Physiological Functions of Heat Shock Proteins

Page: [751 - 760] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Heat shock proteins (HSPs) are molecular chaperones involved in a variety of life activities. HSPs function in the refolding of misfolded proteins, thereby contributing to the maintenance of cellular homeostasis. Heat shock factor (HSF) is activated in response to environmental stresses and binds to heat shock elements (HSEs), promoting HSP translation and thus the production of high levels of HSPs to prevent damage to the organism. Here, we summarize the role of molecular chaperones as anti-heat stress molecules and their involvement in immune responses and the modulation of apoptosis. In addition, we review the potential application of HSPs to cancer therapy, general medicine, and the treatment of heart disease.

Keywords: Heat shock proteins, molecular chaperone, immunity, antioxidation, tumor, heat shock factor.

Graphical Abstract

[1]
Ritossa, F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 1962, 18(12), 571-573.
[http://dx.doi.org/10.1007/BF02172188]
[2]
Tissières, A.; Mitchell, H.K.; Tracy, U.M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol., 1974, 84(3), 389-398.
[http://dx.doi.org/10.1016/0022-2836(74)90447-1] [PMID: 4219221]
[3]
Carper, S.W.; Duffy, J.J.; Gerner, E.W. Heat shock proteins in thermotolerance and other cellular processes. Cancer Res., 1987, 47(20), 5249-5255.
[PMID: 3308075]
[4]
Garbuz, D.G. Mol. Biol. (Mosk.), 2017, 51(3), 400-417. [Regulation of heat shock gene expression in response to stress]
[PMID: 28707656]
[5]
Zininga, T.; Ramatsui, L.; Shonhai, A. Heat shock proteins as immunomodulants. Molecules, 2018, 23(11), 2846.
[http://dx.doi.org/10.3390/molecules23112846] [PMID: 30388847]
[6]
Bukau, B; Weissman, J; Horwich, A Molecular chaperones and protein quality control., 2006.
[7]
Zilaee, M.; Ferns, G.A.A.; Ghayour-Mobarhan, M. Heat shock proteins and cardiovascular disease. Adv. Clin. Chem., 2014, 64(64), 73-115.
[http://dx.doi.org/10.1016/B978-0-12-800263-6.00002-1] [PMID: 24938017]
[8]
Waters, E.R.; Lee, G.J.; Vierling, E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot., 1996, 47(3), 325-338.
[http://dx.doi.org/10.1093/jxb/47.3.325]
[9]
Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92(3), 351-366.
[http://dx.doi.org/10.1016/S0092-8674(00)80928-9] [PMID: 9476895]
[10]
Wang, W; Vinocur, B; Shoseyov, O; Altman, A Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response., 2004.
[11]
Kourtis, N.; Tavernarakis, N. Small heat shock proteins and neurodegeneration: recent developments. Biomol. Concepts, 2018, 9(1), 94-102.
[http://dx.doi.org/10.1515/bmc-2018-0009] [PMID: 30133417]
[12]
Haslbeck, M.; Vierling, E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol., 2015, 427(7), 1537-1548.
[http://dx.doi.org/10.1016/j.jmb.2015.02.002] [PMID: 25681016]
[13]
Franck, E.; Madsen, O.; van Rheede, T.; Ricard, G.; Huynen, M.A.; de Jong, W.W. Evolutionary diversity of vertebrate small heat shock proteins. J. Mol. Evol., 2004, 59(6), 792-805.
[http://dx.doi.org/10.1007/s00239-004-0013-z] [PMID: 15599511]
[14]
McDonald, E.T.; Bortolus, M.; Koteiche, H.A.; Mchaourab, H.S. Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry, 2012, 51(6), 1257-1268.
[http://dx.doi.org/10.1021/bi2017624] [PMID: 22264079]
[15]
Haslbeck, M. Recombinant expression and in vitro refolding of the yeast small heat shock protein Hsp42., 2006.
[16]
Quinlan, R. Cytoskeletal competence requires protein chaperones. Prog. Mol. Subcell. Biol., 2002, 28, 219-233.
[http://dx.doi.org/10.1007/978-3-642-56348-5_12] [PMID: 11908062]
[17]
Sudnitsyna, M.V.; Gusev, N.B. Methylglyoxal and small heat shock proteins. Biochemistry (Mosc.), 2017, 82(7), 751-759.
[http://dx.doi.org/10.1134/S000629791707001X] [PMID: 28918740]
[18]
Kourtis, N.; Nikoletopoulou, V.; Tavernarakis, N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature, 2012, 490(7419), 213-218.
[http://dx.doi.org/10.1038/nature11417] [PMID: 22972192]
[19]
Evgrafov, O.V.; Mersiyanova, I.; Irobi, J.; Van Den Bosch, L.; Dierick, I.; Leung, C.L.; Schagina, O.; Verpoorten, N.; Van Impe, K.; Fedotov, V.; Dadali, E.; Auer-Grumbach, M.; Windpassinger, C.; Wagner, K.; Mitrovic, Z.; Hilton-Jones, D.; Talbot, K.; Martin, J.J.; Vasserman, N.; Tverskaya, S.; Polyakov, A.; Liem, R.K.; Gettemans, J.; Robberecht, W.; De Jonghe, P.; Timmerman, V. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet., 2004, 36(6), 602-606.
[http://dx.doi.org/10.1038/ng1354] [PMID: 15122254]
[20]
Ghaoui, R.; Palmio, J.; Brewer, J.; Lek, M.; Needham, M.; Evilä, A.; Hackman, P.; Jonson, P.H.; Penttilä, S.; Vihola, A.; Huovinen, S.; Lindfors, M.; Davis, R.L.; Waddell, L.; Kaur, S.; Yiannikas, C.; North, K.; Clarke, N.; MacArthur, D.G.; Sue, C.M.; Udd, B. Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology, 2016, 86(4), 391-398.
[http://dx.doi.org/10.1212/WNL.0000000000002324] [PMID: 26718575]
[21]
Hemmingsen, S.M.; Woolford, C.; van der Vies, S.M.; Tilly, K.; Dennis, D.T.; Georgopoulos, C.P.; Hendrix, R.W.; Ellis, R.J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, 1988, 333(6171), 330-334.
[http://dx.doi.org/10.1038/333330a0] [PMID: 2897629]
[22]
Xu, Z.; Horwich, A.L.; Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature, 1997, 388(6644), 741-750.
[http://dx.doi.org/10.1038/41944] [PMID: 9285585]
[23]
Itoh, H.; Komatsuda, A.; Ohtani, H.; Wakui, H.; Imai, H.; Sawada, K.; Otaka, M.; Ogura, M.; Suzuki, A.; Hamada, F. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. Eur. J. Biochem., 2002, 269(23), 5931-5938.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03317.x] [PMID: 12444982]
[24]
Kirchhoff, S.R.; Gupta, S.; Knowlton, A.A. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation, 2002, 105(24), 2899-2904.
[http://dx.doi.org/10.1161/01.CIR.0000019403.35847.23] [PMID: 12070120]
[25]
Bulut, Y.; Faure, E.; Thomas, L.; Karahashi, H.; Michelsen, K.S.; Equils, O.; Morrison, S.G.; Morrison, R.P.; Arditi, M. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol., 2002, 168(3), 1435-1440.
[http://dx.doi.org/10.4049/jimmunol.168.3.1435] [PMID: 11801686]
[26]
Mayer, M.P.; Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684.
[http://dx.doi.org/10.1007/s00018-004-4464-6] [PMID: 15770419]
[27]
Clerico, E.M.; Tilitsky, J.M.; Meng, W.; Gierasch, L.M. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J. Mol. Biol., 2015, 427(7), 1575-1588.
[http://dx.doi.org/10.1016/j.jmb.2015.02.004] [PMID: 25683596]
[28]
Ghazaei, C. Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. J. Med. Microbiol., 2017, 66(3), 259-265.
[http://dx.doi.org/10.1099/jmm.0.000429] [PMID: 28086078]
[29]
Kampinga, H.H.; Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 579-592.
[http://dx.doi.org/10.1038/nrm2941] [PMID: 20651708]
[30]
Parcellier, A; Gurbuxani, S; Schmitt, E; Solary, E; Garrido, C Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways., 2003.
[31]
Zhong, L.; Peng, X.; Hidalgo, G.E.; Doherty, D.E.; Stromberg, A.J.; Hirschowitz, E.A. Antibodies to HSP70 and HSP90 in serum in non-small cell lung cancer patients. Cancer Detect. Prev., 2003, 27(4), 285-290.
[http://dx.doi.org/10.1016/S0361-090X(03)00097-7] [PMID: 12893076]
[32]
De Thonel, A.; Mezger, V.; Garrido, C. Implication of heat shock factors in tumorigenesis: therapeutical potential. Cancers (Basel), 2011, 3(1), 1158-1181.
[http://dx.doi.org/10.3390/cancers3011158] [PMID: 24212658]
[33]
Boudesco, C.; Cause, S.; Jego, G.; Garrido, C. Hsp70: A cancer target inside and outside the cell; Chaperones, 2018, pp. 371-396.
[34]
Murphy, M.E. The HSP70 family and cancer. Carcinogenesis, 2013, 34(6), 1181-1188.
[http://dx.doi.org/10.1093/carcin/bgt111] [PMID: 23563090]
[35]
Son, Y.O.; Kim, H.E.; Choi, W.S.; Chun, C.H.; Chun, J.S. RNA-binding protein ZFP36L1 regulates osteoarthritis by modulating members of the heat shock protein 70 family. Nat. Commun., 2019, 10(1), 77.
[http://dx.doi.org/10.1038/s41467-018-08035-7] [PMID: 30622281]
[36]
Zhang, X.; Tanguay, R.M.; He, M.; Deng, Q.; Miao, X.; Zhou, L.; Wu, T. Variants of HSPA1A in combination with plasma Hsp70 and anti-Hsp70 antibody levels associated with higher risk of acute coronary syndrome. Cardiology, 2011, 119(1), 57-64.
[http://dx.doi.org/10.1159/000329917] [PMID: 21849784]
[37]
Araujo, T.L.S.; Venturini, G.; Moretti, A.I.S.; Tanaka, L.Y.; Pereira, A.C.; Laurindo, F.R.M. Cell-surface HSP70 associates with thrombomodulin in endothelial cells. Cell Stress Chaperones, 2019, 24(1), 273-282.
[http://dx.doi.org/10.1007/s12192-018-00964-y] [PMID: 30645756]
[38]
Peng, P.; Ménoret, A.; Srivastava, P.K. Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J. Immunol. Methods, 1997, 204(1), 13-21.
[http://dx.doi.org/10.1016/S0022-1759(97)00017-3] [PMID: 9202705]
[39]
Nieland, T.J.F.; Tan, M.C.A.A.; Monne-van Muijen, M.; Koning, F.; Kruisbeek, A.M.; van Bleek, G.M. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc. Natl. Acad. Sci. USA, 1996, 93(12), 6135-6139.
[http://dx.doi.org/10.1073/pnas.93.12.6135] [PMID: 8650232]
[40]
Hromadnikova, I.; Nguyen, T.T.H.; Zlacka, D.; Sedlackova, L.; Popelka, S.; Veigl, D.; Pech, J.; Vavrincova, P.; Sosna, A. Expression of heat shock protein receptors on fibroblast-like synovial cells derived from rheumatoid arthritis-affected joints. Rheumatol. Int., 2008, 28(9), 837-844.
[http://dx.doi.org/10.1007/s00296-008-0532-9] [PMID: 18231792]
[41]
Spierings, J.; van Eden, W. Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology (Oxford), 2017, 56(2), 198-208.
[http://dx.doi.org/10.1093/rheumatology/kew266] [PMID: 27411479]
[42]
Mayer, M.P.; Le Breton, L. Hsp90: breaking the symmetry. Mol. Cell, 2015, 58(1), 8-20.
[http://dx.doi.org/10.1016/j.molcel.2015.02.022] [PMID: 25839432]
[43]
Taipale, M.; Jarosz, D.F.; Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol., 2010, 11(7), 515-528.
[http://dx.doi.org/10.1038/nrm2918] [PMID: 20531426]
[44]
Finka, A.; Goloubinoff, P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones, 2013, 18(5), 591-605.
[http://dx.doi.org/10.1007/s12192-013-0413-3] [PMID: 23430704]
[45]
Whitesell, L.; Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 2005, 5(10), 761-772.
[http://dx.doi.org/10.1038/nrc1716] [PMID: 16175177]
[46]
Houlihan, J.L.; Metzler, J.J.; Blum, J.S. HSP90α and HSP90β isoforms selectively modulate MHC class II antigen presentation in B cells. J. Immunol., 2009, 182(12), 7451-7458.
[http://dx.doi.org/10.4049/jimmunol.0804296] [PMID: 19494268]
[47]
Jayaprakash, P.; Dong, H.; Zou, M.; Bhatia, A.; O’Brien, K.; Chen, M.; Woodley, D.T.; Li, W. Hsp90α and Hsp90β together operate a hypoxia and nutrient paucity stress-response mechanism during wound healing. J. Cell Sci., 2015, 128(8), 1475-1480.
[http://dx.doi.org/10.1242/jcs.166363] [PMID: 25736295]
[48]
Ammirante, M.; Rosati, A.; Gentilella, A.; Festa, M.; Petrella, A.; Marzullo, L.; Pascale, M.; Belisario, M.A.; Leone, A.; Turco, M.C. The activity of hsp90 α promoter is regulated by NF-κ B transcription factors. Oncogene, 2008, 27(8), 1175-1178.
[http://dx.doi.org/10.1038/sj.onc.1210716] [PMID: 17724475]
[49]
Thomas, T; Voss, A.K; Petrou, P; Gruss, P. 2000.
[50]
Jay, D.G.; Eustace, B.K.; Sakurai, T. Inhibitors of extracellular 2 HSP90, US Patent 8,529,891, 2013.
[51]
Becker, B.; Multhoff, G.; Farkas, B.; Wild, P.J.; Landthaler, M.; Stolz, W.; Vogt, T. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol., 2004, 13(1), 27-32.
[http://dx.doi.org/10.1111/j.0906-6705.2004.00114.x] [PMID: 15009113]
[52]
Garg, G.; Khandelwal, A.; Blagg, B.S. Anticancer Inhibitors of Hsp90 function: beyond the usual suspects. Adv. Cancer Res., 2016, 129, 51-88.
[http://dx.doi.org/10.1016/bs.acr.2015.12.001] [PMID: 26916001]
[53]
Gupta, A.; Cooper, Z.A.; Tulapurkar, M.E.; Potla, R.; Maity, T.; Hasday, J.D.; Singh, I.S. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J. Biol. Chem., 2013, 288(4), 2756-2766.
[http://dx.doi.org/10.1074/jbc.M112.427336] [PMID: 23212905]
[54]
Rauschenbach, I.Y.; Khlebodarova, T.M.; Chentsova, N.A.; Gruntenko, N.E.; Grenback, L.G.; Yantsen, E.I.; Filipenko, M.L. Metabolism of the juvenile hormone in drosophila adults under normal conditions and heat stress: genetical and biochemical aspects. J. Insect Physiol., 1995, 41(2), 179-189.
[http://dx.doi.org/10.1016/0022-1910(94)00084-T]
[55]
Morrow, G.; Samson, M.; Michaud, S.; Tanguay, R.M. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J., 2004, 18(3), 598-599.
[http://dx.doi.org/10.1096/fj.03-0860fje] [PMID: 14734639]
[56]
Jee, H. Size dependent classification of heat shock proteins: a mini-review. J. Exerc. Rehabil., 2016, 12(4), 255-259.
[http://dx.doi.org/10.12965/jer.1632642.321] [PMID: 27656620]
[57]
Mymrikov, E.V.; Daake, M.; Richter, B.; Haslbeck, M.; Buchner, J. The chaperone activity and substrate spectrum of human small heat shock proteins. J. Biol. Chem., 2017, 292(2), 672-684.
[http://dx.doi.org/10.1074/jbc.M116.760413] [PMID: 27909051]
[58]
Burdon, R.H. Heat shock proteins in relation to medicine. Mol. Aspects Med., 1993, 14(2), 83-165.
[http://dx.doi.org/10.1016/0098-2997(93)90020-E] [PMID: 7901728]
[59]
Burdon, R. Stress proteins in biology and medicine. FEBS Lett., 1991, 279(1), 157-157.
[http://dx.doi.org/10.1016/0014-5793(91)80273-6] [PMID: 2026253]
[60]
Ananthan, J.; Goldberg, A.L.; Voellmy, R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science, 1986, 232(4749), 522-524.
[http://dx.doi.org/10.1126/science.3083508] [PMID: 3083508]
[61]
Sorger, P.K. Heat shock factor and the heat shock response. Cell, 1991, 65(3), 363-366.
[http://dx.doi.org/10.1016/0092-8674(91)90452-5] [PMID: 2018972]
[62]
Morimoto, R.I. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259(5100), 1409-1410.
[http://dx.doi.org/10.1126/science.8451637] [PMID: 8451637]
[63]
Dokladny, K.; Myers, O.B.; Moseley, P.L. Heat shock response and autophagy--cooperation and control. Autophagy, 2015, 11(2), 200-213.
[http://dx.doi.org/10.1080/15548627.2015.1009776] [PMID: 25714619]
[64]
Gray, C.C.; Amrani, M.; Yacoub, M.H. Heat stress proteins and myocardial protection: experimental model or potential clinical tool? Int. J. Biochem. Cell Biol., 1999, 31(5), 559-573.
[http://dx.doi.org/10.1016/S1357-2725(99)00004-7] [PMID: 10399317]
[65]
Lindquist, S. Regulation of protein synthesis during heat shock. Nature, 1981, 293(5830), 311-314.
[http://dx.doi.org/10.1038/293311a0] [PMID: 6792546]
[66]
Petersen, R.; Lindquist, S. The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene, 1988, 72(1-2), 161-168.
[http://dx.doi.org/10.1016/0378-1119(88)90138-2] [PMID: 3243430]
[67]
Arrigo, A.P. Med. Sci. (Paris), 2005, 21(6-7), 619-625. [Heat shock proteins as molecular chaperones]
[http://dx.doi.org/ 10.1051/medsci/2005216-7619] [PMID: 15985205]
[68]
Dahiya, V.; Buchner, J. Functional principles and regulation of molecular chaperones. Methods Mol. Biol., 2018, •••, 71-397.
[PMID: 30635079]
[69]
Haslbeck, M. sHsps and their role in the chaperone network. Cell. Mol. Life Sci., 2002, 59(10), 1649-1657.
[http://dx.doi.org/10.1007/PL00012492] [PMID: 12475175]
[70]
Schmid, T.E.; Multhoff, G. Radiation-induced stress proteins - the role of heat shock proteins (HSP) in anti- tumor responses. Curr. Med. Chem., 2012, 19(12), 1765-1770.
[http://dx.doi.org/10.2174/092986712800099767] [PMID: 22414085]
[71]
Powers, M.V; Workman, P. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors., 2006.
[72]
Yamamoto, M.; Takahashi, Y.; Inano, K.; Horigome, T.; Sugano, H. Characterization of the hydrophobic region of heat shock protein 90. J. Biochem., 1991, 110(1), 141-145.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123532] [PMID: 1939021]
[73]
Beere, H.M. “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J. Cell Sci., 2004, 117(Pt 13), 2641-2651.
[http://dx.doi.org/10.1242/jcs.01284] [PMID: 15169835]
[74]
Robert, J. Evolution of heat shock protein and immunity., 2003.
[75]
Kiang, J.G.; Tsokos, G.C. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther., 1998, 80(2), 183-201.
[http://dx.doi.org/10.1016/S0163-7258(98)00028-X] [PMID: 9839771]
[76]
Mosser, D.D.; Caron, A.W.; Bourget, L.; Denis-Larose, C.; Massie, B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol., 1997, 17(9), 5317-5327.
[http://dx.doi.org/10.1128/MCB.17.9.5317] [PMID: 9271409]
[77]
Hahn, A.; Bublak, D.; Schleiff, E.; Scharf, K.D. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell, 2011, 23(2), 741-755.
[http://dx.doi.org/10.1105/tpc.110.076018] [PMID: 21307284]
[78]
Burrows, F.; Zhang, H.; Kamal, A. Hsp90 activation and cell cycle regulation. Cell Cycle, 2004, 3(12), 1530-1536.
[http://dx.doi.org/10.4161/cc.3.12.1277] [PMID: 15539946]
[79]
Abravaya, K.; Myers, M.P.; Murphy, S.P.; Morimoto, R.I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev., 1992, 6(7), 1153-1164.
[http://dx.doi.org/10.1101/gad.6.7.1153] [PMID: 1628823]
[80]
Riabowol, K.T.; Mizzen, L.A.; Welch, W.J. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science, 1988, 242(4877), 433-436.
[http://dx.doi.org/10.1126/science.3175665] [PMID: 3175665]
[81]
Landry, J.; Chrétien, P.; Lambert, H.; Hickey, E.; Weber, L.A. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol., 1989, 109(1), 7-15.
[http://dx.doi.org/10.1083/jcb.109.1.7] [PMID: 2745558]
[82]
Angelidis, C.E.; Lazaridis, I.; Pagoulatos, G.N. Constitutive expression of heat-shock protein 70 in mammalian cells confers thermoresistance. Eur. J. Biochem., 1991, 199(1), 35-39.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16088.x] [PMID: 1712300]
[83]
Sanchez, Y.; Lindquist, S.L. HSP104 required for induced thermotolerance. Science, 1990, 248(4959), 1112-1115.
[http://dx.doi.org/10.1126/science.2188365] [PMID: 2188365]
[84]
Asea, A.; Rehli, M.; Kabingu, E.; Boch, J.A.; Bare, O.; Auron, P.E.; Stevenson, M.A.; Calderwood, S.K. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem., 2002, 277(17), 15028-15034.
[http://dx.doi.org/10.1074/jbc.M200497200] [PMID: 11836257]
[85]
Habich, C.; Baumgart, K.; Kolb, H.; Burkart, V. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J. Immunol., 2002, 168(2), 569-576.
[http://dx.doi.org/10.4049/jimmunol.168.2.569] [PMID: 11777948]
[86]
Calderwood, S.K.; Mambula, S.S.; Gray, P.J., Jr; Theriault, J.R. Extracellular heat shock proteins in cell signaling. FEBS Lett., 2007, 581(19), 3689-3694.
[http://dx.doi.org/10.1016/j.febslet.2007.04.044] [PMID: 17499247]
[87]
Tsan, M.F.; Gao, B. Heat shock protein and innate immunity. Cell. Mol. Immunol., 2004, 1(4), 274-279.
[PMID: 16225770]
[88]
Asea, A.; Kraeft, S.K.; Kurt-Jones, E.A.; Stevenson, M.A.; Chen, L.B.; Finberg, R.W.; Koo, G.C.; Calderwood, S.K. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med., 2000, 6(4), 435-442.
[http://dx.doi.org/10.1038/74697] [PMID: 10742151]
[89]
Fan, G.C.; Ren, X.; Qian, J.; Yuan, Q.; Nicolaou, P.; Wang, Y.; Jones, W.K.; Chu, G.; Kranias, E.G. Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation, 2005, 111(14), 1792-1799.
[http://dx.doi.org/10.1161/01.CIR.0000160851.41872.C6] [PMID: 15809372]
[90]
Martin, T.P.; Currie, S.; Baillie, G.S. The cardioprotective role of small heat-shock protein 20. Biochem. Soc. Trans., 2014, 42(2), 270-273.
[http://dx.doi.org/10.1042/BST20130272] [PMID: 24646229]
[91]
Bruey, J.M.; Ducasse, C.; Bonniaud, P.; Ravagnan, L.; Susin, S.A.; Diaz-Latoud, C.; Gurbuxani, S.; Arrigo, A.P.; Kroemer, G.; Solary, E.; Garrido, C. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol., 2000, 2(9), 645-652.
[http://dx.doi.org/10.1038/35023595] [PMID: 10980706]
[92]
Garrido, C.; Brunet, M.; Didelot, C.; Zermati, Y.; Schmitt, E.; Kroemer, G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 2006, 5(22), 2592-2601.
[http://dx.doi.org/10.4161/cc.5.22.3448] [PMID: 17106261]
[93]
Ravagnan, L.; Gurbuxani, S.; Susin, S.A.; Maisse, C.; Daugas, E.; Zamzami, N.; Mak, T.; Jäättelä, M.; Penninger, J.M.; Garrido, C.; Kroemer, G. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol., 2001, 3(9), 839-843.
[http://dx.doi.org/10.1038/ncb0901-839] [PMID: 11533664]
[94]
Huang, Q.; Ye, J.; Huang, Q.; Chen, W.; Wang, L.; Lin, W.; Lin, J.; Lin, X. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clin. Chem. Lab. Med., 2010, 48(2), 263-269.
[http://dx.doi.org/10.1515/CCLM.2010.043]
[95]
Yang, S.Y.; Cui, J.Z. Expression of the basic fibroblast growth factor gene in mild and more severe head injury in the rat. J. Neurosurg., 1998, 89(2), 297-302.
[http://dx.doi.org/10.3171/jns.1998.89.2.0297] [PMID: 9688126]
[96]
Calderwood, S.K.; Khaleque, M.A.; Sawyer, D.B.; Ciocca, D.R. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci., 2006, 31(3), 164-172.
[http://dx.doi.org/10.1016/j.tibs.2006.01.006] [PMID: 16483782]
[97]
Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005, 10(2), 86-103.
[http://dx.doi.org/10.1379/CSC-99r.1] [PMID: 16038406]
[98]
Khalil, A.A.; Kabapy, N.F.; Deraz, S.F.; Smith, C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim. Biophys. Acta, 2011, 1816(2), 89-104.
[PMID: 21605630]
[99]
Ciocca, D.R.; Arrigo, A.P.; Calderwood, S.K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch. Toxicol., 2013, 87(1), 19-48.
[http://dx.doi.org/10.1007/s00204-012-0918-z] [PMID: 22885793]
[100]
Mahalingam, D.; Swords, R.; Carew, J.S.; Nawrocki, S.T.; Bhalla, K.; Giles, F.J. Targeting HSP90 for cancer therapy. Br. J. Cancer, 2009, 100(10), 1523-1529.
[http://dx.doi.org/10.1038/sj.bjc.6605066] [PMID: 19401686]
[101]
Weiss, Y.G.; Maloyan, A.; Tazelaar, J.; Raj, N.; Deutschman, C.S. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J. Clin. Invest., 2002, 110(6), 801-806.
[http://dx.doi.org/10.1172/JCI0215888] [PMID: 12235111]
[102]
DeMaio, A. Heat shock proteins, oxygen radicals, and apoptosis: the conflict between protection and destruction. Crit. Care Med., 2000, 28(5), 1679-1681.
[http://dx.doi.org/10.1097/00003246-200005000-00087] [PMID: 10834749]
[103]
Lin, T.Y.; Bear, M.; Du, Z.; Foley, K.P.; Ying, W.; Barsoum, J.; London, C. The novel HSP90 inhibitor STA-9090 exhibits activity against Kit-dependent and -independent malignant mast cell tumors. Exp. Hematol., 2008, 36(10), 1266-1277.
[http://dx.doi.org/10.1016/j.exphem.2008.05.001] [PMID: 18657349]
[104]
Mumin, N.H.; Drobnitzky, N.; Patel, A.; Lourenco, L.M.; Cahill, F.F.; Jiang, Y.; Kong, A.; Ryan, A.J. Overcoming acquired resistance to HSP90 inhibition by targeting JAK-STAT signalling in triple-negative breast cancer. BMC Cancer, 2019, 19(1), 102.
[http://dx.doi.org/10.1186/s12885-019-5295-z] [PMID: 30678647]
[105]
Jhaveri, K.; Taldone, T.; Modi, S.; Chiosis, G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta, 2012, 1823(3), 742-755.
[http://dx.doi.org/10.1016/j.bbamcr.2011.10.008] [PMID: 22062686]
[106]
Richardson, P.G.; Mitsiades, C.S.; Laubach, J.P.; Lonial, S.; Chanan-Khan, A.A.; Anderson, K.C. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br. J. Haematol., 2011, 152(4), 367-379.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08360.x] [PMID: 21219297]
[107]
Islamovic, E; Duncan, A; Bers, D.M; Gerthoffer, W.T; Mestril, R. 2007.
[108]
Maloyan, A.; Sanbe, A.; Osinska, H.; Westfall, M.; Robinson, D.; Imahashi, K.; Murphy, E.; Robbins, J. Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation, 2005, 112(22), 3451-3461.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.572552] [PMID: 16316967]
[109]
Suzuki, K.; Sawa, Y.; Kaneda, Y.; Ichihara, H.; Shirakura, R.; Matsuda, H. J. Cardiol., 1998, 31(3), 187-188. [In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat]
[PMID: 9557285]
[110]
Bruey, J.M. Cécile Ducasse; Bonniaud, P; Ravagnan, L; Susin, S.A; Diaz-Latoud, C; Gurbuxani, S; Arrigo, A.P; Kroemer, G; Solary, E; Garrido, C. Hsp27 negatively regulates cell death by interacting with cytochrome c. J. Cardiol., 2000, 2(9), 645-652.
[111]
Arya, R.; Mallik, M.; Lakhotia, S.C. Heat shock genes - integrating cell survival and death. J. Biosci., 2007, 32(3), 595-610.
[http://dx.doi.org/10.1007/s12038-007-0059-3] [PMID: 17536179]
[112]
Wang, W; Vinocur, B; Shoseyov, O; Altman, A Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response., 2004.
[113]
Hasegawa, T.; Yoshida, S.; Sugeno, N.; Kobayashi, J.; Aoki, M. DnaJ/Hsp40 family and parkinson’s disease. Front. Neurosci., 2018, 11, 743.
[http://dx.doi.org/10.3389/fnins.2017.00743] [PMID: 29367843]
[114]
Gorenberg, E.L.; Chandra, S.S. The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Front. Neurosci., 2017, 11, 248.
[http://dx.doi.org/10.3389/fnins.2017.00248] [PMID: 28579939]
[115]
Goeckeler, J.L.; Petruso, A.P.; Aguirre, J.; Clement, C.C.; Chiosis, G.; Brodsky, J.L. The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding. FEBS Lett., 2008, 582(16), 2393-2396.
[http://dx.doi.org/10.1016/j.febslet.2008.05.047] [PMID: 18539149]
[116]
Tanabe, M.; Kawazoe, Y.; Takeda, S.; Morimoto, R.I.; Nagata, K.; Nakai, A. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J., 1998, 17(6), 1750-1758.
[http://dx.doi.org/10.1093/emboj/17.6.1750] [PMID: 9501096]
[117]
Nakai, A. New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4. Cell Stress Chaperones, 1999, 4(2), 86-93.
[http://dx.doi.org/10.1379/1466-1268(1999)004<0086:NAITVH>2.3.CO;2] [PMID: 10547058]
[118]
Tanikawa, J.; Ichikawa-Iwata, E.; Kanei-Ishii, C.; Nakai, A.; Matsuzawa, S.; Reed, J.C.; Ishii, S. p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. J. Biol. Chem., 2000, 275(20), 15578-15585.
[http://dx.doi.org/10.1074/jbc.M000372200] [PMID: 10747903]
[119]
Morimoto, R.I. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259(5100), 1409-1410.
[http://dx.doi.org/10.1126/science.8451637] [PMID: 8451637]