Early Biomarkers for Severe Drug Hypersensitivity Reactions

Page: [3829 - 3839] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Drug hypersensitivity reactions (DHRs) are typically classified into immediate and delayed reactions based on the time interval between drug exposure and onset of symptoms. Clinical manifestations range from mild to severe and life-threatening reactions. The most severe clinical entities are anaphylaxis and anaphylactic shock for immediate reactions, and severe cutaneous adverse reactions such as Steven Johnson Syndrome and Toxic Epidermal Necrolysis for delayed reactions. The diagnosis is complex and challenging, as drug provocation tests and even skin tests can be very risky procedures, which makes them not recommended. Therefore, it is necessary to search for useful early biomarkers to manage the diagnosis of these reactions. These biomarkers could be useful to determine the clinical entity, but not to identify the culprit drug. Some of the currently available biomarkers are few genetic associations of drug allergy with polymorphisms of human leukocyte antigen (HLA), the detection of inflammatory and lipid mediators in serum, or the detection of cytokines, chemokines, and cytotoxic markers in skin biopsies. In this literature review, it has been summarize the immunological mechanisms involved in severe reactions, both immediate and delayed, and different early biomarkers: those currently used for the diagnosis of these reactions as well as possible early biomarkers that could be useful with further studies to standardize their clinical use.

Keywords: Drug hypersensitivity reactions, anaphylaxis, severe cutaneous allergic reactions, early biomarkers, immunological mechanisms, serum biomarkers, genetic biomarkers, biopsy biomarkers.

[1]
Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy 2019; 74(1): 14-27.
[http://dx.doi.org/10.1111/all.13562] [PMID: 30028512]
[2]
Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy 2016; 71(8): 1103-34.
[http://dx.doi.org/10.1111/all.12886] [PMID: 26991315]
[3]
Lieberman P, Garvey LH. Mast cells and anaphylaxis. Curr Allergy Asthma Rep 2016; 16(3): 20.
[http://dx.doi.org/10.1007/s11882-016-0598-5] [PMID: 26857018]
[4]
McNeil BD, Pundir P, Meeker S, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 2015; 519(7542): 237-41.
[http://dx.doi.org/10.1038/nature14022] [PMID: 25517090]
[5]
Subramanian H, Gupta K, Ali H. Roles of mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol 2016; 138(3): 700-10.
[http://dx.doi.org/10.1016/j.jaci.2016.04.051] [PMID: 27448446]
[6]
Greenberger PA, Ditto AM. Anaphylaxis. In: Allergy Asthma Proc 2012; 33(Suppl. 1): 80-3.
[7]
Simons FE. Anaphylaxis. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S161-81.
[http://dx.doi.org/10.1016/j.jaci.2009.12.981] [PMID: 20176258]
[8]
Sutton BJ, Gould HJ. The human IgE network. Nature 1993; 366(6454): 421-8.
[http://dx.doi.org/10.1038/366421a0] [PMID: 8247150]
[9]
Schnyder B, Pichler WJ. Mechanisms of drug-induced allergy. Mayo Clin Proc 2009; 84(3): 268-72.
[http://dx.doi.org/10.4065/84.3.268] [PMID: 19252115]
[10]
Simons FE. 9. Anaphylaxis. J Allergy Clin Immunol 2008; 121(2)(Suppl.): S402-7.
[http://dx.doi.org/10.1016/j.jaci.2007.08.061] [PMID: 18241691]
[11]
Williams KW, Sharma HP. Anaphylaxis and urticaria. Immunol Allergy Clin North Am 2015; 35(1): 199-219.
[http://dx.doi.org/10.1016/j.iac.2014.09.010] [PMID: 25459585]
[12]
Khan BQ, Kemp SF. Pathophysiology of anaphylaxis. Curr Opin Allergy Clin Immunol 2011; 11(4): 319-25.
[http://dx.doi.org/10.1097/ACI.0b013e3283481ab6] [PMID: 21659865]
[13]
Ono E, Taniguchi M, Mita H, et al. Increased production of cysteinyl leukotrienes and prostaglandin D2 during human anaphylaxis. Clin Exp Allergy 2009; 39(1): 72-80.
[http://dx.doi.org/10.1111/j.1365-2222.2008.03104.x] [PMID: 19128354]
[14]
Dvorak AM. Basophils and mast cells: piecemeal degranulation in situ and ex vivo: a possible mechanism for cytokine-induced function in disease. Immunol Ser 1992; 57: 169-271.
[PMID: 1504138]
[15]
Dvorak AM, MacGlashan DW Jr, Morgan ES, Lichtenstein LM. Vesicular transport of histamine in stimulated human basophils. Blood 1996; 88(11): 4090-101.
[http://dx.doi.org/10.1182/blood.V88.11.4090.4090] [PMID: 8943842]
[16]
Dvorak AM, Morgan ES, Lichtenstein LM, MacGlashan DW Jr. Activated human basophils contain histamine in cytoplasmic vesicles. Int Arch Allergy Immunol 1994; 105(1): 8-11.
[http://dx.doi.org/10.1159/000236796] [PMID: 8086832]
[17]
Dvorak AM, Warner JA, Kissell S, Lichtenstein LM, MacGlashan DW Jr. F-met peptide-induced degranulation of human basophils. Lab Invest 1991; 64(2): 234-53.
[PMID: 1705302]
[18]
Dvorak AM, Warner JA, Morgan E, Kissell-Rainville S, Lichtenstein LM, MacGlashan DW Jr. An ultrastructural analysis of tumor-promoting phorbol diester-induced degranulation of human basophils. Am J Pathol 1992; 141(6): 1309-22.
[PMID: 1466396]
[19]
MacGlashan D Jr. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clin Exp Allergy 2010; 40(9): 1365-77.
[http://dx.doi.org/10.1111/j.1365-2222.2010.03572.x] [PMID: 20633031]
[20]
MacGlashan D Jr. Marked differences in the signaling requirements for expression of CD203c and CD11b versus CD63 expression and histamine release in human basophils. Int Arch Allergy Immunol 2012; 159(3): 243-52.
[http://dx.doi.org/10.1159/000332150] [PMID: 22722613]
[21]
MacGlashan DW Jr. Basophil activation testing. J Allergy Clin Immunol 2013; 132(4): 777-87.
[http://dx.doi.org/10.1016/j.jaci.2013.06.038] [PMID: 23958648]
[22]
Fernández TD, Ariza A, Palomares F, et al. Hypersensitivity to fluoroquinolones: The expression of basophil activation markers depends on the clinical entity and the culprit fluoroquinolone. Medicine (Baltimore) 2016; 95(23)e3679
[http://dx.doi.org/10.1097/MD.0000000000003679] [PMID: 27281069]
[23]
Ben Said B, Berard F, Bienvenu J, Nicolas JF, Rozieres A. Usefulness of basophil activation tests for the diagnosis of IgE-mediated allergy to quinolones. Allergy 2010; 65(4): 535-6.
[http://dx.doi.org/10.1111/j.1398-9995.2009.02213.x] [PMID: 19845576]
[24]
Aranda A, Mayorga C, Ariza A, et al. In vitro evaluation of IgE-mediated hypersensitivity reactions to quinolones. Allergy 2011; 66(2): 247-54.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02460.x] [PMID: 20722637]
[25]
Munoz-Cano R, Picado C, Valero A, Bartra J. Mechanisms of anaphylaxis beyond IgE. J Investig Allergol Clin Immunol 2016; 26(2): 73-82.
[26]
Finkelman FD, Khodoun MV, Strait R. Human IgE-independent systemic anaphylaxis. J Allergy Clin Immunol 2016; 137(6): 1674-80.
[http://dx.doi.org/10.1016/j.jaci.2016.02.015] [PMID: 27130857]
[27]
Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol 2002; 109(4): 658-68.
[http://dx.doi.org/10.1067/mai.2002.123302] [PMID: 11941316]
[28]
Khodoun MV, Kucuk ZY, Strait RT, et al. Rapid desensitization of mice with anti-FcγRIIb/FcγRIII mAb safely prevents IgG-mediated anaphylaxis. J Allergy Clin Immunol 2013; 132(6): 1375-87.
[http://dx.doi.org/10.1016/j.jaci.2013.09.008] [PMID: 24139828]
[29]
Oettgen HC, Martin TR, Wynshaw-Boris A, Deng C, Drazen JM, Leder P. Active anaphylaxis in IgE-deficient mice. Nature 1994; 370(6488): 367-70.
[http://dx.doi.org/10.1038/370367a0] [PMID: 8047141]
[30]
Vassallo RR. Review: IgA anaphylactic transfusion reactions. Part I. Laboratory diagnosis, incidence, and supply of IgA-deficient products. Immunohematology 2004; 20(4): 226-33.
[PMID: 15679454]
[31]
Steenholdt C, Svenson M, Bendtzen K, Thomsen OO, Brynskov J, Ainsworth MA. Acute and delayed hypersensitivity reactions to infliximab and adalimumab in a patient with Crohn’s disease. J Crohn’s Colitis 2012; 6(1): 108-11.
[http://dx.doi.org/10.1016/j.crohns.2011.08.001] [PMID: 22261535]
[32]
Cheifetz A, Smedley M, Martin S, et al. The incidence and management of infusion reactions to infliximab: a large center experience. Am J Gastroenterol 2003; 98(6): 1315-24.
[http://dx.doi.org/10.1111/j.1572-0241.2003.07457.x] [PMID: 12818276]
[33]
Hedin H, Richter W, Messmer K, Renck H, Ljungström KG, Laubenthal H. Incidence, pathomechanism and prevention of dextran-induced anaphylactoid/anaphylactic reactions in man. Dev Biol Stand 1980; 48: 179-89.
[PMID: 6168503]
[34]
Umeda Y, Fukumoto Y, Miyauchi T, et al. [Anaphylactic shock related to aprotinin induced by anti-aprotinin immunoglobulin G antibody alone; report of a case] Kyobu Geka 2007; 60(1): 69-71.
[PMID: 17249542]
[35]
Bergamaschini L, Mannucci PM, Federici AB, Coppola R, Guzzoni S, Agostoni A. Posttransfusion anaphylactic reactions in a patient with severe von willebrand disease: role of complement and alloantibodies to von willebrand factor. J Lab Clin Med 1995; 125(3): 348-55.
[PMID: 7897302]
[36]
Schmidt AP, Taswell HF, Gleich GJ. Anaphylactic transfusion reactions associated with anti-IgA antibody. N Engl J Med 1969; 280(4): 188-93.
[http://dx.doi.org/10.1056/NEJM196901232800404] [PMID: 4177970]
[37]
Brown SG, Stone SF, Fatovich DM, et al. Anaphylaxis: clinical patterns, mediator release, and severity. J Allergy Clin Immunol 2013; 132: 1141-1149.e5.
[38]
Vadas P, Gold M, Perelman B, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 2008; 358(1): 28-35.
[http://dx.doi.org/10.1056/NEJMoa070030] [PMID: 18172172]
[39]
Vadas P, Perelman B, Liss G. Platelet-activating factor, histamine, and tryptase levels in human anaphylaxis. J Allergy Clin Immunol 2013; 131(1): 144-9.
[http://dx.doi.org/10.1016/j.jaci.2012.08.016] [PMID: 23040367]
[40]
Van Epps DE, Simpson SJ, Johnson R. Relationship of C5a receptor modulation to the functional responsiveness of human polymorphonuclear leukocytes to C5a. J Immunol 1993; 150(1): 246-52.
[PMID: 8417126]
[41]
Van Epps DE, Simpson SJ, Chenoweth DE. C5a and formyl peptide receptor regulation on human monocytes. J Leukoc Biol 1992; 51(4): 393-9.
[http://dx.doi.org/10.1002/jlb.51.4.393] [PMID: 1564402]
[42]
Füreder W, Agis H, Willheim M, et al. Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J Immunol 1995; 155(6): 3152-60.
[PMID: 7673728]
[43]
Skeie JM, Fingert JH, Russell SR, Stone EM, Mullins RF. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Invest Ophthalmol Vis Sci 2010; 51(10): 5336-42.
[http://dx.doi.org/10.1167/iovs.10-5322] [PMID: 20484595]
[44]
Guéant JL, Romano A, Cornejo-Garcia JA, et al. HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. J Allergy Clin Immunol 2015; 135(1): 253-9.
[http://dx.doi.org/10.1016/j.jaci.2014.07.047] [PMID: 25224099]
[45]
Wei CY, Lee MT, Chen YT. Pharmacogenomics of adverse drug reactions: implementing personalized medicine. Hum Mol Genet 2012; 21(R1): R58-65.
[http://dx.doi.org/10.1093/hmg/dds341] [PMID: 22907657]
[46]
Cornejo-García JA, Romano A, Guéant-Rodríguez RM, et al. A non-synonymous polymorphism in galectin-3 lectin domain is associated with allergic reactions to beta-lactam antibiotics. Pharmacogenomics J 2016; 16(1): 79-82.
[http://dx.doi.org/10.1038/tpj.2015.24] [PMID: 25869013]
[47]
Kowalski ML, Woszczek G, Bienkiewicz B, Mis M. Association of pyrazolone drug hypersensitivity with HLA-DQ and DR antigens. Clin Exp Allergy 1998; 28(9): 1153-8.
[http://dx.doi.org/10.1046/j.1365-2222.1998.00346.x] [PMID: 9761020]
[48]
García-Martín E, Esguevillas G, Blanca-López N, et al. Genetic determinants of metamizole metabolism modify the risk of developing anaphylaxis. Pharmacogenet Genomics 2015; 25(9): 462-4.
[http://dx.doi.org/10.1097/FPC.0000000000000157] [PMID: 26111152]
[49]
Kim JM, Park BL, Park SM, et al. Association analysis of N-acetyl transferase-2 polymorphisms with aspirin intolerance among asthmatics. Pharmacogenomics 2010; 11(7): 951-8.
[http://dx.doi.org/10.2217/pgs.10.65] [PMID: 20602614]
[50]
Agúndez JA, Mayorga C, García-Martin E. Drug metabolism and hypersensitivity reactions to drugs. Curr Opin Allergy Clin Immunol 2015; 15(4): 277-84.
[http://dx.doi.org/10.1097/ACI.0000000000000174] [PMID: 26110676]
[51]
Perkins JR, Acosta-Herrera M, Plaza-Serón MC, et al. Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharmacogenomics J 2019; 19(2): 191-9.
[http://dx.doi.org/10.1038/s41397-018-0038-0] [PMID: 30093714]
[52]
Lin RY, Schwartz LB, Curry A, et al. Histamine and tryptase levels in patients with acute allergic reactions: an emergency department-based study. J Allergy Clin Immunol 2000; 106(1 Pt 1): 65-71.
[http://dx.doi.org/10.1067/mai.2000.107600] [PMID: 10887307]
[53]
Keyzer JJ, de Monchy JG, van Doormaal JJ, van Voorst Vader PC. Improved diagnosis of mastocytosis by measurement of urinary histamine metabolites. N Engl J Med 1983; 309(26): 1603-5.
[http://dx.doi.org/10.1056/NEJM198312293092603] [PMID: 6646186]
[54]
Stephan V, Zimmermann A, Kühr J, Urbanek R. Determination of N-methylhistamine in urine as an indicator of histamine release in immediate allergic reactions. J Allergy Clin Immunol 1990; 86(6 Pt 1): 862-8.
[http://dx.doi.org/10.1016/S0091-6749(05)80147-2] [PMID: 1702126]
[55]
Kuruvilla M, Khan DA. Anaphylaxis to drugs. Immunol Allergy Clin North Am 2015; 35(2): 303-19.
[http://dx.doi.org/10.1016/j.iac.2015.01.008] [PMID: 25841553]
[56]
Schwartz LB. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am 2006; 26(3): 451-63.
[http://dx.doi.org/10.1016/j.iac.2006.05.010] [PMID: 16931288]
[57]
Garvey LH, Bech B, Mosbech H, et al. Effect of general anesthesia and orthopedic surgery on serum tryptase. Anesthesiology 2010; 112(5): 1184-9.
[http://dx.doi.org/10.1097/ALN.0b013e3181d40383] [PMID: 20395827]
[58]
Borer-Reinhold M, Haeberli G, Bitzenhofer M, et al. An increase in serum tryptase even below 11.4 ng/mL may indicate a mast cell-mediated hypersensitivity reaction: a prospective study in hymenoptera venom allergic patients. Clin Exp Allergy 2011; 41(12): 1777-83.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03848.x] [PMID: 22092437]
[59]
Simons FE, Frew AJ, Ansotegui IJ, et al. Risk assessment in anaphylaxis: current and future approaches. J Allergy Clin Immunol 2007; 120(1)(Suppl.): S2-S24.
[http://dx.doi.org/10.1016/j.jaci.2007.05.001] [PMID: 17602945]
[60]
Beck SC, Wilding T, Buka RJ, Baretto RL, Huissoon AP, Krishna MT. Biomarkers in Human Anaphylaxis: a critical appraisal of current evidence and perspectives. Front Immunol 2019; 10: 494.
[http://dx.doi.org/10.3389/fimmu.2019.00494] [PMID: 31024519]
[61]
Nishio H, Takai S, Miyazaki M, et al. Usefulness of serum mast cell-specific chymase levels for postmortem diagnosis of anaphylaxis. Int J Legal Med 2005; 119(6): 331-4.
[http://dx.doi.org/10.1007/s00414-005-0524-1] [PMID: 15735956]
[62]
Zhou X, Whitworth HS. M EK, Brown TA, et al. Mast cell chymase: a useful serum marker in anaphylaxis. J Allergy Clin Immunol 2011; 127: AB143.
[63]
Guo XJ, Wang YY, Zhang HY, Jin QQ, Gao CR. Mast cell tryptase and carboxypeptidase A expression in body fluid and gastrointestinal tract associated with drug-related fatal anaphylaxis. World J Gastroenterol 2015; 21(47): 13288-93.
[http://dx.doi.org/10.3748/wjg.v21.i47.13288] [PMID: 26715811]
[64]
Buckley MG, He S, He Y, Goda S, Gelnar J, Walls AF. Carboxypeptidase as a marker of mast cell heterogeneity in human tissues. J Allergy Clin Immunol 2006; 117(2)(Suppl.): S69.
[http://dx.doi.org/10.1016/j.jaci.2005.12.278]
[65]
Zhou XY, Buckley MG, Lau LC, Summers C, Pumphrey RSH, Walls AF. Mast cell carboxypeptidase as a new clinical marker for anaphylaxis. J Allergy Clin Immunol 2006; 117(2)(Suppl.): S85.
[http://dx.doi.org/10.1016/j.jaci.2005.12.342]
[66]
Korosec P, Turner PJ, Silar M, et al. Basophils, high-affinity IgE receptors, and CCL2 in human anaphylaxis. J Allergy Clin Immunol 2017; 140: 750-758.e15.
[67]
Vantur R, Koren A, Erzen R, Kosnik M, Korosec P. CCL2 and severe anaphylaxis. Allergy 2018; 73: 315.
[68]
Torres MJ, Salas M, Ariza A, Fernández TD. Understanding the mechanisms in accelerated drug reactions. Curr Opin Allergy Clin Immunol 2016; 16(4): 308-14.
[http://dx.doi.org/10.1097/ACI.0000000000000285] [PMID: 27285487]
[69]
Romano A, Torres MJ, Castells M, Sanz ML, Blanca M. Diagnosis and management of drug hypersensitivity reactions. J Allergy Clin Immunol 2011; 127(3)(Suppl.): S67-73.
[http://dx.doi.org/10.1016/j.jaci.2010.11.047] [PMID: 21354502]
[70]
Mayorga C, Sanz ML, Gamboa P, Garcia-Aviles MC, Fernandez J, Torres MJ. Spanish society of a, clinical, immunology, immunology, drug allergy C. In vitro methods for diagnosing nonimmediate hypersensitivity reactions to drugs. J Investig Allergol Clin Immunol 2013; 23: 213-25.
[71]
Su SC, Hung SI, Fan WL, Dao RL, Chung WH. Severe cutaneous adverse reactions: the pharmacogenomics from research to clinical implementation. Int J Mol Sci 2016; 17(11): 17.
[http://dx.doi.org/10.3390/ijms17111890] [PMID: 27854302]
[72]
Roujeau JC, Bioulac-Sage P, Bourseau C, et al. Acute generalized exanthematous pustulosis. Analysis of 63 cases. Arch Dermatol 1991; 127(9): 1333-8.
[http://dx.doi.org/10.1001/archderm.1991.01680080069004] [PMID: 1832534]
[73]
Britschgi M, Pichler WJ. Acute generalized exanthematous pustulosis, a clue to neutrophil-mediated inflammatory processes orchestrated by T cells. Curr Opin Allergy Clin Immunol 2002; 2(4): 325-31.
[http://dx.doi.org/10.1097/00130832-200208000-00006] [PMID: 12130947]
[74]
Padial MA, Alvarez-Ferreira J, Tapia B, et al. Acute generalized exanthematous pustulosis associated with pseudoephedrine. Br J Dermatol 2004; 150(1): 139-42.
[http://dx.doi.org/10.1111/j.1365-2133.2004.05717.x] [PMID: 14746629]
[75]
Schaerli P, Britschgi M, Keller M, et al. Characterization of human T cells that regulate neutrophilic skin inflammation. J Immunol 2004; 173(3): 2151-8.
[http://dx.doi.org/10.4049/jimmunol.173.3.2151] [PMID: 15265952]
[76]
Homey B, Alenius H, Müller A, et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002; 8(2): 157-65.
[http://dx.doi.org/10.1038/nm0202-157] [PMID: 11821900]
[77]
Halevy S. Acute generalized exanthematous pustulosis. Curr Opin Allergy Clin Immunol 2009; 9(4): 322-8.
[http://dx.doi.org/10.1097/ACI.0b013e32832cf64e] [PMID: 19458527]
[78]
Kabashima R, Sugita K, Sawada Y, Hino R, Nakamura M, Tokura Y. Increased circulating Th17 frequencies and serum IL-22 levels in patients with acute generalized exanthematous pustulosis. J Eur Acad Dermatol Venereol 2011; 25(4): 485-8.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03771.x] [PMID: 20569282]
[79]
Husain Z, Reddy BY, Schwartz RA. DRESS syndrome: part I. clinical perspectives. J Am Acad Dermatol 2013; 68(693): e1-e14.
[80]
Roujeau JC. Clinical heterogeneity of drug hypersensitivity. Toxicology 2005; 209(2): 123-9.
[http://dx.doi.org/10.1016/j.tox.2004.12.022] [PMID: 15767024]
[81]
Neuman M, Nicar M. Apoptosis in ibuprofen-induced stevens-johnson syndrome. Transl Res 2007; 149(5): 254-9.
[http://dx.doi.org/10.1016/j.trsl.2006.12.005] [PMID: 17466924]
[82]
Torres MJ, Mayorga C, Fernández TD, et al. T cell assessment in allergic drug reactions during the acute phase according to the time of occurrence. Int J Immunopathol Pharmacol 2006; 19(1): 119-30.
[PMID: 16569350]
[83]
Tapia B, Padial A, Sánchez-Sabaté E, et al. Involvement of CCL27-CCR10 interactions in drug-induced cutaneous reactions. J Allergy Clin Immunol 2004; 114(2): 335-40.
[http://dx.doi.org/10.1016/j.jaci.2004.04.034] [PMID: 15316512]
[84]
Mayorga C, Torres MJ, Corzo JL, et al. Improvement of toxic epidermal necrolysis after the early administration of a single high dose of intravenous immunoglobulin. Ann Allergy Asthma Immunol 2003; 91(1): 86-91.
[http://dx.doi.org/10.1016/S1081-1206(10)62065-0] [PMID: 12877456]
[85]
Abe R, Shimizu T, Shibaki A, Nakamura H, Watanabe H, Shimizu H. Toxic epidermal necrolysis and stevens-johnson syndrome are induced by soluble fas ligand. Am J Pathol 2003; 162(5): 1515-20.
[http://dx.doi.org/10.1016/S0002-9440(10)64284-8] [PMID: 12707034]
[86]
Lowin B, Peitsch MC, Tschopp J. Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr Top Microbiol Immunol 1995; 198: 1-24.
[http://dx.doi.org/10.1007/978-3-642-79414-8_1] [PMID: 7774276]
[87]
Chung WH, Hung SI, Yang JY, et al. Granulysin is a key mediator for disseminated keratinocyte death in stevens-johnson syndrome and toxic epidermal necrolysis. Nat Med 2008; 14(12): 1343-50.
[http://dx.doi.org/10.1038/nm.1884] [PMID: 19029983]
[88]
Hogg AE, Bowick GC, Herzog NK, Cloyd MW, Endsley JJ. Induction of granulysin in CD8+ T cells by IL-21 and IL-15 is suppressed by human immunodeficiency virus-1. J Leukoc Biol 2009; 86(5): 1191-203.
[http://dx.doi.org/10.1189/jlb.0409222] [PMID: 19687290]
[89]
Ju C. Immunological mechanisms of drug-induced liver injury. Curr Opin Drug Discov Devel 2005; 8(1): 38-43.
[PMID: 15679170]
[90]
Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 2005; 4(6): 489-99.
[http://dx.doi.org/10.1038/nrd1750] [PMID: 15931258]
[91]
Watkins PB, Seeff LB. Drug-induced liver injury: summary of a single topic clinical research conference. Hepatology 2006; 43(3): 618-31.
[http://dx.doi.org/10.1002/hep.21095] [PMID: 16496329]
[92]
El-Ghaiesh S, Sanderson JP, Farrell J, et al. Characterization of drug-specific lymphocyte responses in a patient with drug-induced liver injury. J Allergy Clin Immunol 2011; 128(3): 680-3.
[http://dx.doi.org/10.1016/j.jaci.2011.04.031] [PMID: 21596425]
[93]
Tomioka R, King TE Jr. Gold-induced pulmonary disease: clinical features, outcome, and differentiation from rheumatoid lung disease. Am J Respir Crit Care Med 1997; 155(3): 1011-20.
[http://dx.doi.org/10.1164/ajrccm.155.3.9116980] [PMID: 9116980]
[94]
Matsuno O. Drug-induced interstitial lung disease: mechanisms and best diagnostic approaches. Respir Res 2012; 13: 39.
[http://dx.doi.org/10.1186/1465-9921-13-39] [PMID: 22651223]
[95]
Spanou Z, Keller M, Britschgi M, et al. Involvement of drug-specific T cells in acute drug-induced interstitial nephritis. J Am Soc Nephrol 2006; 17(10): 2919-27.
[http://dx.doi.org/10.1681/ASN.2006050418] [PMID: 16943303]
[96]
Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for stevens-johnson syndrome. Nature 2004; 428(6982): 486.
[http://dx.doi.org/10.1038/428486a] [PMID: 15057820]
[97]
Man CB, Kwan P, Baum L, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in han chinese. Epilepsia 2007; 48(5): 1015-8.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01022.x] [PMID: 17509004]
[98]
Chang CC, Too CL, Murad S, Hussein SH. Association of HLA-B*1502 allele with carbamazepine-induced toxic epidermal necrolysis and stevens-johnson syndrome in the multi-ethnic malaysian population. Int J Dermatol 2011; 50(2): 221-4.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04745.x] [PMID: 21244392]
[99]
Locharernkul C, Loplumlert J, Limotai C, et al. Carbamazepine and phenytoin induced stevens-johnson syndrome is associated with HLA-B*1502 allele in thai population. Epilepsia 2008; 49(12): 2087-91.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01719.x] [PMID: 18637831]
[100]
McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in europeans. N Engl J Med 2011; 364(12): 1134-43.
[http://dx.doi.org/10.1056/NEJMoa1013297] [PMID: 21428769]
[101]
Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in japanese population. Hum Mol Genet 2011; 20(5): 1034-41.
[http://dx.doi.org/10.1093/hmg/ddq537] [PMID: 21149285]
[102]
Kaniwa N, Saito Y, Aihara M, et al. HLA-B locus in japanese patients with anti-epileptics and allopurinol-related stevens-johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 2008; 9(11): 1617-22.
[http://dx.doi.org/10.2217/14622416.9.11.1617] [PMID: 19018717]
[103]
Hung SI, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 2005; 102(11): 4134-9.
[http://dx.doi.org/10.1073/pnas.0409500102] [PMID: 15743917]
[104]
Tassaneeyakul W, Jantararoungtong T, Chen P, et al. Strong association between HLA-B*5801 and allopurinol-induced stevens-johnson syndrome and toxic epidermal necrolysis in a thai population. Pharmacogenet Genomics 2009; 19(9): 704-9.
[http://dx.doi.org/10.1097/FPC.0b013e328330a3b8] [PMID: 19696695]
[105]
Lonjou C, Borot N, Sekula P, et al. A european study of HLA-B in stevens-johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008; 18(2): 99-107.
[http://dx.doi.org/10.1097/FPC.0b013e3282f3ef9c] [PMID: 18192896]
[106]
Zhang FR, Liu H, Irwanto A, et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N Engl J Med 2013; 369(17): 1620-8.
[http://dx.doi.org/10.1056/NEJMoa1213096] [PMID: 24152261]
[107]
Kaniwa N, Saito Y, Aihara M, et al. HLA-B*1511 is a risk factor for carbamazepine-induced stevens-johnson syndrome and toxic epidermal necrolysis in japanese patients. Epilepsia 2010; 51(12): 2461-5.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02766.x] [PMID: 21204807]
[108]
Hung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16(4): 297-306.
[http://dx.doi.org/10.1097/01.fpc.0000199500.46842.4a] [PMID: 16538176]
[109]
Hung SI, Chung WH, Liu ZS, et al. Common risk allele in aromatic antiepileptic-drug induced stevens-johnson syndrome and toxic epidermal necrolysis in han chinese. Pharmacogenomics 2010; 11(3): 349-56.
[http://dx.doi.org/10.2217/pgs.09.162] [PMID: 20235791]
[110]
Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002; 359(9308): 727-32.
[http://dx.doi.org/10.1016/S0140-6736(02)07873-X] [PMID: 11888582]
[111]
Clare KE, Miller MH, Dillon JF. Genetic factors influencing drug-induced liver injury: do they have a role in prevention and diagnosis? Curr Hepatol Rep 2017; 16(3): 258-64.
[http://dx.doi.org/10.1007/s11901-017-0363-9] [PMID: 28856081]
[112]
Kim SH, Kim M, Lee KW, et al. HLA-B*5901 is strongly associated with methazolamide-induced stevens-johnson syndrome/toxic epidermal necrolysis. Pharmacogenomics 2010; 11(6): 879-84.
[http://dx.doi.org/10.2217/pgs.10.54] [PMID: 20504258]
[113]
Chen P, Lin JJ, Lu CS, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in taiwan. N Engl J Med 2011; 364(12): 1126-33.
[http://dx.doi.org/10.1056/NEJMoa1009717] [PMID: 21428768]
[114]
Chen Z, Liew D, Kwan P. Effects of a HLA-B*15:02 screening policy on antiepileptic drug use and severe skin reactions. Neurology 2014; 83(22): 2077-84.
[http://dx.doi.org/10.1212/WNL.0000000000001034] [PMID: 25355835]
[115]
Yang CY, Chen CH, Deng ST, et al. Allopurinol use and risk of fatal hypersensitivity reactions: a nationwide population-based study in taiwan. JAMA Intern Med 2015; 175(9): 1550-7.
[http://dx.doi.org/10.1001/jamainternmed.2015.3536] [PMID: 26193384]
[116]
Karlin E, Phillips E. Genotyping for severe drug hypersensitivity. Curr Allergy Asthma Rep 2014; 14(3): 418.
[http://dx.doi.org/10.1007/s11882-013-0418-0] [PMID: 24429903]
[117]
Hammond TG, Meng X, Jenkins RE, et al. Mass spectrometric characterization of circulating covalent protein adducts derived from a drug acyl glucuronide metabolite: multiple albumin adductions in diclofenac patients. J Pharmacol Exp Ther 2014; 350(2): 387-402.
[http://dx.doi.org/10.1124/jpet.114.215079] [PMID: 24902585]
[118]
Ciccacci C, Di Fusco D, Marazzi MC, et al. Association between CYP2B6 polymorphisms and nevirapine-induced SJS/TEN: a pharmacogenetics study. Eur J Clin Pharmacol 2013; 69(11): 1909-16.
[http://dx.doi.org/10.1007/s00228-013-1549-x] [PMID: 23774940]
[119]
Perkins JR, Ariza A, Blanca M, Fernández TD. Tests for evaluating non-immediate allergic drug reactions. Expert Rev Clin Immunol 2014; 10(11): 1475-86.
[http://dx.doi.org/10.1586/1744666X.2014.966691] [PMID: 25300560]
[120]
Cornejo-Garcia JA, Fernandez TD, Torres MJ, et al. Differential cytokine and transcription factor expression in patients with allergic reactions to drugs. Allergy 2007; 62(12): 1429-38.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01542.x] [PMID: 17983377]
[121]
Torres MJ, Corzo JL, Leyva L, et al. Differences in the immunological responses in drug- and virus-induced cutaneous reactions in children. Blood Cells Mol Dis 2003; 30(1): 124-31.
[http://dx.doi.org/10.1016/S1079-9796(03)00004-4] [PMID: 12667995]
[122]
Fernandez TD, Mayorga C, Torres MJ, et al. Cytokine and chemokine expression in the skin from patients with maculopapular exanthema to drugs. Allergy 2008; 63(6): 712-9.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01607.x] [PMID: 18384452]
[123]
Morel E, Alvarez L, Cabañas R, et al. Expression of α-defensin 1-3 in T cells from severe cutaneous drug-induced hypersensitivity reactions. Allergy 2011; 66(3): 360-7.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02484.x] [PMID: 20880148]
[124]
Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med 2003; 139(8): 683-93.
[http://dx.doi.org/10.7326/0003-4819-139-8-200310210-00012] [PMID: 14568857]
[125]
Mauri-Hellweg D, Bettens F, Mauri D, Brander C, Hunziker T, Pichler WJ. Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J Immunol 1995; 155(1): 462-72.
[PMID: 7602118]
[126]
Posadas SJ, Padial A, Torres MJ, et al. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J Allergy Clin Immunol 2002; 109(1): 155-61.
[http://dx.doi.org/10.1067/mai.2002.120563] [PMID: 11799383]
[127]
Yawalkar N, Egli F, Hari Y, Nievergelt H, Braathen LR, Pichler WJ. Infiltration of cytotoxic T cells in drug-induced cutaneous eruptions. Clin Exp Allergy 2000; 30(6): 847-55.
[http://dx.doi.org/10.1046/j.1365-2222.2000.00847.x] [PMID: 10848903]
[128]
Saito N, Abe R, Yoshioka N, Murata J, Fujita Y, Shimizu H. Prolonged elevation of serum granulysin in drug-induced hypersensitivity syndrome. Br J Dermatol 2012; 167(2): 452-3.
[http://dx.doi.org/10.1111/j.1365-2133.2012.10921.x] [PMID: 22384988]
[129]
Chung WH, Pan RY, Chu MT, et al. Oxypurinol-specific T cells possess preferential tcr clonotypes and express granulysin in allopurinol-induced severe cutaneous adverse reactions. J Invest Dermatol 2015; 135(9): 2237-48.
[http://dx.doi.org/10.1038/jid.2015.165] [PMID: 25946710]
[130]
Clarke JI, Brillanf N, Antoine DJ. Novel circulating- and imaging-based biomarkers to enhance the mechanistic understanding of human drug-induced liver injury. J Clin Transl Res 2017; 3(1): 199-211.
[PMID: 30873474]
[131]
Holman NS, Mosedale M, Wolf KK, LeCluyse EL, Watkins PB. Subtoxic alterations in hepatocyte-derived exosomes: an early step in drug-induced liver injury? Toxicol Sci 2016; 151(2): 365-75.
[http://dx.doi.org/10.1093/toxsci/kfw047] [PMID: 26962055]
[132]
Ward J, Kanchagar C, Veksler-Lublinsky I, et al. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci USA 2014; 111(33): 12169-74.
[http://dx.doi.org/10.1073/pnas.1412608111] [PMID: 25092309]
[133]
Vliegenthart AD, Shaffer JM, Clarke JI, et al. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci Rep 2015; 5: 15501.
[http://dx.doi.org/10.1038/srep15501] [PMID: 26489516]
[134]
Bonkovsky HL, Barnhart HX, Foureau DM, et al. Cytokine profiles in acute liver injury-results from the US drug-induced liver injury network (DILIN) and the acute liver failure study group. PLoS One 2018; 13(10)e0206389
[http://dx.doi.org/10.1371/journal.pone.0206389] [PMID: 30359443]