Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy

Page: [1003 - 1024] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.

Keywords: Diabetic nephropathy, immunoinflammatory, metformin, statins, glucagon-like peptide-1 analogue, spironolactone, phosphodiesterase inhibitors, vitamin D.

[1]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(Suppl. 1), S67-S74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol., 2017, 12(12), 2032-2045.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[4]
Saran, R.; Li, Y.; Robinson, B.; Ayanian, J.; Balkrishnan, R.; Bragg-Gresham, J.; Chen, J.T.L.; Cope, E.; Gipson, D.; He, K.; Herman, W.; Heung, M.; Hirth, R.A.; Jacobsen, S.S.; Kalantar-Zadeh, K.; Kovesdy, C.P.; Leichtman, A.B.; Lu, Y.; Molnar, M.Z.; Morgenstern, H.; Nallamothu, B.; O’Hare, A.M.; Pisoni, R.; Plattner, B.; Port, F.K.; Rao, P.; Rhee, C.M.; Schaubel, D.E.; Selewski, D.T.; Shahinian, V.; Sim, J.J.; Song, P.; Streja, E.; Kurella Tamura, M.K.; Tentori, F.; Eggers, P.W.; Agodoa, L.Y.C.; Abbott, K.C. US renal data system 2014 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis., 2015, 66(1), S1-S305.
[http://dx.doi.org/10.1053/j.ajkd.2015.05.001] [PMID: 26111994]
[5]
Tervaert, T.W.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Renal pathology society. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[6]
Haneda, M.; Utsunomiya, K.; Koya, D.; Babazono, T.; Moriya, T.; Makino, H.; Kimura, K.; Suzuki, Y.; Wada, T.; Ogawa, S.; Inaba, M.; Kanno, Y.; Shigematsu, T.; Masakane, I.; Tsuchiya, K.; Honda, K.; Ichikawa, K.; Shide, K. Joint committee on diabetic nephropathy. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy. J. Diabetes Investig., 2015, 6(2), 242-246.
[http://dx.doi.org/10.1111/jdi.12319] [PMID: 25802733]
[7]
Chen, C.; Wang, C.; Hu, C.; Han, Y.; Zhao, L.; Zhu, X.; Xiao, L.; Sun, L. Normoalbuminuric diabetic kidney disease. Front. Med., 2017, 11(3), 310-318.
[http://dx.doi.org/10.1007/s11684-017-0542-7] [PMID: 28721497]
[8]
D’Amico, G.; Bazzi, C. Pathophysiology of proteinuria. Kidney Int., 2003, 63(3), 809-825.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00840.x] [PMID: 12631062]
[9]
Han, Q.; Zhu, H.; Chen, X.; Liu, Z. Non-genetic mechanisms of diabetic nephropathy. Front. Med., 2017, 11(3), 319-332.
[http://dx.doi.org/10.1007/s11684-017-0569-9] [PMID: 28871454]
[10]
Hostetter, T.H. Prevention of end-stage renal disease due to type 2 diabetes. N. Engl. J. Med., 2001, 345(12), 910-912.
[http://dx.doi.org/10.1056/NEJM200109203451209] [PMID: 11565525]
[11]
Kanwar, Y.S.; Sun, L.; Xie, P.; Liu, F.Y.; Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol., 2011, 6, 395-423.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092150] [PMID: 21261520]
[12]
Wolf, G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur. J. Clin. Invest., 2004, 34(12), 785-796.
[http://dx.doi.org/10.1111/j.1365-2362.2004.01429.x] [PMID: 15606719]
[13]
Gnudi, L.; Karalliedde, J. Beat it early: putative renoprotective haemodynamic effects of oral hypoglycaemic agents. Nephrol. Dial. Transplant., 2016, 31(7), 1036-1043.
[http://dx.doi.org/10.1093/ndt/gfv093] [PMID: 25858586]
[14]
Lim, A.K.; Tesch, G.H. Inflammation in diabetic nephropathy. Mediat. Inflamm., 2012, 2012146154
[http://dx.doi.org/10.1155/2012/146154] [PMID: 22969168]
[15]
Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol., 2011, 7(6), 327-340.
[http://dx.doi.org/10.1038/nrneph.2011.51] [PMID: 21537349]
[16]
Pickup, J.C.; Chusney, G.D.; Thomas, S.M.; Burt, D. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci., 2000, 67(3), 291-300.
[http://dx.doi.org/10.1016/S0024-3205(00)00622-6] [PMID: 10983873]
[17]
Festa, A.; D’Agostino, R.; Howard, G.; Mykkänen, L.; Tracy, R.P.; Haffner, S.M. Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: the insulin resistance atherosclerosis study. Kidney Int., 2000, 58(4), 1703-1710.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00331.x] [PMID: 11012904]
[18]
Dalla Vestra, M.; Mussap, M.; Gallina, P.; Bruseghin, M.; Cernigoi, A.M.; Saller, A.; Plebani, M.; Fioretto, P. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J. Am. Soc. Nephrol., 2005, 16(Suppl. 1), S78-S82.
[http://dx.doi.org/10.1681/ASN.2004110961] [PMID: 15938041]
[19]
Moriwaki, Y.; Yamamoto, T.; Shibutani, Y.; Aoki, E.; Tsutsumi, Z.; Takahashi, S.; Okamura, H.; Koga, M.; Fukuchi, M.; Hada, T. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism, 2003, 52(5), 605-608.
[http://dx.doi.org/10.1053/meta.2003.50096] [PMID: 12759891]
[20]
Chow, F.; Ozols, E.; Nikolic-Paterson, D.J.; Atkins, R.C.; Tesch, G.H. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int., 2004, 65(1), 116-128.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00367.x] [PMID: 14675042]
[21]
Nguyen, D.; Ping, F.; Mu, W.; Hill, P.; Atkins, R.C.; Chadban, S.J. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton), 2006, 11(3), 226-231.
[http://dx.doi.org/10.1111/j.1440-1797.2006.00576.x] [PMID: 16756636]
[22]
Zeng, L.F.; Xiao, Y.; Sun, L. A glimpse of the mechanisms related to renal fibrosis in diabetic nephropathy. Adv. Exp. Med. Biol., 2019, 1165, 49-79.
[http://dx.doi.org/10.1007/978-981-13-8871-2_4] [PMID: 31399961]
[23]
Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; IJpelaar, D.H.T. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant., 2017, 32(8), 1322-1329.
[http://dx.doi.org/10.1093/ndt/gfw260] [PMID: 27416772]
[24]
Zheng, Z.; Zheng, F. Immune cells and inflammation in diabetic nephropathy. J. Diabetes Res., 2016, 20161841690
[http://dx.doi.org/10.1155/2016/1841690] [PMID: 26824038]
[25]
Tesch, G.H. Macrophages and diabetic nephropathy. Semin. Nephrol., 2010, 30(3), 290-301.
[http://dx.doi.org/10.1016/j.semnephrol.2010.03.007] [PMID: 20620673]
[26]
Chow, F.Y.; Nikolic-Paterson, D.J.; Ozols, E.; Atkins, R.C.; Tesch, G.H. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J. Am. Soc. Nephrol., 2005, 16(6), 1711-1722.
[http://dx.doi.org/10.1681/ASN.2004070612] [PMID: 15857924]
[27]
Chow, F.Y.; Nikolic-Paterson, D.J.; Ma, F.Y.; Ozols, E.; Rollins, B.J.; Tesch, G.H. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia, 2007, 50(2), 471-480.
[http://dx.doi.org/10.1007/s00125-006-0497-8] [PMID: 17160673]
[28]
Hickey, F.B.; Martin, F. Diabetic kidney disease and immune modulation. Curr. Opin. Pharmacol., 2013, 13(4), 602-612.
[http://dx.doi.org/10.1016/j.coph.2013.05.002] [PMID: 23721739]
[29]
Cipollone, F.; Iezzi, A.; Fazia, M.; Zucchelli, M.; Pini, B.; Cuccurullo, C.; De Cesare, D.; De Blasis, G.; Muraro, R.; Bei, R.; Chiarelli, F.; Schmidt, A.M.; Cuccurullo, F.; Mezzetti, A. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation, 2003, 108(9), 1070-1077.
[http://dx.doi.org/10.1161/01.CIR.0000086014.80477.0D] [PMID: 12912808]
[30]
Sun, L.; Kanwar, Y.S. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int., 2015, 88(4), 662-665.
[http://dx.doi.org/10.1038/ki.2015.250] [PMID: 26422621]
[31]
Tesch, G.H. Diabetic nephropathy - is this an immune disorder? Clin. Sci. (Lond.), 2017, 131(16), 2183-2199.
[http://dx.doi.org/10.1042/CS20160636] [PMID: 28760771]
[32]
Awad, A.S.; Kinsey, G.R.; Khutsishvili, K.; Gao, T.; Bolton, W.K.; Okusa, M.D. Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am. J. Physiol. Renal Physiol., 2011, 301(6), F1358-F1366.
[http://dx.doi.org/10.1152/ajprenal.00332.2011] [PMID: 21880831]
[33]
Bernstein, L.E.; Berry, J.; Kim, S.; Canavan, B.; Grinspoon, S.K. Effects of etanercept in patients with the metabolic syndrome. Arch. Intern. Med., 2006, 166(8), 902-908.
[http://dx.doi.org/10.1001/archinte.166.8.902] [PMID: 16636217]
[34]
Akash, M.S.; Shen, Q.; Rehman, K.; Chen, S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J. Pharm. Sci., 2012, 101(5), 1647-1658.
[http://dx.doi.org/10.1002/jps.23057] [PMID: 22271340]
[35]
Makino, H.; Miyamoto, Y.; Sawai, K.; Mori, K.; Mukoyama, M.; Nakao, K.; Yoshimasa, Y.; Suga, S. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes, 2006, 55(10), 2747-2756.
[http://dx.doi.org/10.2337/db05-1683] [PMID: 17003339]
[36]
Kamal, F.; Yanakieva-Georgieva, N.; Piao, H.; Morioka, T.; Oite, T. Local delivery of angiotensin II receptor blockers into the kidney passively attenuates inflammatory reactions during the early phases of streptozotocin-induced diabetic nephropathy through inhibition of calpain activity. Nephron, Exp. Nephrol., 2010, 115(3), e69-e79.
[http://dx.doi.org/10.1159/000313832] [PMID: 20424485]
[37]
Wu, J.; Guan, T.J.; Zheng, S.; Grosjean, F.; Liu, W.; Xiong, H.; Gordon, R.; Vlassara, H.; Striker, G.E.; Zheng, F. Inhibition of inflammation by pentosan polysulfate impedes the development and progression of severe diabetic nephropathy in aging C57B6 mice. Lab. Invest., 2011, 91(10), 1459-1471.
[http://dx.doi.org/10.1038/labinvest.2011.93] [PMID: 21808238]
[38]
Donate-Correa, J.; Martín-Núñez, E.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory cytokines in diabetic nephropathy. J. Diabetes Res., 2015, 2015948417
[http://dx.doi.org/10.1155/2015/948417] [PMID: 25785280]
[39]
Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[40]
Hattori, Y.; Hattori, K.; Hayashi, T. Pleiotropic benefits of metformin: macrophage targeting its anti-inflammatory mechanisms. Diabetes, 2015, 64(6), 1907-1909.
[http://dx.doi.org/10.2337/db15-0090] [PMID: 25999535]
[41]
Hundal, R.S.; Krssak, M.; Dufour, S.; Laurent, D.; Lebon, V.; Chandramouli, V.; Inzucchi, S.E.; Schumann, W.C.; Petersen, K.F.; Landau, B.R.; Shulman, G.I. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000, 49(12), 2063-2069.
[http://dx.doi.org/10.2337/diabetes.49.12.2063] [PMID: 11118008]
[42]
Inzucchi, S.E.; Maggs, D.G.; Spollett, G.R.; Page, S.L.; Rife, F.S.; Walton, V.; Shulman, G.I. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N. Engl. J. Med., 1998, 338(13), 867-872.
[http://dx.doi.org/10.1056/NEJM199803263381303] [PMID: 9516221]
[43]
Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; Jurczak, M.J.; Camporez, J.P.; Lee, H.Y.; Cline, G.W.; Samuel, V.T.; Kibbey, R.G.; Shulman, G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510(7506), 542-546.
[http://dx.doi.org/10.1038/nature13270] [PMID: 24847880]
[44]
Nasri, H.; Rafieian-Kopaei, M. Metformin: current knowledge. J. Res. Med. Sci., 2014, 19(7), 658-664.
[PMID: 25364368]
[45]
Hattori, Y.; Suzuki, K.; Hattori, S.; Kasai, K. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension, 2006, 47(6), 1183-1188.
[http://dx.doi.org/10.1161/01.HYP.0000221429.94591.72] [PMID: 16636195]
[46]
Isoda, K.; Young, J.L.; Zirlik, A.; MacFarlane, L.A.; Tsuboi, N.; Gerdes, N.; Schönbeck, U.; Libby, P. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler. Thromb. Vasc. Biol., 2006, 26(3), 611-617.
[http://dx.doi.org/10.1161/01.ATV.0000201938.78044.75] [PMID: 16385087]
[47]
Huang, N.L.; Chiang, S.H.; Hsueh, C.H.; Liang, Y.J.; Chen, Y.J.; Lai, L.P. Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int. J. Cardiol., 2009, 134(2), 169-175.
[http://dx.doi.org/10.1016/j.ijcard.2008.04.010] [PMID: 18597869]
[48]
Sag, D.; Carling, D.; Stout, R.D.; Suttles, J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol., 2008, 181(12), 8633-8641.
[http://dx.doi.org/10.4049/jimmunol.181.12.8633] [PMID: 19050283]
[49]
Vasamsetti, S.B.; Karnewar, S.; Kanugula, A.K.; Thatipalli, A.R.; Kumar, J.M.; Kotamraju, S. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes, 2015, 64(6), 2028-2041.
[http://dx.doi.org/10.2337/db14-1225] [PMID: 25552600]
[50]
Louro, T.M.; Matafome, P.N.; Nunes, E.C.; da Cunha, F.X.; Seiça, R.M. Insulin and metformin may prevent renal injury in young type 2 diabetic Goto-Kakizaki rats. Eur. J. Pharmacol., 2011, 653(1-3), 89-94.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.029] [PMID: 21167150]
[51]
Zhang, S.; Xu, H.; Yu, X.; Wu, Y.; Sui, D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp. Ther. Med., 2017, 14(1), 383-390.
[http://dx.doi.org/10.3892/etm.2017.4475] [PMID: 28672943]
[52]
Cavaglieri, R.C.; Day, R.T.; Feliers, D.; Abboud, H.E. Metformin prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. Mol. Cell. Endocrinol., 2015, 412, 116-122.
[http://dx.doi.org/10.1016/j.mce.2015.06.006] [PMID: 26067231]
[53]
Nasri, H.; Baradaran, A.; Ardalan, M.R.; Mardani, S.; Momeni, A.; Rafieian-Kopaei, M. Bright renoprotective properties of metformin: beyond blood glucose regulatory effects. Iran. J. Kidney Dis., 2013, 7(6), 423-428.
[PMID: 24241085]
[54]
Eisenreich, A.; Leppert, U. Update on the protective renal effects of metformin in diabetic nephropathy. Curr. Med. Chem., 2017, 24(31), 3397-3412.
[http://dx.doi.org/10.2174/0929867324666170404143102] [PMID: 28393693]
[55]
Amador-Licona, N.; Guízar-Mendoza, J.; Vargas, E.; Sánchez-Camargo, G.; Zamora-Mata, L. The short-term effect of a switch from glibenclamide to metformin on blood pressure and microalbuminuria in patients with type 2 diabetes mellitus. Arch. Med. Res., 2000, 31(6), 571-575.
[http://dx.doi.org/10.1016/S0188-4409(00)00241-1] [PMID: 11257323]
[56]
Molavi, B.; Rassouli, N.; Bagwe, S.; Rasouli, N. A review of thiazolidinediones and metformin in the treatment of type 2 diabetes with focus on cardiovascular complications. Vasc. Health Risk Manag., 2007, 3(6), 967-973.
[PMID: 18200815]
[57]
Ravindran, S.; Kuruvilla, V.; Wilbur, K.; Munusamy, S. Nephroprotective effects of metformin in diabetic nephropathy. J. Cell. Physiol., 2017, 232(4), 731-742.
[http://dx.doi.org/10.1002/jcp.25598] [PMID: 27627216]
[58]
Ruggenenti, P.; Cravedi, P.; Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol., 2010, 6(6), 319-330.
[http://dx.doi.org/10.1038/nrneph.2010.58] [PMID: 20440277]
[59]
Mezzano, S.A.; Ruiz-Ortega, M.; Egido, J. Angiotensin II and renal fibrosis. Hypertension, 2001, 38(3 Pt 2), 635-638.
[http://dx.doi.org/10.1161/hy09t1.094234] [PMID: 11566946]
[60]
Lee, F.T.; Cao, Z.; Long, D.M.; Panagiotopoulos, S.; Jerums, G.; Cooper, M.E.; Forbes, J.M. Interactions between angiotensin II and NF-kappa B dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J. Am. Soc. Nephrol., 2004, 15(8), 2139-2151.
[http://dx.doi.org/10.1097/01.ASN.0000135055.61833.A8] [PMID: 15284299]
[61]
Taal, M.W.; Brenner, B.M. Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int., 2000, 57(5), 1803-1817.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00031.x] [PMID: 10792600]
[62]
Dragomir, E.; Simionescu, M. Monocyte chemoattractant protein-1--a major contributor to the inflammatory process associated with diabetes. Arch. Physiol. Biochem., 2006, 112(4-5), 239-244.
[http://dx.doi.org/10.1080/13813450601094672] [PMID: 17178597]
[63]
Russell, J.C.; Kelly, S.E.; Vine, D.F.; Proctor, S.D. Irbesartan-mediated reduction of renal and cardiac damage in insulin resistant JCR: LA-cp rats. Br. J. Pharmacol., 2009, 158(6), 1588-1596.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00417.x] [PMID: 19814728]
[64]
Hartner, A.; Cordasic, N.; Klanke, B.; Menendez-Castro, C.; Veelken, R.; Schmieder, R.E.; Hilgers, K.F. Renal protection by low dose irbesartan in diabetic nephropathy is paralleled by a reduction of inflammation, not of endoplasmic reticulum stress. Biochim. Biophys. Acta, 2014, 1842(4), 558-565.
[http://dx.doi.org/10.1016/j.bbadis.2014.01.001] [PMID: 24418215]
[65]
Vieitez, P.; Gómez, O.; Uceda, E.R.; Vera, M.E.; Molina-Holgado, E. Systemic and local effects of angiotensin II blockade in experimental diabetic nephropathy. J. Renin Angiotensin Aldosterone Syst., 2008, 9(2), 96-102.
[http://dx.doi.org/10.3317/jraas.2008.018] [PMID: 18584585]
[66]
Parving, H.H.; Lehnert, H.; Bröchner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. Irbesartan in patients with type 2 diabetes and microalbuminuria study group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med., 2001, 345(12), 870-878.
[http://dx.doi.org/10.1056/NEJMoa011489] [PMID: 11565519]
[67]
Persson, F.; Rossing, P.; Hovind, P.; Stehouwer, C.D.; Schalkwijk, C.G.; Tarnow, L.; Parving, H.H. Endothelial dysfunction and inflammation predict development of diabetic nephropathy in the Irbesartan in patients with type 2 diabetes and microalbuminuria (IRMA 2) study. Scand. J. Clin. Lab. Invest., 2008, 68(8), 731-738.
[http://dx.doi.org/10.1080/00365510802187226] [PMID: 18609080]
[68]
Zhou, G.; Liu, X.; Cheung, A.K.; Huang, Y. Efficacy of aliskiren, compared with angiotensin II blockade, in slowing the progression of diabetic nephropathy in db/db mice: should the combination therapy be a focus? Am. J. Transl. Res., 2015, 7(5), 825-840.
[PMID: 26175845]
[69]
Karadeniz, T.; Cavusoğlu, T.; Turkmen, E.; Uyanıkgil, Y.; Karadeniz, M.; Akdemir, O.; Tuglu, M.I.; Ates, U.; Erbas, O. Experimental comparison of protective characteristics of enalapril and trimetazidine in diabetic nephropathy. Ren. Fail., 2014, 36(8), 1283-1290.
[http://dx.doi.org/10.3109/0886022X.2014.930331] [PMID: 25010195]
[70]
Navarro, J.F.; Milena, F.J.; Mora, C.; León, C.; García, J. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am. J. Nephrol., 2006, 26(6), 562-570.
[http://dx.doi.org/10.1159/000098004] [PMID: 17167242]
[71]
Ding, L.H.; Liu, D.; Xu, M.; Liu, H.; Wu, M.; Tang, R.N.; Lv, L.L.; Ma, K.L.; Liu, B.C. Enalapril inhibits tubulointerstitial inflammation and NLRP3 inflammasome expression in BSA-overload nephropathy of rats. Acta Pharmacol. Sin., 2014, 35(10), 1293-1301.
[http://dx.doi.org/10.1038/aps.2014.66] [PMID: 25152022]
[72]
Zhou, G.; Johansson, U.; Peng, X.R.; Bamberg, K.; Huang, Y. An additive effect of eplerenone to ACE inhibitor on slowing the progression of diabetic nephropathy in the db/db mice. Am. J. Transl. Res., 2016, 8(3), 1339-1354.
[PMID: 27186263]
[73]
Bilan, V.P.; Salah, E.M.; Bastacky, S.; Jones, H.B.; Mayers, R.M.; Zinker, B.; Poucher, S.M.; Tofovic, S.P. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats. J. Endocrinol., 2011, 210(3), 293-308.
[http://dx.doi.org/10.1530/JOE-11-0122] [PMID: 21680617]
[74]
Almquist, T.; Jacobson, S.H.; Mobarrez, F.; Näsman, P.; Hjemdahl, P. Lipid-lowering treatment and inflammatory mediators in diabetes and chronic kidney disease. Eur. J. Clin. Invest., 2014, 44(3), 276-284.
[http://dx.doi.org/10.1111/eci.12230] [PMID: 24720535]
[75]
Declèves, A.E.; Sharma, K. New pharmacological treatments for improving renal outcomes in diabetes. Nat. Rev. Nephrol., 2010, 6(6), 371-380.
[http://dx.doi.org/10.1038/nrneph.2010.57] [PMID: 20440278]
[76]
Ravid, M.; Brosh, D.; Ravid-Safran, D.; Levy, Z.; Rachmani, R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch. Intern. Med., 1998, 158(9), 998-1004.
[http://dx.doi.org/10.1001/archinte.158.9.998] [PMID: 9588433]
[77]
Marzilli, M. Pleiotropic effects of statins: evidence for benefits beyond LDL-cholesterol lowering. Am. J. Cardiovasc. Drugs, 2010, 10(Suppl. 1), 3-9.
[http://dx.doi.org/10.2165/1153644-S0-000000000-00000] [PMID: 21391728]
[78]
Li, H.; Li, X.; Duan, L.; Li, C. Inhibition of lovastatin on proliferation and expression of proinflammatory cytokines in cultured human glomerular mesangial cells. Chin. Med. J. (Engl.), 2003, 116(9), 1366-1369.
[PMID: 14527367]
[79]
Massy, Z.A.; Kim, Y.; Guijarro, C.; Kasiske, B.L.; Keane, W.F.; O’Donnell, M.P. Low-density lipoprotein-induced expression of interleukin-6, a marker of human mesangial cell inflammation: effects of oxidation and modulation by lovastatin. Biochem. Biophys. Res. Commun., 2000, 267(2), 536-540.
[http://dx.doi.org/10.1006/bbrc.1999.1992] [PMID: 10631097]
[80]
Kostapanos, M.S.; Liberopoulos, E.N.; Elisaf, M.S. Statin pleiotropy against renal injury. J. Cardiometab. Syndr., 2009, 4(1), E4-E9.
[http://dx.doi.org/10.1111/j.1559-4572.2008.00052.x] [PMID: 19245508]
[81]
Liao, D.; Liu, Y-Q.; Xiong, L.Y.; Zhang, L. Renoprotective effect of atorvastatin on STZ-diabetic rats through inhibiting inflammatory factors expression in diabetic rat. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(9), 1888-1893.
[PMID: 27212184]
[82]
Park, J.K.; Müller, D.N.; Mervaala, E.M.; Dechend, R.; Fiebeler, A.; Schmidt, F.; Bieringer, M.; Schäfer, O.; Lindschau, C.; Schneider, W.; Ganten, D.; Luft, F.C.; Haller, H. Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure- and cholesterol-lowering effects. Kidney Int., 2000, 58(4), 1420-1430.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00304.x] [PMID: 11012877]
[83]
Usui, H.; Shikata, K.; Matsuda, M.; Okada, S.; Ogawa, D.; Yamashita, T.; Hida, K.; Satoh, M.; Wada, J.; Makino, H. HMG-CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats. Nephrol. Dial. Transplant., 2003, 18(2), 265-272.
[http://dx.doi.org/10.1093/ndt/18.2.265] [PMID: 12543879]
[84]
Wan, X.; Wang, X.; Li, F.L.; Wu, Y.L.; Liu, X.; Chen, H.Z.; Yang, J.; Cui, X.L. Protective effect of simvastatin on kidney of rats with diabetes mellitus and the possible mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2018, 34(4), 313-317.
[http://dx.doi.org/10.12047/j.cjap.5636.2018.072] [PMID: 30788938]
[85]
Sandhu, S.; Wiebe, N.; Fried, L.F.; Tonelli, M. Statins for improving renal outcomes: a meta-analysis. J. Am. Soc. Nephrol., 2006, 17(7), 2006-2016.
[http://dx.doi.org/10.1681/ASN.2006010012] [PMID: 16762986]
[86]
Gholamin, S.; Razavi, S.M.; Taghavi-Garmestani, S.M.; Ghorbanihaghjo, A.; Rashtchizadeh, N.; Safa, J.; Vatankhah, A.M.; Azizi, T.; Argani, H. Lovastatin for reduction of leptin in nondialysis patients with type 2 diabetic nephropathy. Iran. J. Kidney Dis., 2014, 8(3), 201-206.
[PMID: 24878942]
[87]
Abe, M.; Maruyama, N.; Yoshida, Y.; Ito, M.; Okada, K.; Soma, M. Efficacy analysis of the lipid-lowering and renoprotective effects of rosuvastatin in patients with chronic kidney disease. Endocr. J., 2011, 58(8), 663-674.
[http://dx.doi.org/10.1507/endocrj.K11E-080] [PMID: 21670545]
[88]
Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev., 2007, 87(4), 1409-1439.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[89]
Drucker, D.J. The biology of incretin hormones. Cell Metab., 2006, 3(3), 153-165.
[http://dx.doi.org/10.1016/j.cmet.2006.01.004] [PMID: 16517403]
[90]
Langlois, A.; Dal, S.; Vivot, K.; Mura, C.; Seyfritz, E.; Bietiger, W.; Dollinger, C.; Peronet, C.; Maillard, E.; Pinget, M.; Jeandidier, N.; Sigrist, S. Improvement of islet graft function using liraglutide is correlated with its anti-inflammatory properties. Br. J. Pharmacol., 2016, 173(24), 3443-3453.
[http://dx.doi.org/10.1111/bph.13575] [PMID: 27515367]
[91]
Hattori, Y.; Jojima, T.; Tomizawa, A.; Satoh, H.; Hattori, S.; Kasai, K.; Hayashi, T. A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia, 2010, 53(10), 2256-2263.
[http://dx.doi.org/10.1007/s00125-010-1831-8] [PMID: 20593161]
[92]
Shiraki, A.; Oyama, J.; Komoda, H.; Asaka, M.; Komatsu, A.; Sakuma, M.; Kodama, K.; Sakamoto, Y.; Kotooka, N.; Hirase, T.; Node, K. The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis, 2012, 221(2), 375-382.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.12.039] [PMID: 22284365]
[93]
Di Tomo, P.; Lanuti, P.; Di Pietro, N.; Baldassarre, M.P.A.; Marchisio, M.; Pandolfi, A.; Consoli, A.; Formoso, G. Liraglutide mitigates TNF-α induced pro-atherogenic changes and microvesicle release in HUVEC from diabetic women. Diabetes Metab. Res. Rev., 2017, 33(8)
[http://dx.doi.org/10.1002/dmrr.2925] [PMID: 28753251]
[94]
Einbinder, Y.; Ohana, M.; Benchetrit, S.; Zehavi, T.; Nacasch, N.; Bernheim, J.; Zitman-Gal, T. Glucagon-like peptide-1 and vitamin D: anti-inflammatory response in diabetic kidney disease in db/db mice and in cultured endothelial cells. Diabetes Metab. Res. Rev., 2016, 32(8), 805-815.
[http://dx.doi.org/10.1002/dmrr.2801] [PMID: 26991522]
[95]
Hendarto, H.; Inoguchi, T.; Maeda, Y.; Ikeda, N.; Zheng, J.; Takei, R.; Yokomizo, H.; Hirata, E.; Sonoda, N.; Takayanagi, R. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism, 2012, 61(10), 1422-1434.
[http://dx.doi.org/10.1016/j.metabol.2012.03.002] [PMID: 22554832]
[96]
Parthsarathy, V.; Hölscher, C. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur. J. Pharmacol., 2013, 700(1-3), 42-50.
[http://dx.doi.org/10.1016/j.ejphar.2012.12.012] [PMID: 23276669]
[97]
Bouchi, R.; Nakano, Y.; Fukuda, T.; Takeuchi, T.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Reduction of visceral fat by liraglutide is associated with ameliorations of hepatic steatosis, albuminuria, and micro-inflammation in type 2 diabetic patients with insulin treatment: a randomized control trial. Endocr. J., 2017, 64(3), 269-281.
[http://dx.doi.org/10.1507/endocrj.EJ16-0449] [PMID: 27916783]
[98]
Zhou, S.J.; Bai, L.; Lv, L.; Chen, R.; Li, C.J.; Liu, X.Y.; Yu, D.M.; Yu, P. Liraglutide ameliorates renal injury in streptozotocin induced diabetic rats by activating endothelial nitric oxide synthase activity via the downregulation of the nuclear factor κB pathway. Mol. Med. Rep., 2014, 10(5), 2587-2594.
[http://dx.doi.org/10.3892/mmr.2014.2555] [PMID: 25215431]
[99]
Zhang, J-H.; Liu, X-R.; Sheng, C-X.; Liu, Y-E. Analysis on difference in gastrointestinal hormone levels of patients with the history of diabetes and concurrent nephropathy and study on the role of liraglutide. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(15), 3523-3529.
[PMID: 28829486]
[100]
Kodera, R.; Shikata, K. Renoprotective effects of incretin-based drugs: A novel pleiotropic effect of dipeptidyl peptidase-4 inhibitor. J. Diabetes Investig., 2016, 7(1), 29-31.
[http://dx.doi.org/10.1111/jdi.12380] [PMID: 26816598]
[101]
Lambeir, A.M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294.
[http://dx.doi.org/10.1080/713609354] [PMID: 12892317]
[102]
Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol., 2016, 185(1), 1-21.
[http://dx.doi.org/10.1111/cei.12781] [PMID: 26919392]
[103]
Hasan, A.A.; Hocher, B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J. Mol. Endocrinol., 2017, 59(1), R1-R10.
[http://dx.doi.org/10.1530/JME-17-0005] [PMID: 28420715]
[104]
Kaji, K.; Yoshiji, H.; Ikenaka, Y.; Noguchi, R.; Aihara, Y.; Douhara, A.; Moriya, K.; Kawaratani, H.; Shirai, Y.; Yoshii, J.; Yanase, K.; Kitade, M.; Namisaki, T.; Fukui, H. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J. Gastroenterol., 2014, 49(3), 481-491.
[http://dx.doi.org/10.1007/s00535-013-0783-4] [PMID: 23475323]
[105]
Salazar, J.J.; Ennis, W.J.; Koh, T. J. Diabetes medications: Impact on inflammation and wound healing. J. Diabetes Compl., 2016, 30(4), 746-752.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.017] [PMID: 26796432]
[106]
Koliaki, C.; Doupis, J. Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus. Diabetes Ther., 2011, 2(2), 101-121.
[http://dx.doi.org/10.1007/s13300-011-0002-3] [PMID: 22127804]
[107]
Shah, Z.; Kampfrath, T.; Deiuliis, J.A.; Zhong, J.; Pineda, C.; Ying, Z.; Xu, X.; Lu, B.; Moffatt-Bruce, S.; Durairaj, R.; Sun, Q.; Mihai, G.; Maiseyeu, A.; Rajagopalan, S. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation, 2011, 124(21), 2338-2349.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.041418] [PMID: 22007077]
[108]
Karagiannis, T.; Paschos, P.; Paletas, K.; Matthews, D.R.; Tsapas, A. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ, 2012, 344e1369
[http://dx.doi.org/10.1136/bmj.e1369] [PMID: 22411919]
[109]
Scheen, A.J. A review of gliptins for 2014. Expert Opin. Pharmacother., 2015, 16(1), 43-62.
[http://dx.doi.org/10.1517/14656566.2015.978289] [PMID: 25381751]
[110]
Mega, C.; Teixeira-de-Lemos, E.; Fernandes, R.; Reis, F. Renoprotective effects of the dipeptidyl peptidase-4 inhibitor sitagliptin: a review in type 2 diabetes. J. Diabetes Res., 2017, 20175164292
[http://dx.doi.org/10.1155/2017/5164292] [PMID: 29098166]
[111]
Akarte, A.S.; Srinivasan, B.P.; Gandhi, S.; Sole, S. Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats. Eur. J. Pharm. Sci., 2012, 47(2), 456-463.
[http://dx.doi.org/10.1016/j.ejps.2012.07.003] [PMID: 22800967]
[112]
Marques, C.; Mega, C.; Gonçalves, A.; Rodrigues-Santos, P.; Teixeira-Lemos, E.; Teixeira, F.; Fontes-Ribeiro, C.; Reis, F.; Fernandes, R. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm., 2014, 2014538737
[http://dx.doi.org/10.1155/2014/538737] [PMID: 24817793]
[113]
Kodera, R.; Shikata, K.; Takatsuka, T.; Oda, K.; Miyamoto, S.; Kajitani, N.; Hirota, D.; Ono, T.; Usui, H.K.; Makino, H. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem. Biophys. Res. Commun., 2014, 443(3), 828-833.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.049] [PMID: 24342619]
[114]
Makdissi, A.; Ghanim, H.; Vora, M.; Green, K.; Abuaysheh, S.; Chaudhuri, A.; Dhindsa, S.; Dandona, P. Sitagliptin exerts an antinflammatory action. J. Clin. Endocrinol. Metab., 2012, 97(9), 3333-3341.
[http://dx.doi.org/10.1210/jc.2012-1544] [PMID: 22745245]
[115]
Mega, C.; de Lemos, E.T.; Vala, H.; Fernandes, R.; Oliveira, J.; Mascarenhas-Melo, F.; Teixeira, F.; Reis, F. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp. Diabetes Res., 2011, 2011162092
[http://dx.doi.org/10.1155/2011/162092] [PMID: 22203828]
[116]
Kanasaki, K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin. Sci. (Lond.), 2018, 132(4), 489-507.
[http://dx.doi.org/10.1042/CS20180031] [PMID: 29491123]
[117]
Kim, Y.G.; Byun, J.; Yoon, D.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Lee, K.W.; Park, R.W.; Kim, H.J. Renal protective effect of DPP-4 inhibitors in type 2 diabetes mellitus patients: a cohort study. J. Diabetes Res., 2016, 20161423191
[http://dx.doi.org/10.1155/2016/1423191] [PMID: 28119930]
[118]
Penno, G.; Garofolo, M.; Del Prato, S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr. Metab. Cardiovasc. Dis., 2016, 26(5), 361-373.
[http://dx.doi.org/10.1016/j.numecd.2016.01.001] [PMID: 27105869]
[119]
Cortinovis, M.; Perico, N.; Cattaneo, D.; Remuzzi, G. Aldosterone and progression of kidney disease. Ther. Adv. Cardiovasc. Dis., 2009, 3(2), 133-143.
[http://dx.doi.org/10.1177/1753944708100409] [PMID: 19171691]
[120]
Del Vecchio, L.; Procaccio, M.; Viganò, S.; Cusi, D. Mechanisms of disease: The role of aldosterone in kidney damage and clinical benefits of its blockade. Nat. Clin. Pract. Nephrol., 2007, 3(1), 42-49.
[http://dx.doi.org/10.1038/ncpneph0362] [PMID: 17183261]
[121]
Patni, H.; Mathew, J.T.; Luan, L.; Franki, N.; Chander, P.N.; Singhal, P.C. Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress. Am. J. Physiol. Renal Physiol., 2007, 293(4), F1065-F1071.
[http://dx.doi.org/10.1152/ajprenal.00147.2007] [PMID: 17670905]
[122]
Cha, D.R.; Kang, Y.S.; Han, S.Y.; Jee, Y.H.; Han, K.H.; Kim, H.K.; Han, J.Y.; Kim, Y.S. Role of aldosterone in diabetic nephropathy., 2005, 10(Suppl), S37-S39.
[http://dx.doi.org/10.1111/j.1440-1797.2005.00455.x] [PMID: 16174286]
[123]
Fujisawa, G.; Okada, K.; Muto, S.; Fujita, N.; Itabashi, N.; Kusano, E.; Ishibashi, S. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int., 2004, 66(4), 1493-1502.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00913.x] [PMID: 15458443]
[124]
Han, S.Y.; Kim, C.H.; Kim, H.S.; Jee, Y.H.; Song, H.K.; Lee, M.H.; Han, K.H.; Kim, H.K.; Kang, Y.S.; Han, J.Y.; Kim, Y.S.; Cha, D.R. Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J. Am. Soc. Nephrol., 2006, 17(5), 1362-1372.
[http://dx.doi.org/10.1681/ASN.2005111196] [PMID: 16571782]
[125]
Takebayashi, K.; Matsumoto, S.; Aso, Y.; Inukai, T. Aldosterone blockade attenuates urinary monocyte chemoattractant protein-1 and oxidative stress in patients with type 2 diabetes complicated by diabetic nephropathy. J. Clin. Endocrinol. Metab., 2006, 91(6), 2214-2217.
[http://dx.doi.org/10.1210/jc.2005-1718] [PMID: 16569732]
[126]
Wada, T.; Furuichi, K.; Sakai, N.; Iwata, Y.; Yoshimoto, K.; Shimizu, M.; Takeda, S.I.; Takasawa, K.; Yoshimura, M.; Kida, H.; Kobayashi, K.I.; Mukaida, N.; Naito, T.; Matsushima, K.; Yokoyama, H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int., 2000, 58(4), 1492-1499.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00311.x] [PMID: 11012884]
[127]
Bakris, G.L.; Agarwal, R.; Chan, J.C.; Cooper, M.E.; Gansevoort, R.T.; Haller, H.; Remuzzi, G.; Rossing, P.; Schmieder, R.E.; Nowack, C.; Kolkhof, P.; Joseph, A.; Pieper, A.; Kimmeskamp-Kirschbaum, N.; Ruilope, L.M. Mineralocorticoid receptor antagonist tolerability study-diabetic nephropathy (ARTS-DN) study group. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA, 2015, 314(9), 884-894.
[http://dx.doi.org/10.1001/jama.2015.10081] [PMID: 26325557]
[128]
Katayama, S.; Yamada, D.; Nakayama, M.; Yamada, T.; Myoishi, M.; Kato, M.; Nowack, C.; Kolkhof, P.; Yamasaki, Y. ARTS-DN Japan study group. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J. Diabetes Compl., 2017, 31(4), 758-765.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.11.021] [PMID: 28025025]
[129]
Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci., 2017, 18(5)E1083
[http://dx.doi.org/10.3390/ijms18051083] [PMID: 28524098]
[130]
Vallon, V. The proximal tubule in the pathophysiology of the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(5), R1009-R1022.
[http://dx.doi.org/10.1152/ajpregu.00809.2010] [PMID: 21228342]
[131]
Vallon, V.; Platt, K.A.; Cunard, R.; Schroth, J.; Whaley, J.; Thomson, S.C.; Koepsell, H.; Rieg, T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol., 2011, 22(1), 104-112.
[http://dx.doi.org/10.1681/ASN.2010030246] [PMID: 20616166]
[132]
Sabolic, I.; Vrhovac, I.; Eror, D.B.; Gerasimova, M.; Rose, M.; Breljak, D.; Ljubojevic, M.; Brzica, H.; Sebastiani, A.; Thal, S.C.; Sauvant, C.; Kipp, H.; Vallon, V.; Koepsell, H. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am. J. Physiol. Cell Physiol., 2012, 302(8), C1174-C1188.
[http://dx.doi.org/10.1152/ajpcell.00450.2011] [PMID: 22262063]
[133]
Santer, R.; Calado, J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol., 2010, 5(1), 133-141.
[http://dx.doi.org/10.2215/CJN.04010609] [PMID: 19965550]
[134]
Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S.; Dobrinskikh, E.; D’Agati, V.D.; Koepsell, H.; Kopp, J.B.; Rosenberg, A.Z.; Levi, M. SGLT2 protein expression is increased in human diabetic nephropathy: Sglt2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J. Biol. Chem., 2017, 292(13), 5335-5348.
[http://dx.doi.org/10.1074/jbc.M117.779520] [PMID: 28196866]
[135]
Rahmoune, H.; Thompson, P.W.; Ward, J.M.; Smith, C.D.; Hong, G.; Brown, J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes, 2005, 54(12), 3427-3434.
[http://dx.doi.org/10.2337/diabetes.54.12.3427] [PMID: 16306358]
[136]
Vallon, V.; Rose, M.; Gerasimova, M.; Satriano, J.; Platt, K.A.; Koepsell, H.; Cunard, R.; Sharma, K.; Thomson, S.C.; Rieg, T. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Renal Physiol., 2013, 304(2), F156-F167.
[http://dx.doi.org/10.1152/ajprenal.00409.2012] [PMID: 23152292]
[137]
Bailey, C.J.; Gross, J.L.; Pieters, A.; Bastien, A.; List, J.F. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, 375(9733), 2223-2233.
[http://dx.doi.org/10.1016/S0140-6736(10)60407-2] [PMID: 20609968]
[138]
Benetti, E.; Mastrocola, R.; Vitarelli, G.; Cutrin, J.C.; Nigro, D.; Chiazza, F.; Mayoux, E.; Collino, M.; Fantozzi, R. Empagliflozin protects against diet-induced NLRP-3 inflammasome activation and lipid accumulation. J. Pharmacol. Exp. Ther., 2016, 359(1), 45-53.
[http://dx.doi.org/10.1124/jpet.116.235069] [PMID: 27440421]
[139]
Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204.
[http://dx.doi.org/10.1152/ajprenal.00520.2013] [PMID: 24226524]
[140]
Gembardt, F.; Bartaun, C.; Jarzebska, N.; Mayoux, E.; Todorov, V.T.; Hohenstein, B.; Hugo, C. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal Physiol., 2014, 307(3), F317-F325.
[http://dx.doi.org/10.1152/ajprenal.00145.2014] [PMID: 24944269]
[141]
Ojima, A.; Matsui, T.; Nishino, Y.; Nakamura, N.; Yamagishi, S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing ages-receptor axis. Horm. Metab. Res., 2015, 47(9), 686-692.
[http://dx.doi.org/10.1055/s-0034-1395609] [PMID: 25611208]
[142]
Vasilakou, D.; Karagiannis, T.; Athanasiadou, E.; Mainou, M.; Liakos, A.; Bekiari, E.; Sarigianni, M.; Matthews, D.R.; Tsapas, A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med., 2013, 159(4), 262-274.
[http://dx.doi.org/10.7326/0003-4819-159-4-201308200-00007] [PMID: 24026259]
[143]
Roden, M.; Weng, J.; Eilbracht, J.; Delafont, B.; Kim, G.; Woerle, H.J.; Broedl, U.C. EMPA-REG MONO trial investigators. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol., 2013, 1(3), 208-219.
[http://dx.doi.org/10.1016/S2213-8587(13)70084-6] [PMID: 24622369]
[144]
Kovacs, C.S.; Seshiah, V.; Swallow, R.; Jones, R.; Rattunde, H.; Woerle, H.J.; Broedl, U.C. EMPA-REG PIO™ trial investigators. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes. Metab., 2014, 16(2), 147-158.
[http://dx.doi.org/10.1111/dom.12188] [PMID: 23906415]
[145]
Häring, H.U.; Merker, L.; Seewaldt-Becker, E.; Weimer, M.; Meinicke, T.; Woerle, H.J.; Broedl, U.C. EMPA-REG METSU Trial Investigators. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care, 2013, 36(11), 3396-3404.
[http://dx.doi.org/10.2337/dc12-2673] [PMID: 23963895]
[146]
Cherney, D.; Lund, S.S.; Perkins, B.A.; Groop, P.H.; Cooper, M.E.; Kaspers, S.; Pfarr, E.; Woerle, H.J.; von Eynatten, M. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia, 2016, 59(9), 1860-1870.
[http://dx.doi.org/10.1007/s00125-016-4008-2] [PMID: 27316632]
[147]
de Albuquerque Rocha, N.; Neeland, I.J.; McCullough, P.A.; Toto, R.D.; McGuire, D.K. Effects of sodium glucose co-transporter 2 inhibitors on the kidney. Diab. Vasc. Dis. Res., 2018, 15(5), 375-386.
[http://dx.doi.org/10.1177/1479164118783756] [PMID: 29963920]
[148]
Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. EMPA-REG outcome investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med., 2016, 375(4), 323-334.
[http://dx.doi.org/10.1056/NEJMoa1515920] [PMID: 27299675]
[149]
Terami, N.; Ogawa, D.; Tachibana, H.; Hatanaka, T.; Wada, J.; Nakatsuka, A.; Eguchi, J.; Horiguchi, C.S.; Nishii, N.; Yamada, H.; Takei, K.; Makino, H. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One, 2014, 9(6)e100777
[http://dx.doi.org/10.1371/journal.pone.0100777] [PMID: 24960177]
[150]
Birnbaum, Y.; Bajaj, M.; Yang, H.C.; Ye, Y. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovasc. Drugs Ther., 2018, 32(2), 135-145.
[http://dx.doi.org/10.1007/s10557-018-6778-x] [PMID: 29508169]
[151]
Masters, S.L.; Dunne, A.; Subramanian, S.L.; Hull, R.L.; Tannahill, G.M.; Sharp, F.A.; Becker, C.; Franchi, L.; Yoshihara, E.; Chen, Z.; Mullooly, N.; Mielke, L.A.; Harris, J.; Coll, R.C.; Mills, K.H.; Mok, K.H.; Newsholme, P.; Nuñez, G.; Yodoi, J.; Kahn, S.E.; Lavelle, E.C.; O’Neill, L.A. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol., 2010, 11(10), 897-904.
[http://dx.doi.org/10.1038/ni.1935] [PMID: 20835230]
[152]
Dixit, V.D. Nlrp3 inflammasome activation in type 2 diabetes: is it clinically relevant? Diabetes, 2013, 62(1), 22-24.
[http://dx.doi.org/10.2337/db12-1115] [PMID: 23258906]
[153]
De Nardo, D.; Latz, E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol., 2011, 32(8), 373-379.
[http://dx.doi.org/10.1016/j.it.2011.05.004] [PMID: 21733753]
[154]
Wang, S.; Li, Y.; Fan, J.; Zhang, X.; Luan, J.; Bian, Q.; Ding, T.; Wang, Y.; Wang, Z.; Song, P.; Cui, D.; Mei, X.; Ju, D. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Cell Death Dis., 2017, 8(7)e2937
[http://dx.doi.org/10.1038/cddis.2017.292] [PMID: 28726774]
[155]
Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol. Ther., 2006, 109(3), 366-398.
[PMID: 16102838]
[156]
Cheng, J.; Grande, J.P. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease. Exp. Biol. Med. (Maywood), 2007, 232(1), 38-51.
[PMID: 17202584]
[157]
Bhanot, S.; Leehey, D.J. Pentoxifylline for diabetic nephropathy: an important opportunity to re-purpose an old drug? Curr. Hypertens. Rep., 2016, 18(1), 8.
[http://dx.doi.org/10.1007/s11906-015-0612-7] [PMID: 26747265]
[158]
Hecht, M.; Müller, M.; Lohmann-Matthes, M.L.; Emmendörffer, A. In vitro and in vivo effects of pentoxifylline on macrophages and lymphocytes derived from autoimmune MRL-lpr/lpr mice. J. Leukoc. Biol., 1995, 57(2), 242-249.
[http://dx.doi.org/10.1002/jlb.57.2.242] [PMID: 7852838]
[159]
Pollice, P.F.; Rosier, R.N.; Looney, R.J.; Puzas, J.E.; Schwarz, E.M.; O’Keefe, R.J. Oral pentoxifylline inhibits release of tumor necrosis factor-alpha from human peripheral blood monocytes: a potential treatment for aseptic loosening of total joint components. J. Bone Joint Surg. Am., 2001, 83(7), 1057-1061.
[http://dx.doi.org/10.2106/00004623-200107000-00012] [PMID: 11451976]
[160]
Mohammadpour, A.H.; Falsoleiman, H.; Shamsara, J.; Allah Abadi, G.; Rasooli, R.; Ramezani, M. Pentoxifylline decreases serum level of adhesion molecules in atherosclerosis patients. Iran. Biomed. J., 2014, 18(1), 23-27.
[http://dx.doi.org/10.6091/ibj.1211.2013] [PMID: 24375159]
[161]
Fernandes, J.L.; de Oliveira, R.T.D.; Mamoni, R.L.; Coelho, O.R.; Nicolau, J.C.; Blotta, M.H.S.L.; Serrano, C.V. Jr Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory activity in patients with coronary artery disease--a randomized placebo-controlled study. Atherosclerosis, 2008, 196(1), 434-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.11.032] [PMID: 17196208]
[162]
Han, K.H.; Han, S.Y.; Kim, H.S.; Kang, Y.S.; Cha, D.R. Prolonged administration enhances the renoprotective effect of pentoxifylline via anti-inflammatory activity in streptozotocin-induced diabetic nephropathy. Inflammation, 2010, 33(3), 137-143.
[http://dx.doi.org/10.1007/s10753-009-9167-6] [PMID: 19921414]
[163]
DiPetrillo, K.; Gesek, F.A. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am. J. Nephrol., 2004, 24(3), 352-359.
[http://dx.doi.org/10.1159/000079121] [PMID: 15205554]
[164]
DiPetrillo, K.; Coutermarsh, B.; Gesek, F.A. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am. J. Physiol. Renal Physiol., 2003, 284(1), F113-F121.
[http://dx.doi.org/10.1152/ajprenal.00026.2002] [PMID: 12388406]
[165]
Garcia, F.A.; Rebouças, J.F.; Balbino, T.Q.; da Silva, T.G.; de Carvalho-Júnior, C.H.; Cerqueira, G.S.; Brito, G.A.; Viana, G.S. Pentoxifylline reduces the inflammatory process in diabetic rats: relationship with decreases of pro-inflammatory cytokines and inducible nitric oxide synthase. J. Inflamm. (Lond.), 2015, 12, 33.
[http://dx.doi.org/10.1186/s12950-015-0080-5] [PMID: 25922592]
[166]
Navarro, J.F.; Mora, C.; Rivero, A.; Gallego, E.; Chahin, J.; Macía, M.; Méndez, M.L.; García, J. Urinary protein excretion and serum tumor necrosis factor in diabetic patients with advanced renal failure: effects of pentoxifylline administration. Am. J. Kidney Dis., 1999, 33(3), 458-463.
[http://dx.doi.org/10.1016/S0272-6386(99)70182-4] [PMID: 10070909]
[167]
McCormick, B.B.; Sydor, A.; Akbari, A.; Fergusson, D.; Doucette, S.; Knoll, G. The effect of pentoxifylline on proteinuria in diabetic kidney disease: a meta-analysis. Am. J. Kidney Dis., 2008, 52(3), 454-463.
[http://dx.doi.org/10.1053/j.ajkd.2008.01.025] [PMID: 18433957]
[168]
Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; Chahin, J.; Méndez, M.L.; Gallego, E.; Macía, M.; del Castillo, N.; Rivero, A.; Getino, M.A.; García, P.; Jarque, A.; García, J. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J. Am. Soc. Nephrol., 2015, 26(1), 220-229.
[http://dx.doi.org/10.1681/ASN.2014010012] [PMID: 24970885]
[169]
Navarro, J.F.; Mora, C.; Muros, M.; García, J. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. J. Am. Soc. Nephrol., 2005, 16(7), 2119-2126.
[http://dx.doi.org/10.1681/ASN.2005010001] [PMID: 15917336]
[170]
Leyva-Jiménez, R.; Rodríguez-Orozco, A.R.; Ortega-Pierres, L.E.; Ramírez-Enríquez, J.; Gómez-García, A.; Alvarez-Aguilar, C. Effect of pentoxifylline on the evolution of diabetic nephropathy. Med. Clin. (Barc.), 2009, 132(20), 772-778.
[http://dx.doi.org/10.1016/j.medcli.2008.05.024] [PMID: 19464709]
[171]
Sohotnik, R.; Nativ, O.; Abbasi, A.; Awad, H.; Frajewicki, V.; Bishara, B.; Sukhotnik, I.; Armaly, Z.; Aronson, D.; Heyman, S.N.; Nativ, O.; Abassi, Z. Phosphodiesterase-5 inhibition attenuates early renal ischemia-reperfusion-induced acute kidney injury: assessment by quantitative measurement of urinary NGAL and KIM-1. Am. J. Physiol. Renal Physiol., 2013, 304(8), F1099-F1104.
[http://dx.doi.org/10.1152/ajprenal.00649.2012] [PMID: 23364806]
[172]
Afsar, B.; Ortiz, A.; Covic, A.; Gaipov, A.; Esen, T.; Goldsmith, D.; Kanbay, M. Phosphodiesterase type 5 inhibitors and kidney disease. Int. Urol. Nephrol., 2015, 47(9), 1521-1528.
[http://dx.doi.org/10.1007/s11255-015-1071-4] [PMID: 26242375]
[173]
Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Lee, S.H.; Moon, J.Y.; Lim, S.J. Effects of sildenafil on oxidative and inflammatory injuries of the kidney in streptozotocin-induced diabetic rats. Am. J. Nephrol., 2009, 29(3), 274-282.
[http://dx.doi.org/10.1159/000158635] [PMID: 18812693]
[174]
Kuno, Y.; Iyoda, M.; Shibata, T.; Hirai, Y.; Akizawa, T. Sildenafil, a phosphodiesterase type 5 inhibitor, attenuates diabetic nephropathy in non-insulin-dependent Otsuka Long-Evans Tokushima Fatty rats. Br. J. Pharmacol., 2011, 162(6), 1389-1400.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01149.x] [PMID: 21133896]
[175]
Rodríguez-Iturbe, B.; Ferrebuz, A.; Vanegas, V.; Quiroz, Y.; Espinoza, F.; Pons, H.; Vaziri, N.D. Early treatment with cGMP phosphodiesterase inhibitor ameliorates progression of renal damage. Kidney Int., 2005, 68(5), 2131-2142.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00669.x] [PMID: 16221212]
[176]
Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev., 2016, 68(2), 357-418.
[http://dx.doi.org/10.1124/pr.115.011833] [PMID: 26956245]
[177]
Neuhofer, W.; Pittrow, D. Endothelin receptor selectivity in chronic kidney disease: rationale and review of recent evidence. Eur. J. Clin. Invest., 2009, 39(Suppl. 2), 50-67.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02121.x] [PMID: 19335747]
[178]
Kohan, D.E.; Rossi, N.F.; Inscho, E.W.; Pollock, D.M. Regulation of blood pressure and salt homeostasis by endothelin. Physiol. Rev., 2011, 91(1), 1-77.
[http://dx.doi.org/10.1152/physrev.00060.2009] [PMID: 21248162]
[179]
Neuhofer, W.; Pittrow, D. Role of endothelin and endothelin receptor antagonists in renal disease. Eur. J. Clin. Invest., 2006, 36(Suppl. 3), 78-88.
[http://dx.doi.org/10.1111/j.1365-2362.2006.01689.x] [PMID: 16919017]
[180]
Kohan, D.E.; Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int., 2014, 86(5), 896-904.
[http://dx.doi.org/10.1038/ki.2014.143] [PMID: 24805108]
[181]
Komers, R.; Plotkin, H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2016, 310(10), R877-R884.
[http://dx.doi.org/10.1152/ajpregu.00425.2015] [PMID: 27009050]
[182]
Hocher, B.; Thöne-Reineke, C.; Rohmeiss, P.; Schmager, F.; Slowinski, T.; Burst, V.; Siegmund, F.; Quertermous, T.; Bauer, C.; Neumayer, H.H.; Schleuning, W.D.; Theuring, F. Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J. Clin. Invest., 1997, 99(6), 1380-1389.
[http://dx.doi.org/10.1172/JCI119297] [PMID: 9077548]
[183]
Watson, A.M.; Li, J.; Schumacher, C.; de Gasparo, M.; Feng, B.; Thomas, M.C.; Allen, T.J.; Cooper, M.E.; Jandeleit-Dahm, K.A. The endothelin receptor antagonist avosentan ameliorates nephropathy and atherosclerosis in diabetic apolipoprotein E knockout mice. Diabetologia, 2010, 53(1), 192-203.
[http://dx.doi.org/10.1007/s00125-009-1540-3] [PMID: 19862499]
[184]
Simonson, M.S.; Wann, S.; Mené, P.; Dubyak, G.R.; Kester, M.; Nakazato, Y.; Sedor, J.R.; Dunn, M.J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J. Clin. Invest., 1989, 83(2), 708-712.
[http://dx.doi.org/10.1172/JCI113935] [PMID: 2536405]
[185]
Buelli, S.; Rosanò, L.; Gagliardini, E.; Corna, D.; Longaretti, L.; Pezzotta, A.; Perico, L.; Conti, S.; Rizzo, P.; Novelli, R.; Morigi, M.; Zoja, C.; Remuzzi, G.; Bagnato, A.; Benigni, A. β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J. Am. Soc. Nephrol., 2014, 25(3), 523-533.
[http://dx.doi.org/10.1681/ASN.2013040362] [PMID: 24371298]
[186]
Simonson, M.S.; Ismail-Beigi, F. Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop. J. Biol. Chem., 2011, 286(13), 11003-11008.
[http://dx.doi.org/10.1074/jbc.M110.190793] [PMID: 21169360]
[187]
Gerstung, M.; Roth, T.; Dienes, H.P.; Licht, C.; Fries, J.W. Endothelin-1 induces NF-kappaB via two independent pathways in human renal tubular epithelial cells. Am. J. Nephrol., 2007, 27(3), 294-300.
[http://dx.doi.org/10.1159/000101999] [PMID: 17460393]
[188]
Saleh, M.A.; Boesen, E.I.; Pollock, J.S.; Savin, V.J.; Pollock, D.M. Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes. Diabetologia, 2011, 54(4), 979-988.
[http://dx.doi.org/10.1007/s00125-010-2021-4] [PMID: 21191784]
[189]
Amiri, F.; Paradis, P.; Reudelhuber, T.L.; Schiffrin, E.L. Vascular inflammation in absence of blood pressure elevation in transgenic murine model overexpressing endothelin-1 in endothelial cells. J. Hypertens., 2008, 26(6), 1102-1109.
[http://dx.doi.org/10.1097/HJH.0b013e3282fc2184] [PMID: 18475147]
[190]
Saleh, M.A.; Boesen, E.I.; Pollock, J.S.; Savin, V.J.; Pollock, D.M. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension, 2010, 56(5), 942-949.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.156570] [PMID: 20823379]
[191]
Chen, P.; Shibata, M.; Zidovetzki, R.; Fisher, M.; Zlokovic, B.V.; Hofman, F.M. Endothelin-1 and monocyte chemoattractant protein-1 modulation in ischemia and human brain-derived endothelial cell cultures. J. Neuroimmunol., 2001, 116(1), 62-73.
[http://dx.doi.org/10.1016/S0165-5728(01)00280-6] [PMID: 11311331]
[192]
Saleh, M.A.; Pollock, D.M. Endothelin in renal inflammation and hypertension. Contrib. Nephrol., 2011, 172, 160-170.
[http://dx.doi.org/10.1159/000328696] [PMID: 21893997]
[193]
Tobe, S.; Kohan, D.E.; Singarayer, R. Endothelin receptor antagonists: new hope for renal protection? Curr. Hypertens. Rep., 2015, 17(7), 57.
[http://dx.doi.org/10.1007/s11906-015-0568-7] [PMID: 26068660]
[194]
Kohan, D.E.; Pritchett, Y.; Molitch, M.; Wen, S.; Garimella, T.; Audhya, P.; Andress, D.L. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J. Am. Soc. Nephrol., 2011, 22(4), 763-772.
[http://dx.doi.org/10.1681/ASN.2010080869] [PMID: 21372210]
[195]
Kohan, D.E.; Pollock, D.M. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br. J. Clin. Pharmacol., 2013, 76(4), 573-579.
[http://dx.doi.org/10.1111/bcp.12064] [PMID: 23228194]
[196]
Andress, D.L.; Coll, B.; Pritchett, Y.; Brennan, J.; Molitch, M.; Kohan, D.E. Clinical efficacy of the selective endothelin A receptor antagonist, atrasentan, in patients with diabetes and chronic kidney disease (CKD). Life Sci., 2012, 91(13-14), 739-742.
[http://dx.doi.org/10.1016/j.lfs.2012.01.011] [PMID: 22326504]
[197]
Yuan, W.; Li, Y.; Wang, J.; Li, J.; Gou, S.; Fu, P. Endothelin-receptor antagonists for diabetic nephropathy: a meta-analysis. Nephrology (Carlton), 2015, 20(7), 459-466.
[http://dx.doi.org/10.1111/nep.12442] [PMID: 25753148]
[198]
Sasser, J.M.; Sullivan, J.C.; Hobbs, J.L.; Yamamoto, T.; Pollock, D.M.; Carmines, P.K.; Pollock, J.S. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J. Am. Soc. Nephrol., 2007, 18(1), 143-154.
[http://dx.doi.org/10.1681/ASN.2006030208] [PMID: 17167119]
[199]
Egido, J.; Rojas-Rivera, J.; Mas, S.; Ruiz-Ortega, M.; Sanz, A.B.; Gonzalez Parra, E.; Gomez-Guerrero, C. Atrasentan for the treatment of diabetic nephropathy. Expert Opin. Investig. Drugs, 2017, 26(6), 741-750.
[http://dx.doi.org/10.1080/13543784.2017.1325872] [PMID: 28468519]
[200]
Lim, S.; Kim, M.J.; Choi, S.H.; Shin, C.S.; Park, K.S.; Jang, H.C.; Billings, L.K.; Meigs, J.B. Association of vitamin D deficiency with incidence of type 2 diabetes in high-risk Asian subjects. Am. J. Clin. Nutr., 2013, 97(3), 524-530.
[http://dx.doi.org/10.3945/ajcn.112.048496] [PMID: 23364011]
[201]
Hamden, K.; Carreau, S.; Jamoussi, K.; Miladi, S.; Lajmi, S.; Aloulou, D.; Ayadi, F.; Elfeki, A. 1Alpha,25 dihydroxyvitamin D3: therapeutic and preventive effects against oxidative stress, hepatic, pancreatic and renal injury in alloxan-induced diabetes in rats. J. Nutr. Sci. Vitaminol. (Tokyo), 2009, 55(3), 215-222.
[http://dx.doi.org/10.3177/jnsv.55.215] [PMID: 19602829]
[202]
Sintov, A.C.; Yarmolinsky, L.; Dahan, A.; Ben-Shabat, S. Pharmacological effects of vitamin D and its analogs: recent developments. Drug Discov. Today, 2014, 19(11), 1769-1774.
[http://dx.doi.org/10.1016/j.drudis.2014.06.008] [PMID: 24947685]
[203]
Wang, Y.; Borchert, M.L.; DeLuca, H.F. Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney Int., 2012, 81(10), 993-1001.
[http://dx.doi.org/10.1038/ki.2011.463] [PMID: 22278022]
[204]
Yang, S.; Li, A.; Wang, J.; Liu, J.; Han, Y.; Zhang, W.; Li, Y.C.; Zhang, H. Vitamin D receptor: a novel therapeutic target for kidney diseases. Curr. Med. Chem., 2018, 25(27), 3256-3271.
[http://dx.doi.org/10.2174/0929867325666180214122352] [PMID: 29446731]
[205]
Saedisomeolia, A.; Taheri, E.; Djalali, M.; Moghadam, A.M.; Qorbani, M. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J. Diabetes Metab. Disord., 2014, 13(1), 7.
[http://dx.doi.org/10.1186/2251-6581-13-7] [PMID: 24398023]
[206]
Li, D.M.; Zhang, Y.; Ding, B.; Liu, B.L.; Jiang, L.L.; Xing, C.Y.; Ma, J.H. [The association between vitamin D deficiency and diabetic nephropathy in type 2 diabetic patients]. Zhonghua Nei Ke Za Zhi, 2013, 52(11), 970-974.
[PMID: 24439194]
[207]
Diaz, V.A.; Mainous, A.G., III; Carek, P.J.; Wessell, A.M.; Everett, C.J. The association of vitamin D deficiency and insufficiency with diabetic nephropathy: implications for health disparities. J. Am. Board Fam. Med., 2009, 22(5), 521-527.
[http://dx.doi.org/10.3122/jabfm.2009.05.080231] [PMID: 19734398]
[208]
Rouached, M.; El Kadiri Boutchich, S.; Al Rifai, A.M.; Garabédian, M.; Fournier, A. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int., 2008, 74(3), 389-390.
[http://dx.doi.org/10.1038/ki.2008.169] [PMID: 18626497]
[209]
Chokhandre, M.K.; Mahmoud, M.I.; Hakami, T.; Jafer, M.; Inamdar, A.S. Vitamin D & its analogues in type 2 diabetic nephropathy: a systematic review. J. Diabetes Metab. Disord., 2015, 14, 58.
[http://dx.doi.org/10.1186/s40200-015-0186-6] [PMID: 26180775]
[210]
Wang, H.; Wang, J.; Qu, H.; Wei, H.; Ji, B.; Yang, Z.; Wu, J.; He, Q.; Luo, Y.; Liu, D.; Duan, Y.; Liu, F.; Deng, H. In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway. Endocrine, 2016, 54(2), 348-359.
[http://dx.doi.org/10.1007/s12020-016-0999-1] [PMID: 27395420]
[211]
Esfandiari, A.; Pourghassem Gargari, B.; Noshad, H.; Sarbakhsh, P.; Mobasseri, M.; Barzegari, M.; Arzhang, P. The effects of vitamin D3 supplementation on some metabolic and inflammatory markers in diabetic nephropathy patients with marginal status of vitamin D: A randomized double blind placebo controlled clinical trial. Diabetes Metab. Syndr., 2019, 13(1), 278-283.
[http://dx.doi.org/10.1016/j.dsx.2018.09.013] [PMID: 30641712]
[212]
Bhalla, A.K.; Amento, E.P.; Serog, B.; Glimcher, L.H. 1,25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. J. Immunol., 1984, 133(4), 1748-1754.
[PMID: 6206136]
[213]
Mathieu, C.; Adorini, L. The coming of age of 1,25-dihydroxyvitamin D(3) analogs as immunomodulatory agents. Trends Mol. Med., 2002, 8(4), 174-179.
[http://dx.doi.org/10.1016/S1471-4914(02)02294-3] [PMID: 11927275]
[214]
Zhang, Z.; Yuan, W.; Sun, L.; Szeto, F.L.; Wong, K.E.; Li, X.; Kong, J.; Li, Y.C. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int., 2007, 72(2), 193-201.
[http://dx.doi.org/10.1038/sj.ki.5002296] [PMID: 17507908]
[215]
Mao, L.; Ji, F.; Liu, Y.; Zhang, W.; Ma, X. Calcitriol plays a protective role in diabetic nephropathy through anti-inflammatory effects. Int. J. Clin. Exp. Med., 2014, 7(12), 5437-5444.
[PMID: 25664053]
[216]
Sanchez-Niño, M.D.; Bozic, M.; Córdoba-Lanús, E.; Valcheva, P.; Gracia, O.; Ibarz, M.; Fernandez, E.; Navarro-Gonzalez, J.F.; Ortiz, A.; Valdivielso, J.M. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2012, 302(6), F647-F657.
[http://dx.doi.org/10.1152/ajprenal.00090.2011] [PMID: 22169009]
[217]
Hu, X.; Liu, W.; Yan, Y.; Liu, H.; Huang, Q.; Xiao, Y.; Gong, Z.; Du, J. Vitamin D protects against diabetic nephropathy: Evidence-based effectiveness and mechanism. Eur. J. Pharmacol., 2019, 845, 91-98.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.037] [PMID: 30287151]
[218]
Vlassara, H.; Cai, W.; Chen, X.; Serrano, E.J.; Shobha, M.S.; Uribarri, J.; Woodward, M.; Striker, G.E. Managing chronic inflammation in the aging diabetic patient with CKD by diet or sevelamer carbonate: a modern paradigm shift. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(12), 1410-1416.
[http://dx.doi.org/10.1093/gerona/gls195] [PMID: 23109677]
[219]
Kawanami, D.; Matoba, K.; Sango, K.; Utsunomiya, K. Incretin-based therapies for diabetic complications: basic mechanisms and clinical evidence. Int. J. Mol. Sci., 2016, 17(8)E1223
[http://dx.doi.org/10.3390/ijms17081223] [PMID: 27483245]