Regioselective Synthesis of Diverse Thio-, Seleno-substituted 1,2,3-Triazoles

Page: [2379 - 2401] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Thio-, seleno-substituted triazoles are useful scaffolds employed in the fields of organic synthesis, medicinal chemistry, and material science. A number of synthetic approaches to efficient formation of thio- and seleno-triazoles have been disclosed, including the interception of copper(I) triazolides generated in-situ, cycloaddition of internal alkynes (thio-, halo-, and metalated alkynes) to azides, and the coupling of azides and nonalkyne substrates. This mini-review intends to summarize the synthetic methods toward thio-, seleno-1,2,3-triazoles and the relative reaction mechanisms.

Keywords: Thioether, triazole, multi-component reaction, cycloaddition reaction, selenoether, regioselectivity.

Graphical Abstract

[1]
Fontecave, M.; Ollagnier-de-Choudens, S.; Mulliez, E. Biological radical sulfur insertion reactions. Chem. Rev., 2003, 103(6), 2149-2166.
[http://dx.doi.org/10.1021/cr020427j] [PMID: 12797827]
[2]
Ferreira, S.B.; Sodero, A.C.; Cardoso, M.F.; Lima, E.S.; Kaiser, C.R.; Silva, F.P.; Ferreira, V.F. Synthesis, biological activity, and molecular modeling studies of 1H-1,2,3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. J. Med. Chem., 2010, 53(6), 2364-2375.
[http://dx.doi.org/10.1021/jm901265h] [PMID: 20170190]
[3]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur. J. Org. Chem., 2014, 2014(16), 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[4]
Ohmatsu, K.; Kiyokawa, M.; Ooi, T. Chiral 1,2,3-triazoliums as new cationic organic catalysts with anion-recognition ability: Application to asymmetric alkylation of oxindoles. J. Am. Chem. Soc., 2011, 133(5), 1307-1309.
[http://dx.doi.org/10.1021/ja1102844] [PMID: 21204518]
[5]
Astruc, D.; Ciganda, R.; Deraedt, C.; Gatard, S.; Liang, L.; Li, N.; Ornelas, C.; Rapakousiou, A.; Ruiz, J.; Wang, D.; Wang, Y.; Zhao, P. Click metallodendrimers and their functions. Synlett, 2015, 26(11), 1437-1449.
[http://dx.doi.org/10.1055/s-0034-1380699]
[6]
Amdouni, H.; Robert, G.; Driowya, M.; Furstoss, N.; Métier, C.; Dubois, A.; Dufies, M.; Zerhouni, M.; Orange, F.; Lacas-Gervais, S.; Bougrin, K.; Martin, A.R.; Auberger, P.; Benhida, R. In vitro and in vivo evaluation of fully substituted (5-(3-ethoxy-3-oxopropynyl)-4-(ethoxycarbonyl)-1,2,3-triazolyl-glycosides as original nucleoside analogues to circumvent resistance in myeloid malignancies. J. Med. Chem., 2017, 60(4), 1523-1533.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01803] [PMID: 28094938]
[7]
Worrell, B.T.; Ellery, S.P.; Fokin, V.V. Copper(I)-catalyzed cycloaddition of bismuth(III) acetylides with organic azides: synthesis of stable triazole anion equivalents. Angew. Chem. Int. Ed. Engl., 2013, 52(49), 13037-13041.
[http://dx.doi.org/10.1002/anie.201306192] [PMID: 24130150]
[8]
Liebert, T.; Hänsch, C.; Heinze, T. Click chemistry with polysaccharides. Macromol. Rapid Commun., 2006, 27(3), 208-213.
[http://dx.doi.org/10.1002/marc.200500686]
[9]
Devender, N.; Gunjan, S.; Chhabra, S.; Singh, K.; Pasam, V.R.; Shukla, S.K.; Sharma, A.; Jaiswal, S.; Singh, S.K.; Kumar, Y.; Lal, J.; Trivedi, A.K.; Tripathi, R.; Tripathi, R.P. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents. Eur. J. Med. Chem., 2016, 109, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.038] [PMID: 26774925]
[10]
Boechat, N. Ferreira, Mde.L.; Pinheiro, L.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Júnior, C.C.S.; Aguiar, A.C.C.; de Andrade, I.M.; Krettli, A.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84(3), 325-332.
[http://dx.doi.org/10.1111/cbdd.12321] [PMID: 24803084]
[11]
Wen, Y.N.; Zhang, Z.F.; Liu, N.N.; Andrei, G.; Snoeck, R.; Xiang, Y.H.; Schols, D.; Chen, X.; Zhang, Z.Y.; Zhang, Q.S.; Wu, Q.P. Synthesis and ativiral activity of 5-(benzylthio)-4-carbamyl-1,2,3-triazoles against human Cytomegalovirus (CMV) and Varicella-Zoster Virus (VZV). Med. Chem., 2017, 13(5), 453-464.
[http://dx.doi.org/10.2174/1573406413666170307165236] [PMID: 28290250]
[12]
Yuan, W.Y.; Chen, X.; Liu, N.N.; Wen, Y.N.; Yang, B.; Andrei, G.; Snoeck, R.; Xiang, Y.H.; Wu, Y.W.; Jiang, Z.; Schols, D.; Zhang, Z.Y.; Wu, Q.P. Synthesis, anti-varicella-zoster virus and anti-cytomegalovirus activity of 4,5-disubstituted 1,2,3-(1H)-triazoles. Med. Chem., 2019, 15(7), 801-812.
[http://dx.doi.org/10.2174/1573406414666181109095239] [PMID: 30411688]
[13]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[14]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[15]
Li, Q.H.; Ding, Y.; Huang, N.W. Synthesis and biological activities of dithiocarbamates containing 1,2,3-triazoles group. Chin. Chem. Lett., 2014, 25(11), 1469-1472.
[http://dx.doi.org/10.1016/j.cclet.2014.05.022]
[16]
Morzherin, Y.; Prokhorova, P.E.; Musikhin, D.A.; Glukhareva, T.V.; Fan, Z. 2-Hydroxypropyl derivatives of 1,2,3-thiadiazole and 1,2,3-triazole: synthesis and antifungal activity. Pure Appl. Chem., 2011, 83(3), 715-722.
[http://dx.doi.org/10.1351/PAC-CON-10-11-08]
[17]
Oura, I.; Shimizu, K.; Ogata, K.; Fukuzawa, S. Highly endo-selective and enantioselective 1,3-dipolar cycloaddition of azomethine ylide with α-enones catalyzed by a silver(I)/ThioClickFerrophos complex. Org. Lett., 2010, 12(8), 1752-1755.
[http://dx.doi.org/10.1021/ol100336q] [PMID: 20232852]
[18]
Guerrero, I.; Correa, A. Metal-catalyzed C-H functionalization processes with “click”-triazole assistance. Eur. J. Org. Chem., 2018, 2018(44), 6034-6049.
[http://dx.doi.org/10.1002/ejoc.201800790]
[19]
Lim, J.Y.C.; Marques, I.; Thompson, A.L.; Christensen, K.E.; Félix, V.; Beer, P.D. Chalcogen bonding macrocycles and [2]rotaxanes for anion recognition. J. Am. Chem. Soc., 2017, 139(8), 3122-3133.
[http://dx.doi.org/10.1021/jacs.6b12745] [PMID: 28140582]
[20]
Cui, F.H.; Chen, J.; Mo, Z.Y.; Su, S.X.; Chen, Y.Y.; Ma, X.L.; Tang, H.T.; Wang, H.S.; Pan, Y.M.; Xu, Y.L. Copper-catalyzed decarboxylative/click cascade reaction: Regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734] [PMID: 29388780]
[21]
Chen, Z.K.; Liu, Z.B.; Cao, G.J.; Li, H.L.; Rena, H.J. Recent advances in multicomponent synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Adv. Synth. Catal., 2017, 359(2), 202-224.
[http://dx.doi.org/10.1002/adsc.201600918]
[22]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[23]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[24]
Wu, Y.M.; Deng, J.; Li, Y.; Chen, Q.Y. Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(I) salt. Synthesis, 2005, 36(43), 1314-1318.
[http://dx.doi.org/10.1055/s-2005-861860]
[25]
Zhang, X.; Hsung, R.P.; Li, H. A triazole-templated ring-closing metathesis for constructing novel fused and bridged triazoles. Chem. Commun. (Camb.), 2007, 2007(23), 2420-2422.
[http://dx.doi.org/10.1039/b701040k] [PMID: 17844766]
[26]
Cheung, K.P.S.; Tsui, G.C. Copper(I)-catalyzed interrupted click reaction with TMSCF3: synthesis of 5-trifluoromethyl 1,2,3-triazoles. Org. Lett., 2017, 19(11), 2881-2884.
[http://dx.doi.org/10.1021/acs.orglett.7b01116] [PMID: 28497976]
[27]
Li, L.; Hao, G.; Zhu, A.; Fan, X.; Zhang, G.; Zhang, L. A copper(I)-catalyzed three-component domino process: assembly of complex 1,2,3-triazolyl-5-phosphonates from azides, alkynes, and H-phosphates. Chemistry, 2013, 19(43), 14403-14406.
[http://dx.doi.org/10.1002/chem.201303324] [PMID: 24114953]
[28]
Wang, W.; Lin, Y.; Ma, Y.; Tung, C.H.; Xu, Z. Copper(I)-catalyzed three-component click/persulfuration cascade: regioselective synthesis of triazole disulfides. Org. Lett., 2018, 20(10), 2956-2959.
[http://dx.doi.org/10.1021/acs.orglett.8b01002] [PMID: 29737862]
[29]
Wei, F.; Li, H.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.H.; Xu, Z. Cu/Pd-catalyzed, three-component click reaction of azide, alkyne, and aryl halide: one-pot strategy toward trisubstituted triazoles. Org. Lett., 2015, 17(11), 2860-2863.
[http://dx.doi.org/10.1021/acs.orglett.5b01342] [PMID: 26000564]
[30]
Wang, W.; Wei, F.; Ma, Y.; Tung, C.H.; Xu, Z. Copper(I)-catalyzed three-component click alkynylation: One-pot synthesis of 5-alkynyl-1,2,3-triazoles. Org. Lett., 2016, 18(17), 4158-4161.
[http://dx.doi.org/10.1021/acs.orglett.6b02199] [PMID: 27549407]
[31]
Wang, W.; Peng, X.; Wei, F.; Tung, C.H.; Xu, Z. Copper(I)-catalyzed interrupted click reaction: synthesis of diverse 5-hetero-functionalized triazoles. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 649-653.
[http://dx.doi.org/10.1002/anie.201509124] [PMID: 26610884]
[32]
Wei, F.; Zhou, T.; Ma, Y.; Tung, C.H.; Xu, Z. Bench-stable 5-stannyl triazoles by a copper(I)-catalyzed interrupted click reaction: bridge to trifluoromethyltriazoles and trifluoromethylthiotriazoles. Org. Lett., 2017, 19(8), 2098-2101.
[http://dx.doi.org/10.1021/acs.orglett.7b00701] [PMID: 28387509]
[33]
Partyka, D.V.; Gao, L.; Teets, T.S.; Updegraff, J.B.; Deligonul, N.; Gray, T.G. Copper-catalyzed Huisgen [3 + 2] cycloaddition of gold(I) alkynyls with benzyl azide. Syntheses, structures, and optical properties. Organometallics, 2009, 28(21), 6171-6182.
[http://dx.doi.org/10.1021/om9005774]
[34]
Zhou, Y.; Lecourt, T.; Micouin, L. Direct synthesis of 1,4-disubstituted-5-alumino-1,2,3-triazoles: Copper-catalyzed cycloaddition of organic azides and mixed aluminum acetylides. Angew. Chem. Int. Ed. Engl., 2010, 49(14), 2607-2610.
[http://dx.doi.org/10.1002/anie.200907016] [PMID: 20198674]
[35]
Ding, S.; Jia, G.; Sun, J. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1877-1880.
[http://dx.doi.org/10.1002/anie.201309855] [PMID: 24474668]
[36]
Saraiva, M.T.; Diego de Souza, N.S.; Rodrigues, O.E.D.; Paixão, M.W.; Jacob, R.G.; Lenardão, E.J.; Diego Alves, G.P. Synthesis of [(arylselanyl)alkyl]-1,2,3-triazoles by copper-catalyzed 1,3-dipolar cycloaddition of (arylselanyl)alkynes with benzyl azides. Synthesis, 2012, 44(13), 1997-2004.
[http://dx.doi.org/10.1055/s-0031-1291135]
[37]
Luo, Q.; Jia, G.; Sun, J.; Lin, Z. Theoretical studies on the regioselectivity of iridium-catalyzed 1,3-dipolar azide-alkyne cycloaddition reactions. J. Org. Chem., 2014, 79(24), 11970-11980.
[http://dx.doi.org/10.1021/jo5018348] [PMID: 25222638]
[38]
Worrell, B.T.; Hein, J.E.; Fokin, V.V. Halogen exchange (Halex) reaction of 5-iodo-1,2,3-triazoles: Synthesis and applications of 5-fluorotriazoles. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11791-11794.
[http://dx.doi.org/10.1002/anie.201204979] [PMID: 23059856]
[39]
Yamamoto, K.; Bruun, T.; Kim, J.Y.; Zhang, L.; Lautens, M. A new multicomponent multicatalyst reaction (MC)2R: chemoselective cycloaddition and latent catalyst activation for the synthesis of fully substituted 1,2,3-triazoles. Org. Lett., 2016, 18(11), 2644-2647.
[http://dx.doi.org/10.1021/acs.orglett.6b00975] [PMID: 27213631]
[40]
Majireck, M.M.; Weinreb, S.M. A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes. J. Org. Chem., 2006, 71(22), 8680-8683.
[http://dx.doi.org/10.1021/jo061688m] [PMID: 17064059]
[41]
Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.
[http://dx.doi.org/10.1021/ja0749993] [PMID: 18570425]
[42]
Ito, S.; Satoh, A.; Nagatomi, Y.; Hirata, Y.; Suzuki, G.; Kimura, T.; Satow, A.; Maehara, S.; Hikichi, H.; Hata, M.; Kawamoto, H.; Ohta, H. Discovery and biological profile of 4-(1-aryltriazol-4-yl)-tetrahydropyridines as an orally active new class of metabotropic glutamate receptor 1 antagonist. Bioorg. Med. Chem., 2008, 16(22), 9817-9829.
[http://dx.doi.org/10.1016/j.bmc.2008.09.060] [PMID: 18849168]
[43]
Li, L.J.; Shang, T.P.; Ma, X.N.; Guo, H.Y.; Zhu, A.L.; Zhang, G.S. 4-Trimethylsilyl-5-iodo-1,2,3-triazole: a key precursor for the divergent syntheses of 1,5-disubstituted 1,2,3-triazoles. Synlett, 2015, 26(5), 695-699.
[http://dx.doi.org/10.1055/s-0034-1379970]
[44]
Janreddy, D.; Kavala, V.; Kuo, C.W.; Chen, W.C.; Ramesh, C.; Kotipalli, T.; Kuo, T.S.; Chen, M.L.; He, C.H.; Yao, C.F. Copper(I)-catalyzed aerobic oxidative azide-alkene cycloaddition: an efficient synthesis of substituted 1,2,3-triazoles. Adv. Synth. Catal., 2013, 355(14-15), 2918-2927.
[http://dx.doi.org/10.1002/adsc.201300344]
[45]
Xie, Y.Y.; Wang, Y.C.; Qu, H.E.; Tan, X.C.; Wang, H.S.; Pan, Y.M. Regioselective synthesis of β-aryl enaminones and 1,4,5- trisubstituted 1,2,3-triazoles from chalcones and benzyl azides. Adv. Synth. Catal., 2014, 356(16), 3347-3355.
[http://dx.doi.org/10.1002/adsc.201400315]
[46]
Shashank, A.B.; Karthik, S.; Madhavachary, R.; Ramachary, D.B. An enolate-mediated organocatalytic azide-ketone [3+2]-cycloaddition reaction: regioselective high-yielding synthesis of fully decorated 1,2,3-triazoles. Chemistry, 2014, 20(51), 16877-16881.
[http://dx.doi.org/10.1002/chem.201405501] [PMID: 25367870]
[47]
Li, W.; Du, Z.; Huang, J.; Jia, Q.; Zhang, K.; Wang, J. Direct access to 1,2,3-triazoles through organocatalytic 1,3-dipolar cycloaddition reaction of allyl ketones with azides. Green Chem., 2014, 16(6), 3003-3006.
[http://dx.doi.org/10.1039/C4GC00406J]
[48]
Ramachary, D.B.; Krishna, P.M.; Gujral, J.; Reddy, G.S. An organocatalytic regiospecific synthesis of 1,5-disubstituted 4-thio-1,2,3-triazoles and 1,5-disubstituted 1,2,3-triazoles. Chemistry, 2015, 21(47), 16775-16780.
[http://dx.doi.org/10.1002/chem.201503302] [PMID: 26444292]
[49]
Worrell, B.T.; Malik, J.A.; Fokin, V.V. Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science, 2013, 340(6131), 457-460.
[http://dx.doi.org/10.1126/science.1229506] [PMID: 23558174]
[50]
Malnuit, V.; Duca, M.; Manout, A.; Bougrin, K.; Benhida, R. Tandem azide-alkyne 1,3-dipolar cycloaddition/electrophilic addition: A concise three-component route to 4,5-disubstituted triazolyl-nucleosides. Synlett, 2009, 2009(13), 2123-2128.
[51]
Lim, J.Y.C.; Marques, I.; Félix, V.; Beer, P.D. Chiral halogen and chalcogen bonding receptors for discrimination of stereo- and geometric dicarboxylate isomers in aqueous media. Chem. Commun. (Camb.), 2018, 54(77), 10851-10854.
[http://dx.doi.org/10.1039/C8CC06400H] [PMID: 30199082]
[52]
Zhang, L.L.; Li, Y.T.; Gao, T.; Guo, S.S.; Yang, B.; Meng, Z.H.; Dai, Q.P.; Xu, Z.B.; Wu, Q.P. Efficient synthesis of diverse 5-thio- or 5-selenotriazoles: one-pot multicomponent reaction from elemental sulfur or selenium. Synthesis, 2019, 51(22), 4170-4182.
[http://dx.doi.org/10.1055/s-0039-1690618]
[53]
Zhang, L.L.; Meng, T.L.; Shen, L.L.; Wu, Q.P. Efficient synthesis of 5-trifluoromethylthio-1,2,3-triazoles: one-pot multicomponent reaction from elemental sulfur and TMSCF3. Synthesis, 2019.
[http://dx.doi.org/10.1055/s-0039-1690716]
[54]
Shen, Q.; Han, E.J.; Huang, Y.G.; Chen, Q.Y.; Guo, Y. Synthesis of fluorinated 1,4,5-substituted 1,2,3-triazoles by RuAAC reaction. Synthesis, 2015, 47(24), 3936-3946.
[http://dx.doi.org/10.1055/s-0035-1560352]
[55]
Destito, P.; Couceiro, J.R.; Faustino, H.; López, F.; Mascareñas, J.L. Ruthenium-catalyzed azide-thioalkyne cycloadditions in aqueous media: a mild, orthogonal, and biocompatible chemical ligation. Angew. Chem. Int. Ed. Engl., 2017, 56(36), 10766-10770.
[http://dx.doi.org/10.1002/anie.201705006] [PMID: 28685950]
[56]
Song, W.Z.; Zheng, N.; Li, M.; He, J.N.; Li, J.H.; Dong, K.; Ullah, K.; Zheng, Y.B. Rhodium(I)-catalyzed regioselective azide-internal alkynyl trifluoromethyl sulfide cycloaddition and azide-internal thioalkyne cycloaddition under mild conditions. Adv. Synth. Catal., 2019, 361(3), 469-475.
[http://dx.doi.org/10.1002/adsc.201801216]
[57]
Stefani, H.A.; Leal, D.M.; Manarin, F. 4-Organochalcogenoyl-1H-1,2,3-triazoles: synthesis and functionalization by a nickel-catalyzed Negishi cross-coupling reaction. Tetrahedron Lett., 2012, 53(48), 6495-6499.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.062]
[58]
Back, T.G.; Bethell, R.J.; Parvez, M.; Taylor, J.A.; Wehrli, D. Cycloaddition reactions of 1-phenylseleno-2-(p-toluenesulfonyl)ethyne. J. Org. Chem., 1999, 64(20), 7426-7432.
[http://dx.doi.org/10.1021/jo990730t]
[59]
Alazet, S.; Zimmer, L.; Billard, T. Base-catalyzed electrophilic trifluoromethylthiolation of terminal alkynes. Angew. Chem. Int. Ed. Engl., 2013, 52(41), 10814-10817.
[http://dx.doi.org/10.1002/anie.201305179] [PMID: 24038737]
[60]
Yamada, M.; Matsumura, M.; Takino, F.; Murata, Y.; Kurata, Y.; Kawahata, M.; Yamaguchi, K.; Kakusawa, N.; Yasuike, S.J. Synthesis of fully functionalized 5-selanyl-1,2,3-triazoles: copper-catalysed three-component reaction of ethynylstibanes, organic azides, and diaryl diselenides. Eur. J. Org. Chem., 2018, (2), 170-177.
[http://dx.doi.org/10.1002/ejoc.201701389]
[61]
Yamada, M.; Matsumura, M.; Sakaki, E.; Yen, S.Y.; Kawahata, M.; Hyodo, T.; Yamaguchi, K.; Murata, Y.; Yasuike, S.J. Copper-catalyzed three-component reaction of ethynylstibanes, organic azides, and selenium: A simple and efficient synthesis of novel selenides and diselenides having 1,2,3-triazole rings. Tetrahedron, 2019, 75(10), 1406-1414.
[http://dx.doi.org/10.1016/j.tet.2019.01.056]