Release Kinetics of Nicotine Loaded onto Mesoporous Silicate Materials for Use in Nicotine Replacement Therapy

Page: [951 - 958] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Objective: In this work, the loading of nicotine onto mesoporous silicate materials and its release into a phosphate buffer solution at 37°C were investigated.

Methods: The mesoporous silicate materials designated as MCM-41 were prepared with different pore sizes via using alkyltrimethylammonium bromide surfactants with different alkyl chain lengths of carbon atoms 12, 14, and 16. The mesoporous silicate systems were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), N2-adsorption–desorption isotherms, and FT-IR spectroscopy.

Results: Loading of nicotine was confirmed by FTIR and thermal gravimetric analysis and was determined by High-Performance Liquid Chromatography (HPLC).

Conclusion: A slight increase in loading capacity with increasing pore size was observed, with a loading capacity of about 17% for MCM-41(16). The release of nicotine was monitored by HPLC and was almost complete for MCM-41(14) and MCM-41(16) in 8 h.

Keywords: Nicotine, MCM-41, mesoporous materials, drug delivery, HPLC, FTIR, NRT.

Graphical Abstract

[1]
Warren, G.W.; Singh, A.K. Nicotine and lung cancer. J. Carcinog., 2013, 12, 1-8.
[http://dx.doi.org/10.4103/1477-3163.106680] [PMID: 23599683]
[2]
Little, M.A.; Ebbert, J.O. The safety of treatments for tobacco use disorder. Expert Opin. Drug Saf., 2016, 15(3), 333-341.
[http://dx.doi.org/10.1517/14740338.2016.1131817] [PMID: 26715118]
[3]
Govind, A.P.; Vezina, P.; Green, W.N. Nicotine-induced upregulation of nicotinic receptors: Underlying mechanisms and relevance to nicotine addiction. Biochem. Pharmacol., 2009, 78(7), 756-765.
[http://dx.doi.org/10.1016/j.bcp.2009.06.011] [PMID: 19540212]
[4]
Zaparoli, J.X.; Galduróz, J.C. Treatment for tobacco smoking: A new alternative? Med. Hypotheses, 2012, 79(6), 867-868.
[http://dx.doi.org/10.1016/j.mehy.2012.09.009] [PMID: 23046856]
[5]
Doolittle, D.J.; Winegar, R.; Lee, C.K.; Caldwell, W.S.; Hayes, A.W.; de Bethizy, J.D. The genotoxic potential of nicotine and its major metabolites. Mutat. Res., 1995, 344(3-4), 95-102.
[http://dx.doi.org/10.1016/0165-1218(95)00037-2] [PMID: 7491133]
[6]
Yildiz, D. Nicotine, its metabolism and an overview of its biological effects. Toxicon, 2004, 43(6), 619-632.
[http://dx.doi.org/10.1016/j.toxicon.2004.01.017] [PMID: 15109883]
[7]
Cummings, K.M.; Giovino, G.; Jaén, C.R.; Emrich, L.J. Reports of smoking withdrawal symptoms over a 21 day period of abstinence. Addict. Behav., 1985, 10(4), 373-381.
[http://dx.doi.org/10.1016/0306-4603(85)90034-6] [PMID: 4091070]
[8]
Handa, S. [Nicotine replacement therapy]. Nihon Rinsho, 2013, 71(3), 482-486.
[PMID: 23631240]
[9]
Hartmann-Boyce, J.; Chepkin, S.C.; Ye, W.; Bullen, C.; Lancaster, T. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst. Rev, 2018, 5, CD000146.
[http://dx.doi.org/10.1002/14651858.CD000146.pub5] [PMID: 29852054]
[10]
Nair, M.K.; Chetty, D.J.; Ho, H.; Chien, Y.W. Biomembrane permeation of nicotine: Mechanistic studies with porcine mucosae and skin. J. Pharm. Sci., 1997, 86(2), 257-262.
[http://dx.doi.org/10.1021/js960095w] [PMID: 9040106]
[11]
Robson, N. Nicotine-replacement therapy: A proven treatment for cessation. S. Afr. Fam. Pract., 2010, 52, 298-303.
[http://dx.doi.org/10.1080/20786204.2010.10873993]
[12]
Cheng, Y.H.; Watts, P.; Hinchcliffe, M.; Hotchkiss, R.; Nankervis, R.; Faraj, N.F.; Smith, A.; Davis, S.S.; Illum, L. Development of a novel nasal nicotine formulation comprising an optimal pulsatile and sustained plasma nicotine profile for smoking cessation. J. Control. Release, 2002, 79(1-3), 243-254.
[http://dx.doi.org/10.1016/S0168-3659(01)00553-3] [PMID: 11853935]
[13]
Park, C.R.; Munday, D.L. Development and evaluation of a biphasic buccal adhesive tablet for nicotine replacement therapy. Int. J. Pharm., 2002, 237(1-2), 215-226.
[http://dx.doi.org/10.1016/S0378-5173(02)00041-8] [PMID: 11955819]
[14]
Mihranyan, A.; Andersson, S.B.; Ek, R. Sorption of nicotine to cellulose powders. Eur. J. Pharm. Sci., 2004, 22(4), 279-286.
[http://dx.doi.org/10.1016/j.ejps.2004.03.012] [PMID: 15196584]
[15]
Ìkinci, G.; Senel, S.; Wilson, C.G.; Sumnu, M. Development of a buccal bioadhesive nicotine tablet formulation for smoking cessation. Int. J. Pharm., 2004, 277(1-2), 173-178.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.040] [PMID: 15158980]
[16]
Pongjanyakul, T.; Suksri, H. Nicotine-loaded sodium alginate–magnesium aluminum silicate (SA–MAS) films: Importance of SA–MAS ratio. Carbohydr. Polym., 2010, 80, 1018-1027; Pongjanyakul, T.; Khunawattanakul, W.; Puttipipatkhachorn, S. Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. Appl. Clay Sci., 2009, 44, 242-250.
[http://dx.doi.org/10.1016/j.clay.2009.03.004]
[17]
Pichayakorn, W.; Suksaeree, J.; Boonme, P.; Taweepreda, W.; Amnuaikit, T.; Ritthidej, G.C. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: In vitro evaluations. Pharm. Dev. Technol., 2015, 20(8), 966-975.
[http://dx.doi.org/10.3109/10837450.2014.954725] [PMID: 25162773]
[18]
Okeke, O.C.; Boateng, J.S. Nicotine stabilization in composite sodium alginate based wafers and films for nicotine replacement therapy. Carbohydr. Polym., 2017, 155, 78-88.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.053] [PMID: 27702547]
[20]
Sussan, T.E.; Gajghate, S.; Thimmulappa, R.K.; Ma, J.; Kim, J.H.; Sudini, K.; Consolini, N.; Cormier, S.A.; Lomnicki, S.; Hasan, F.; Pekosz, A.; Biswal, S. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS One, 2015, 10(2)e0116861
[http://dx.doi.org/10.1371/journal.pone.0116861] [PMID: 25651083]
[21]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.C. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712.
[http://dx.doi.org/10.1038/359710a0]
[22]
Vallet-Reg, M.; Ra’mila, A.; del Real, R.P.; Pe’rez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater., 2001, 13, 308-311.
[http://dx.doi.org/10.1021/cm0011559]
[23]
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. Engl., 2007, 46(40), 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[24]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[25]
Santos, H.A.; Salonen, J.; Bimbo, L.M.; Lehto, V-P.; Peltonen, L.; Hirvonen, J.J. Mesoporous materials as controlled drug delivery formulations. J. Drug Delivery Pharm. Sci. Technol., 2011, 21, 139-155.
[http://dx.doi.org/10.1016/S1773-2247(11)50016-4]
[26]
Marzouqa, D.M.; Zughul, M.B.; Taha, M.O.; Hodali, H.A. Effect of particle morphology and pore size on the release kinetics of ephedrine from mesoporous MCM-41 materials. J. Porous Mater., 2012, 19, 825-833.
[http://dx.doi.org/10.1007/s10934-011-9537-y]
[27]
Hodali, H.A.; Marzouqa, D.M.; Tekfa, F.Z. Evaluation of mesoporous silicate nanoparticles for the sustained release of the anticancer drugs: 5-fluorouracil and 7-hydroxycoumarin. J. Sol-Gel Sci. Technol., 2016, 80, 417-425.
[http://dx.doi.org/10.1007/s10971-016-4127-8]
[28]
Hodali, H.A.; Rawajfeh, R.S.; Allababdeh, N.A. Caffeine loading into micro- and nanoparticles of mesoporous silicate materials: In vitro release kinetics. J. Dispers. Sci. Technol., 2017, 38, 1342-1347.
[http://dx.doi.org/10.1080/01932691.2016.1239540]
[29]
Hudson, S.P.; Padera, R.F.; Langer, R.; Kohane, D.S. The biocompatibility of mesoporous silicates. Biomaterials, 2008, 29(30), 4045-4055.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.007] [PMID: 18675454]
[30]
Colilla, M.; Vallet-Regı´, M. Comprehensive Biomaterials: Ordered Mesoporous Silica Materials; Elsevers: New York, 2017.
[31]
Gaydhankar, T.R.; Samuel, V.; Jha, R.K.; Kumar, R.; Joshi, P.N. Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica. Mater. Res. Bull., 2007, 42, 1473-1484.
[http://dx.doi.org/10.1016/j.materresbull.2006.11.006]
[32]
Datt, A.; Burns, E.A.; Dhuna, N.A.; Larsen, S.C. Loading and release of 5-fluorouracil from HY zeolites with varying SiO2/Al2O3 ratios. Microporous Mesoporous Mater., 2013, 167, 182-187.
[http://dx.doi.org/10.1016/j.micromeso.2012.09.011]
[33]
aHeikkil, T.; Salonen, J.; Tuura, J.; Kumar, N.; Salmi, T.; Murzin, D.Y.; Hamdy, M.S.; Mul, G.; Laitinen, L.; Kaukonen, A.M.; Hirvonen, J.; Lehto, V.P. Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv., 2007, 14, 337-347.
[http://dx.doi.org/10.1080/10717540601098823] [PMID: 17701523]
bCosta, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/s0928-0987(01)00095-1] [PMID: 11297896]
[34]
Higuchi, T. Mechanism of sustained action medication. Theoretical analysis of rate release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, 52, 1145-1149.
[http://dx.doi.org/10.1002/jps.2600521210] [PMID: 14088963]
[35]
Kopcha, M.; Lordi, N.G.; Tojo, K.J. Evaluation of release from selected thermosoftening vehicles. J. Pharm. Pharmacol., 1991, 43(6), 382-387.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03493.x] [PMID: 1681048]