The Regulation of Target Genes by Co-occupancy of Transcription Factors, c-Myc and Mxi1 with Max in the Mouse Cell Line

Page: [581 - 588] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The regulatory function of transcription factors on genes is not only related to the location of binding genes and its related functions, but is also related to the methods of binding.

Objective: It is necessary to study the regulation effects in different binding methods on target genes.

Methods: In this study, we provided a reliable theoretical basis for studying gene expression regulation of co-binding transcription factors and further revealed the specific regulation of transcription factor co-binding in cancer cells.

Results: Transcription factors tend to combine with other transcription factors in the regulatory region to form a competitive or synergistic relationship to regulate target genes accurately.

Conclusion: We found that up-regulated genes in cancer cells were involved in the regulation of their own immune system related to the normal cells.

Keywords: Co-binding, transcription factor, target genes, synergistic, immunity system, cancer cells.

Graphical Abstract

[1]
Cascón A, Robledo M. MAX and MYC: a heritable breakup. Cancer Res 2012; 72(13): 3119-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3891] [PMID: 22706201]
[2]
He A, Kong SW, Ma Q, Pu WT. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci USA 2011; 108(14): 5632-7.
[http://dx.doi.org/10.1073/pnas.1016959108] [PMID: 21415370]
[3]
Wechsler DS, Shelly CA, Petroff CA, Dang CV. MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Cancer Res 1997; 57(21): 4905-12.
[PMID: 9354456]
[4]
Jung LA, Gebhardt A, Koelmel W, et al. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 2017; 36(14): 1911-1924, 1.
[http://dx.doi.org/10.1038/onc.2016.354 ] [PMID: 27748763]
[5]
Habringer S1 Nilsson JA2, Keller U. Pathogenesis and therapeutic targeting of aberrant MYC expression in hematological cancers. Br J Haematol 2017; 179(5): 724-38.
[http://dx.doi.org/10.1111/bjh.14917] [PMID: 29171017]
[6]
Zervos AS, Gyuris J, Brent R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 1993; 72(2): 223-32.
[http://dx.doi.org/10.1016/0092-8674(93)90662-A] [PMID: 8425219]
[7]
Wu S, Peña A, Korcz A, Soprano DR, Soprano KJ. Overexpression of Mxi1 inhibits the induction of the human ornithine decarboxylase gene by the Myc/Max protein complex. Oncogene 1996; 12(3): 621-9.
[PMID: 8637719]
[8]
Romero OA, Torres-Diz M, Pros E, et al. MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov 2014; 4(3): 292-303.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0799] [PMID: 24362264]
[9]
Benary M, Kroeger S, Lee Y, Lehmann R. cobindR: Finding cooccuring motifs of transcription factor binding sites. Rpackage version2013.
[10]
Kato M, Hata N, Banerjee N, Futcher B, Zhang MQ. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol 2004; 5(8): R56.
[http://dx.doi.org/10.1186/gb-2004-5-8-r56] [PMID: 15287978]
[11]
Ouyang Z, Zhou Q, Wong WH. ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc Natl Acad Sci USA 2009; 106(51): 21521-6.
[http://dx.doi.org/10.1073/pnas.0904863106] [PMID: 19995984]
[12]
Liu L, Zhao W, Zhou X. Modeling co-occupancy of transcription factors using chromatin features. Nucleic Acids Res 2016; 44(5): e49-9.
[http://dx.doi.org/10.1093/nar/gkv1281] [PMID: 26590261]
[13]
Wang S, Sun H, Ma J, et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc 2013; 8(12): 2502-15.
[http://dx.doi.org/10.1038/nprot.2013.150] [PMID: 24263090]
[14]
Zhang HM, Liu T, Liu CJ, et al. AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res 2015; 43(Database issue): D76-81.
[http://dx.doi.org/10.1093/nar/gku887] [PMID: 25262351]
[15]
Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res 2019; 47(D1): D33-8.
[http://dx.doi.org/10.1093/nar/gky822] [PMID: 30204897]
[16]
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5(7): 621-8.
[http://dx.doi.org/10.1038/nmeth.1226] [PMID: 18516045]
[17]
Zhang LQ, Li QZ, Su WX, Jin W. Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells. Biosystems 2016; 150: 92-8.
[http://dx.doi.org/10.1016/j.biosystems.2016.08.011] [PMID: 27566050]
[18]
Su WX, Li QZ, Zhang LQ, et al. Gene expression classification using epigenetic features and DNA sequence composition in the human embryonic stem cell line H1. Gene 2016; 592(1): 227-34.
[http://dx.doi.org/10.1016/j.gene.2016.07.059] [PMID: 27468948]
[19]
Zhang LQ, Li QZ. Estimating the effects of transcription factors binding and histone modifications on gene expression levels in human cells. Oncotarget 2017; 8(25): 40090-103.
[http://dx.doi.org/10.18632/oncotarget.16988] [PMID: 28454114]
[20]
Chen H, Li H, Liu F, et al. An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape. Sci Rep 2015; 5: 8465.
[http://dx.doi.org/10.1038/srep08465] [PMID: 25682954]
[21]
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841-2.
[http://dx.doi.org/10.1093/bioinformatics/btq033] [PMID: 20110278]
[22]
Cheng C, Alexander R, Min R, et al. Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome Res 2012; 22(9): 1658-67.
[http://dx.doi.org/10.1101/gr.136838.111] [PMID: 22955978]
[23]
Oh YM, Kim JK, Choi S, Yoo JY. Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices. Nucleic Acids Res 2012; 40(5)e38
[http://dx.doi.org/10.1093/nar/gkr1252] [PMID: 22187154]
[24]
Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc 2012; 7(9): 1728-40.
[http://dx.doi.org/10.1038/nprot.2012.101] [PMID: 22936215]
[25]
Chen TW, Li HP, Lee CC, et al. ChIPseek, a web-based analysis tool for ChIP data. BMC Genomics 2014; 15: 539.
[http://dx.doi.org/10.1186/1471-2164-15-539] [PMID: 24974934]
[26]
Whitfield TW, Wang J, Collins PJ, et al. Functional analysis of transcription factor binding sites in human promoters. Genome Biol 2012; 13(9): R50.
[http://dx.doi.org/10.1186/gb-2012-13-9-r50] [PMID: 22951020]
[27]
Grummt I, Rosenbauer H, Niedermeyer I, Maier U, Ohrlein A. A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 1986; 45(6): 837-46.
[http://dx.doi.org/10.1016/0092-8674(86)90558-1] [PMID: 3458534]
[28]
Bailey TL, Boden M, Buske FA, et al. MEME SUITE: tools for motif discovery and searching Nucleic Acids Res 2009; 37(Web Server issue): W202-8.
[http://dx.doi.org/10.1093/nar/gkp335] [PMID: 19458158]
[29]
Kumar S, Bucher P. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features. BMC Bioinformatics 2016; 17(S1): 41-50.
[http://dx.doi.org/10.1186/s12859-015-0846-z] [PMID: 26818008]
[30]
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics 2011; 27(7): 1017-8.
[http://dx.doi.org/10.1093/bioinformatics/btr064] [PMID: 21330290]
[31]
Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 2014; 39(9): 381-99.
[http://dx.doi.org/10.1016/j.tibs.2014.07.002] [PMID: 25129887]
[32]
Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447(7143): 407-12.
[http://dx.doi.org/10.1038/nature05915] [PMID: 17522673]
[33]
GuhaThakurta D, Stormo GD. Identifying target sites for cooperatively binding factors. Bioinformatics 2001; 17(7): 608-21.
[http://dx.doi.org/10.1093/bioinformatics/17.7.608] [PMID: 11448879]
[34]
Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 1996; 24(1): 238-41.
[http://dx.doi.org/10.1093/nar/24.1.238] [PMID: 8594589]
[35]
Cheng C, Gerstein M. Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells. Nucleic Acids Res 2012; 40(2): 553-68.
[http://dx.doi.org/10.1093/nar/gkr752] [PMID: 21926158]
[36]
Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 2006; 7: 29-59.
[http://dx.doi.org/10.1146/annurev.genom.7.080505.115623] [PMID: 16719718]
[37]
Huang DW, Sherman BT, Tan Q, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists Nucleic Acids Res 2007; 35 (Web Server issue)W169-75
[http://dx.doi.org/10.1093/nar/gkm415] [PMID: 17576678]
[38]
Ashburner M, Ball CA, Blake JA, et al. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]