] [PMID: 28771170]
[63]
Yin, X.; Wu, H.; Chen, Y.; Kang, Y.J. Induction of antioxidants by adriamycin in mouse heart. Biochem. Pharmacol., 1998, 56(1), 87-93.
[http://dx.doi.org/10.1016/S0006-2952(98)00099-9] [PMID: 9698092]
[64]
Berg, J.; Tymoczko, J.; Stryer, L. Glucose 6-phosphate dehydrogenase plays a key role in protection against reactive oxygen species. Biochemistry, 5th Ed; Berg, J.M.; Tymoczko, J.L.; Stryer, L.; Eds. WH Freeman: New York, NY , 2002; pp. 854-857.
[65]
Adamson, G.M.; Harman, A.W. A role for the glutathione peroxidase/reductase enzyme system in the protection from paracetamol toxicity in isolated mouse hepatocytes. Biochem. Pharmacol., 1989, 38(19), 3323-3330.
[http://dx.doi.org/10.1016/0006-2952(89)90630-8] [PMID: 2818629]
[66]
Sakamoto, T.; Imai, H. Hydrogen peroxide produced by superoxide dismutase SOD-2 activates sperm in Caenorhabditis elegans. J. Biol. Chem., 2017, 292(36), 14804-14813.
[http://dx.doi.org/10.1074/jbc.M117.788901] [PMID: 28724632]
[67]
Wrześniok, D.; Beberok, A.; Otręba, M.; Buszman, E. Impact of gentamicin on antioxidant enzymes activity in hemn-DP cells. Acta Pol. Pharm., 2015, 72(3), 447-453.
[PMID: 26642653]