Effects of Aging and Diet on Cardioprotection and Cardiometabolic Risk Markers

Page: [3704 - 3714] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The prevalence of several diseases increases by age, including cardiovascular diseases, which are the leading cause of morbidity and mortality worldwide. Aging, as a complex process characterized by senescence, triggers various pathways, such as oxidative stress, systemic inflammation, metabolism dysfunction, telomere shortening, mitochondrial dysfunction and deregulated autophagy. A better understanding of the mechanisms underlying senescence may lead to the development of new therapeutic targets and strategies for age-related pathologies and extend the healthy lifespan. Modulating lifestyle risk factors and adopting healthy dietary patterns remain significant tools in delaying the aging process, decreasing age-associated comorbidities and mortality, increasing life expectancy and consequently, preventing the development of cardiovascular disease. Furthermore, such a strategy represents the most cost-effective approach, and the quality of life of the subjects may be significantly improved. An integrated, personalized approach targeting cardiometabolic aging and frailty is suggested in daily clinical practice. However, it should be initiated from an early age. Moreover, there is a need for further well designed and controlled studies in order to elucidate a link between the time of feeding, longevity and cardiovascular prevention. In the future, it is expected that the pharmacological treatment in cardioprotective management will be necessary, accompanied by equally important lifestyle interventions and adjunctive exercise.

Keywords: Aging, diet, cardioprotection, cardiovascular risk, diabetes, metabolic syndrome, nutraceuticals.

[1]
World health organization: cardiovascular disease. Available at: https://www.who.int/cardiovascular_diseases/en/
[2]
Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet 2009; 374(9696): 1196-208.
[http://dx.doi.org/10.1016/S0140-6736(09)61460-4] [PMID: 19801098]
[3]
Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the united states: a policy statement from the american heart association. Circulation 2011; 123(8): 933-44.
[http://dx.doi.org/10.1161/CIR.0b013e31820a55f5] [PMID: 21262990]
[4]
North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res 2012; 110(8): 1097-108.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246876] [PMID: 22499900]
[5]
McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 2018; 217(1): 65-77.
[http://dx.doi.org/10.1083/jcb.201708092] [PMID: 29114066]
[6]
Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans. Science 2010; 328(5976): 321-6.
[http://dx.doi.org/10.1126/science.1172539] [PMID: 20395504]
[7]
de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 2014; 157(7): 1515-26.
[http://dx.doi.org/10.1016/j.cell.2014.05.031] [PMID: 24949965]
[8]
Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev 2017; 39: 36-45.
[http://dx.doi.org/10.1016/j.arr.2016.08.005] [PMID: 27544442]
[9]
Marín C, Yubero-Serrano EM, López-Miranda J, Pérez-Jiménez F. Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet. Int J Mol Sci 2013; 14(5): 8869-89.
[http://dx.doi.org/10.3390/ijms14058869] [PMID: 23615475]
[10]
Marin C, Delgado-Lista J, Ramirez R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age (Dordr) 2012; 34(6): 1309-16.
[http://dx.doi.org/10.1007/s11357-011-9305-6] [PMID: 21894446]
[11]
Lopez-Moreno J, Quintana-Navarro GM, Delgado-Lista J, et al. Mediterranean diet reduces serum advanced glycation end products and increases antioxidant defenses in elderly adults: a randomized controlled trial. J Am Geriatr Soc 2016; 64(4): 901-4.
[http://dx.doi.org/10.1111/jgs.14062] [PMID: 27100598]
[12]
Gomez-Delgado F, Delgado-Lista J, Lopez-Moreno J, et al. Telomerase RNA component genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study. J Gerontol A Biol Sci Med Sci 2018; 73(3): 327-32.
[PMID: 27707805]
[13]
Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the american heart association. Circulation 2017; 135(10): e146-603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[14]
Leading risk factors as percentage burden of all diseases. World health organization 2002. Available at: https://www.who.int/cardiovascular_diseases/en/cvd_atlas_03_risk_factors.pdf?ua=1
[15]
Dhingra R, Vasan RS. Age as a risk factor. Med Clin North Am 2012; 96(1): 87-91.
[http://dx.doi.org/10.1016/j.mcna.2011.11.003] [PMID: 22391253]
[16]
O’Donnell CJ, Elosua R. Cardiovascular risk factors. Insights from Framingham Heart Study. Rev Esp Cardiol 2008; 61(3): 299-310.
[http://dx.doi.org/10.1157/13116658] [PMID: 18361904]
[17]
Terry DF, Pencina MJ, Vasan RS, et al. Cardiovascular risk factors predictive for survival and morbidity-free survival in the oldest-old framingham heart study participants. J Am Geriatr Soc 2005; 53(11): 1944-50.
[http://dx.doi.org/10.1111/j.1532-5415.2005.00465.x] [PMID: 16274376]
[18]
Burden of COPD, “Chronic Respiratory Disease”. Available at: http://www.who.int/respiratory/copd/burden/en Last accessed on 2019 May 20.
[19]
Kukrety SP, Parekh JD, Bailey KL. Chronic obstructive pulmonary disease and the hallmarks of aging. Lung India 2018; 35(4): 321-7.
[http://dx.doi.org/10.4103/lungindia.lungindia_266_17] [PMID: 29970772]
[20]
Brandenberger C, Mühlfeld C. Mechanisms of lung aging. Cell Tissue Res 2017; 367(3): 469-80.
[http://dx.doi.org/10.1007/s00441-016-2511-x] [PMID: 27743206]
[21]
Nicolini A, Barbagelata E, Tagliabue E, Colombo D, Monacelli F, Braido F. Gender differences in chronic obstructive pulmonary diseases: a narrative review. Panminerva Med 2018; 60(4): 192-9.
[http://dx.doi.org/10.23736/S0031-0808.18.03463-8] [PMID: 29856178]
[22]
Buford TW. Hypertension and aging. Ageing Res Rev 2016; 26: 96-111.
[http://dx.doi.org/10.1016/j.arr.2016.01.007] [PMID: 26835847]
[23]
Cevenini E, Caruso C, Candore G, et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des 2010; 16(6): 609-18.
[http://dx.doi.org/10.2174/138161210790883840] [PMID: 20388071]
[24]
Chen JH, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 2007; 35(22): 7417-28.
[http://dx.doi.org/10.1093/nar/gkm681] [PMID: 17913751]
[25]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[26]
Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev 2011; 10(3): 319-29.
[http://dx.doi.org/10.1016/j.arr.2010.11.002] [PMID: 21145432]
[27]
Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Res Int 2014; 2014406960
[http://dx.doi.org/10.1155/2014/406960] [PMID: 25136585]
[28]
Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol 2018; 109: 5-15.
[http://dx.doi.org/10.1016/j.exger.2017.10.015] [PMID: 29054534]
[29]
Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 2005; 46(3): 454-62.
[http://dx.doi.org/10.1161/01.HYP.0000177474.06749.98] [PMID: 16103272]
[30]
LaRocca TJ, Martens CR, Seals DR. Nutrition and other lifestyle influences on arterial aging. Ageing Res Rev 2017; 39: 106-19.
[http://dx.doi.org/10.1016/j.arr.2016.09.002] [PMID: 27693830]
[31]
Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 2003; 107(1): 139-46.
[http://dx.doi.org/10.1161/01.CIR.0000048892.83521.58] [PMID: 12515756]
[32]
Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 2011; 57(14): 1511-22.
[http://dx.doi.org/10.1016/j.jacc.2010.12.017] [PMID: 21453829]
[33]
Seals DR, Kaplon RE, Gioscia-Ryan RA, LaRocca TJ. You’re only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology (Bethesda) 2014; 29(4): 250-64.
[http://dx.doi.org/10.1152/physiol.00059.2013] [PMID: 24985329]
[34]
Katsuumi G, Shimizu I, Yoshida Y, Minamino T. Vascular senescence in cardiovascular and metabolic diseases. Front Cardiovasc Med 2018; 5: 18.
[http://dx.doi.org/10.3389/fcvm.2018.00018] [PMID: 29556500]
[35]
Fajemiroye JO, da Cunha LC, Saavedra-Rodríguez R, et al. Aging-induced biological changes and cardiovascular diseases. BioMed Res Int 2018; 20187156435
[http://dx.doi.org/10.1155/2018/7156435] [PMID: 29984246]
[36]
Logan AG. Hypertension in aging patients. Expert Rev Cardiovasc Ther 2011; 9(1): 113-20.
[http://dx.doi.org/10.1586/erc.10.171] [PMID: 21166533]
[37]
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365(9455): 217-23.
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[38]
Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 2017; 69(15): 1952-67.
[http://dx.doi.org/10.1016/j.jacc.2017.01.064] [PMID: 28408026]
[39]
Lionakis N, Mendrinos D, Sanidas E, Favatas G, Georgopoulou M. Hypertension in the elderly. World J Cardiol 2012; 4(5): 135-47.
[http://dx.doi.org/10.4330/wjc.v4.i5.135] [PMID: 22655162]
[40]
Oliva RV, Bakris GL. Management of hypertension in the elderly population. J Gerontol A Biol Sci Med Sci 2012; 67(12): 1343-51.
[http://dx.doi.org/10.1093/gerona/gls148] [PMID: 22913963]
[41]
Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012; 22(17): R741-52.
[http://dx.doi.org/10.1016/j.cub.2012.07.024] [PMID: 22975005]
[42]
Uryga AK, Bennett MR. Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol 2016; 594(8): 2115-24.
[http://dx.doi.org/10.1113/JP270923] [PMID: 26174609]
[43]
Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354(6311): 472-7.
[http://dx.doi.org/10.1126/science.aaf6659] [PMID: 27789842]
[44]
Steenman M, Lande G. Cardiac aging and heart disease in humans. Biophys Rev 2017; 9(2): 131-7.
[http://dx.doi.org/10.1007/s12551-017-0255-9] [PMID: 28510085]
[45]
Chiao YA, Rabinovitch PS. The aging heart. Cold Spring Harb Perspect Med 2015; 5(9)a025148
[http://dx.doi.org/10.1101/cshperspect.a025148] [PMID: 26328932]
[46]
Sharma K, Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res 2014; 115(1): 79-96.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.302922] [PMID: 24951759]
[47]
Santhanakrishnan R, Wang N, Larson MG, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation 2016; 133(5): 484-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018614] [PMID: 26746177]
[48]
Lam CS, Rienstra M, Tay WT, et al. Atrial fibrillation in heart failure with preserved ejection fraction: association with exercise capacity, left ventricular filling pressures, natriuretic peptides, and left atrial volume. JACC Heart Fail 2017; 5(2): 92-8.
[http://dx.doi.org/10.1016/j.jchf.2016.10.005] [PMID: 28017355]
[49]
Stewart SA, Weinberg RA. Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 2006; 22: 531-57.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104518] [PMID: 16824017]
[50]
van Deursen JM. The role of senescent cells in ageing. Nature 2014; 509(7501): 439-46.
[http://dx.doi.org/10.1038/nature13193] [PMID: 24848057]
[51]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[52]
Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 2018; 72(17): 2054-70.
[http://dx.doi.org/10.1016/j.jacc.2018.07.099] [PMID: 30336830]
[53]
Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol 2016; 32(5): 659-68.
[http://dx.doi.org/10.1016/j.cjca.2016.02.070] [PMID: 27118293]
[54]
AlGhatrif M, Lakatta EG. The conundrum of arterial stiffness, elevated blood pressure, and aging. Curr Hypertens Rep 2015; 17(2): 12.
[http://dx.doi.org/10.1007/s11906-014-0523-z] [PMID: 25687599]
[55]
Kotsis V, Stabouli S, Karafillis I, Nilsson P. Early vascular aging and the role of central blood pressure. J Hypertens 2011; 29(10): 1847-53.
[http://dx.doi.org/10.1097/HJH.0b013e32834a4d9f] [PMID: 21799443]
[56]
Pérez-Martínez P, Mikhailidis DP, Athyros VG, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev 2017; 75(5): 307-26.
[http://dx.doi.org/10.1093/nutrit/nux014] [PMID: 28521334]
[57]
Pérez-Jiménez F, Pascual V, Meco JF, et al. Document of recommendations of the SEA 2018. Lifestyle in cardiovascular prevention. Clin Investig Arterioscler 2018; 30(6): 280-310.
[http://dx.doi.org/10.1016/j.artere.2018.11.001] [PMID: 30236615]
[58]
Jakovljevic DG. Physical activity and cardiovascular aging: physiological and molecular insights. Exp Gerontol 2018; 109: 67-74.
[http://dx.doi.org/10.1016/j.exger.2017.05.016] [PMID: 28546086]
[59]
Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol 2011; 40(5): 1382-400.
[http://dx.doi.org/10.1093/ije/dyr112] [PMID: 22039197]
[60]
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2013; 28(5): 330-58.
[http://dx.doi.org/10.1152/physiol.00019.2013] [PMID: 23997192]
[61]
Brown JD, Buscemi J, Milsom V, Malcolm R, O’Neil PM. Effects on cardiovascular risk factors of weight losses limited to 5-10. Transl Behav Med 2016; 6(3): 339-46.
[http://dx.doi.org/10.1007/s13142-015-0353-9] [PMID: 27528523]
[62]
Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field. Aging Cell 2006; 5(2): 97-108.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00202.x] [PMID: 16626389]
[63]
Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 2003; 78(3): 361-9.
[http://dx.doi.org/10.1093/ajcn/78.3.361] [PMID: 12936916]
[64]
Soare A, Weiss EP, Pozzilli P. Benefits of caloric restriction for cardiometabolic health, including type 2 diabetes mellitus risk. Diabetes Metab Res Rev 2014; 30(Suppl. 1): 41-7.
[http://dx.doi.org/10.1002/dmrr.2517] [PMID: 24532291]
[65]
Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell 2015; 161(1): 106-18.
[http://dx.doi.org/10.1016/j.cell.2015.02.020] [PMID: 25815989]
[66]
Mattson MP, Allison DB, Fontana L, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci USA 2014; 111(47): 16647-53.
[http://dx.doi.org/10.1073/pnas.1413965111] [PMID: 25404320]
[67]
Lee C, Longo V. Dietary restriction with and without caloric restriction for healthy aging. F1000 Res 2016; 5: 5.
[http://dx.doi.org/10.12688/f1000research.7136.1] [PMID: 26918181]
[68]
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19(2): 63-80.
[http://dx.doi.org/10.1038/nrn.2017.156] [PMID: 29321682]
[69]
Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325(5937): 201-4.
[http://dx.doi.org/10.1126/science.1173635] [PMID: 19590001]
[70]
Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489(7415): 318-21.
[http://dx.doi.org/10.1038/nature11432] [PMID: 22932268]
[71]
Lefevre M, Redman LM, Heilbronn LK, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis 2009; 203(1): 206-13.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.05.036] [PMID: 18602635]
[72]
Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem 2005; 16(3): 129-37.
[http://dx.doi.org/10.1016/j.jnutbio.2004.12.007] [PMID: 15741046]
[73]
Harvie MN, Pegington M, Mattson MP, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes 2011; 35(5): 714-27.
[http://dx.doi.org/10.1038/ijo.2010.171] [PMID: 20921964]
[74]
Varady KA, Bhutani S, Klempel MC, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J 2013; 12(1): 146.
[http://dx.doi.org/10.1186/1475-2891-12-146] [PMID: 24215592]
[75]
Klempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J 2012; 11: 98.
[http://dx.doi.org/10.1186/1475-2891-11-98] [PMID: 23171320]
[76]
Kroeger CM, Klempel MC, Bhutani S, Trepanowski JF, Tangney CC, Varady KA. Improvement in coronary heart disease risk factors during an intermittent fasting/calorie restriction regimen: Relationship to adipokine modulations. Nutr Metab (Lond) 2012; 9(1): 98.
[http://dx.doi.org/10.1186/1743-7075-9-98] [PMID: 23113919]
[77]
Klempel MC, Kroeger CM, Varady KA. Alternate day fasting increases LDL particle size independently of dietary fat content in obese humans. Eur J Clin Nutr 2013; 67(7): 783-5.
[http://dx.doi.org/10.1038/ejcn.2013.83] [PMID: 23612508]
[78]
Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 2014; 20(6): 991-1005.
[http://dx.doi.org/10.1016/j.cmet.2014.11.001] [PMID: 25470547]
[79]
Soty M, Gautier-Stein A, Rajas F, Mithieux G. Gut-brain glucose signaling in energy homeostasis. Cell Metab 2017; 25(6): 1231-42.
[http://dx.doi.org/10.1016/j.cmet.2017.04.032] [PMID: 28591631]
[80]
Mitchell SJ, Bernier M, Mattison JA, et al. Daily fasting improves health and sSurvival in male mice independent of diet composition and calories. Cell Metab 2019; 29: 221-8.
[http://dx.doi.org/10.1016/j.cmet.2018.08.011]
[81]
Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 2014; 25(11): 558-66.
[http://dx.doi.org/10.1016/j.tem.2014.07.002] [PMID: 25153840]
[82]
Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 2014; 19(3): 407-17.
[http://dx.doi.org/10.1016/j.cmet.2014.02.006] [PMID: 24606898]
[83]
Solon-Biet SM, Mitchell SJ, Coogan SC, et al. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep 2015; 11(10): 1529-34.
[http://dx.doi.org/10.1016/j.celrep.2015.05.007] [PMID: 26027933]
[84]
Jacobs DR Jr, Tapsell LC. Food, not nutrients, is the fundamental unit in nutrition. Nutr Rev 2007; 65(10): 439-50.
[PMID: 17972438]
[85]
Bach-Faig A, Berry EM, Lairon D, et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 2011; 14(12A): 2274-84.
[http://dx.doi.org/10.1017/S1368980011002515] [PMID: 22166184]
[86]
Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr 2018; 72(1): 30-43.
[http://dx.doi.org/10.1038/ejcn.2017.58] [PMID: 28488692]
[87]
Tosti V, Bertozzi B, Fontana L. Health Benefits of the Mediterranean diet: metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci 2018; 73(3): 318-26.
[http://dx.doi.org/10.1093/gerona/glx227] [PMID: 29244059]
[88]
Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev 2019; 49: 1-10.
[http://dx.doi.org/10.1016/j.arr.2018.11.001] [PMID: 30448616]
[89]
García-Calzón S, Martínez-González MA, Razquin C, et al. Pro12Ala polymorphism of the PPARγ2 gene interacts with a mediterranean diet to prevent telomere shortening in the PREDIMED-NAVARRA randomized trial. Circ Cardiovasc Genet 2015; 8(1): 91-9.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000635] [PMID: 25406242]
[90]
Guilbaud A, Niquet-Leridon C, Boulanger E, Tessier FJ. How can diet affect the accumulation of advanced glycation end-products in the human body? Foods 2016; 5(4): 5.
[http://dx.doi.org/10.3390/foods5040084] [PMID: 28231179]
[91]
Lopez-Moreno J, Quintana-Navarro GM, Delgado-Lista J, et al. Mediterranean diet supplemented with coenzyme Q10 modulates the postprandial metabolism of advanced glycation end products in elderly men and women. J Gerontol A Biol Sci Med Sci 2018; 73(3): 340-6.
[PMID: 28329789]
[92]
García-Calzón S, Martínez-González MA, Razquin C, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr 2016; 35(6): 1399-405.
[http://dx.doi.org/10.1016/j.clnu.2016.03.013] [PMID: 27083496]
[93]
Rafie N, Golpour Hamedani S, Barak F, Safavi SM, Miraghajani M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr 2017; 71(2): 151-8.
[http://dx.doi.org/10.1038/ejcn.2016.149] [PMID: 27530475]
[94]
Cicero AFG, Fogacci F, Bove M, et al. Short-term effects of a combined nutraceutical on lipid level, fatty liver biomarkers, hemodynamic parameters, and estimated cardiovascular disease risk: a double-blind, placebo-controlled randomized clinical trial. Adv Ther 2017; 34(8): 1966-75.
[http://dx.doi.org/10.1007/s12325-017-0580-1] [PMID: 28687937]
[95]
Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med 2001; 344(1): 3-10.
[http://dx.doi.org/10.1056/NEJM200101043440101] [PMID: 11136953]
[96]
Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr 2014; 144(6): 881-9.
[http://dx.doi.org/10.3945/jn.113.189407] [PMID: 24572039]
[97]
Struijk EA, May AM, Wezenbeek NL, et al. Adherence to dietary guidelines and cardiovascular disease risk in the EPIC-NL cohort. Int J Cardiol 2014; 176(2): 354-9.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.017] [PMID: 25107447]
[98]
Garcia-Arellano A, Martinez-Gonzalez MA, Ramallal R, Salas-Salvado J, et al. Dietary inflammatory index and all-cause mortality in large cohorts: the SUN and PREDIMED studies. Clin Nutr 2019; 38(3): 1221-31.
[PMID: 30651193]
[99]
Fretts AM, Follis JL, Nettleton JA, et al. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 caucasians. Am J Clin Nutr 2015; 102(5): 1266-78.
[http://dx.doi.org/10.3945/ajcn.114.101238] [PMID: 26354543]
[100]
Fretts AM, Howard BV, McKnight B, et al. Associations of processed meat and unprocessed red meat intake with incident diabetes: the strong heart family study. Am J Clin Nutr 2012; 95(3): 752-8.
[http://dx.doi.org/10.3945/ajcn.111.029942] [PMID: 22277554]
[101]
Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is Inversely associated with leukocyte telomere length in the strong heart family study. J Nutr 2016; 146(10): 2013-8.
[http://dx.doi.org/10.3945/jn.116.234922] [PMID: 27558579]
[102]
Karimi B, Nabizadeh R, Yunesian M, Mehdipour P, Rastkari N, Aghaie A. Foods, dietary patterns and occupational class and leukocyte telomere length in the male population. Am J Men Health 2018; 12(2): 479-92.
[http://dx.doi.org/10.1177/1557988317743385] [PMID: 29210325]
[103]
Lee JY, Jun NR, Yoon D, Shin C, Baik I. Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr 2015; 69(9): 1048-52.
[http://dx.doi.org/10.1038/ejcn.2015.58] [PMID: 25872911]
[104]
Eckel RH. Reconsidering the importance of the association of egg consumption and dietary cholesterol with cardiovascular disease risk. JAMA 2019; 321(11): 1055-6.
[http://dx.doi.org/10.1001/jama.2019.1850] [PMID: 30874737]
[105]
Ros E, Martínez-González MA, Estruch R, et al. Mediterranean diet and cardiovascular health: teachings of the PREDIMED study. Adv Nutr 2014; 5(3): 330S-6S.
[http://dx.doi.org/10.3945/an.113.005389] [PMID: 24829485]
[106]
George ES, Marshall S, Mayr HL, et al. The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2019; 59(17): 2772-95.
[PMID: 29708409]
[107]
Farràs M, Fernández-Castillejo S, Rubió L, et al. Phenol-enriched olive oils improve HDL antioxidant content in hypercholesterolemic subjects. A randomized, double-blind, cross-over, controlled trial. J Nutr Biochem 2018; 51: 99-104.
[http://dx.doi.org/10.1016/j.jnutbio.2017.09.010] [PMID: 29125992]
[108]
Calabriso N, Massaro M, Scoditti E, et al. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression. J Nutr Biochem 2016; 28: 19-29.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.026] [PMID: 26878779]
[109]
Corina A, Rangel-Zuniga OA, Jimenez-Lucena R, et al. Low intake of vitamin E accelerates cellular aging in patients with established cardiovascular disease: the CORDIOPREV study. J Gerontol A Biol Sci Med Sci 2019; 74(6): 770-7.
[PMID: 30165472]
[110]
Bitok E, Sabaté J. Nuts and cardiovascular disease. Prog Cardiovasc Dis 2018; 61(1): 33-7.
[http://dx.doi.org/10.1016/j.pcad.2018.05.003] [PMID: 29800597]
[111]
Coates AM, Hill AM, Tan SY. Nuts and cardiovascular disease prevention. Curr Atheroscler Rep 2018; 20(10): 48.
[http://dx.doi.org/10.1007/s11883-018-0749-3] [PMID: 30094487]
[112]
Lim GB. Risk factors: nuts reduce risk of cardiovascular disease. Nat Rev Cardiol 2018; 15(1): 4.
[PMID: 29188809]
[113]
Tucker LA. Consumption of nuts and seeds and telomere length in 5,582 men and women of the national health and nutrition examination survey (NHANES). J Nutr Health Aging 2017; 21(3): 233-40.
[http://dx.doi.org/10.1007/s12603-017-0876-5] [PMID: 28244560]
[114]
Kim Y, Keogh J, Clifton PM. Nuts and cardio-metabolic disease: a review of meta-analyses. Nutrients 2018; 10(12): 10.
[http://dx.doi.org/10.3390/nu10121935] [PMID: 30563231]
[115]
Tiainen AM, Männistö S, Blomstedt PA, et al. Leukocyte telomere length and its relation to food and nutrient intake in an elderly population. Eur J Clin Nutr 2012; 66(12): 1290-4.
[http://dx.doi.org/10.1038/ejcn.2012.143] [PMID: 23073262]
[116]
Cassidy A, De Vivo I, Liu Y, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr 2010; 91(5): 1273-80.
[http://dx.doi.org/10.3945/ajcn.2009.28947] [PMID: 20219960]
[117]
Song Y, You NC, Song Y, et al. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women. J Nutr 2013; 143(6): 907-14.
[http://dx.doi.org/10.3945/jn.113.175422] [PMID: 23616516]
[118]
Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 2010; 303(3): 250-7.
[http://dx.doi.org/10.1001/jama.2009.2008] [PMID: 20085953]
[119]
Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun 2013; 28: 16-24.
[http://dx.doi.org/10.1016/j.bbi.2012.09.004] [PMID: 23010452]
[120]
Del Gobbo LC, Imamura F, Aslibekyan S, et al. ω-3 Polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern Med 2016; 176(8): 1155-66.
[http://dx.doi.org/10.1001/jamainternmed.2016.2925] [PMID: 27357102]
[121]
Patti AM, Al-Rasadi K, Giglio RV, et al. Natural approaches in metabolic syndrome management. Arch Med Sci 2018; 14(2): 422-41.
[http://dx.doi.org/10.5114/aoms.2017.68717] [PMID: 29593818]
[122]
Hang D, Kværner AS, Ma W, et al. Coffee consumption and plasma biomarkers of metabolic and inflammatory pathways in US health professionals. Am J Clin Nutr 2019; 109(3): 635-47.
[http://dx.doi.org/10.1093/ajcn/nqy295] [PMID: 30834441]
[123]
Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014; 129(6): 643-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005925] [PMID: 24201300]
[124]
Yu E, Malik VS, Hu FB. Cardiovascular disease prevention by diet modification: JACC health promotion series. J Am Coll Cardiol 2018; 72(8): 914-26.
[http://dx.doi.org/10.1016/j.jacc.2018.02.085] [PMID: 30115231]
[125]
Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ 2011; 342: d671.
[http://dx.doi.org/10.1136/bmj.d671] [PMID: 21343207]
[126]
Zhao J, Stockwell T, Roemer A, Naimi T, Chikritzhs T. Alcohol consumption and mortality from coronary heart disease: an updated meta-analysis of cohort studies. J Stud Alcohol Drugs 2017; 78(3): 375-86.
[http://dx.doi.org/10.15288/jsad.2017.78.375] [PMID: 28499102]
[127]
Mukamal K, Lazo M. Alcohol and cardiovascular disease. BMJ 2017; 356: j1340.
[http://dx.doi.org/10.1136/bmj.j1340] [PMID: 28330843]
[128]
Ramsay SE, Arianayagam DS, Whincup PH, et al. Cardiovascular risk profile and frailty in a population-based study of older british men. Heart 2015; 101(8): 616-22.
[http://dx.doi.org/10.1136/heartjnl-2014-306472] [PMID: 25480883]
[129]
Avila-Funes JA, Meillon C, González-Colaço Harmand M, Tzourio C, Dartigues JF, Amieva H. Association between frailty and carotid central structure changes: the Three-City study. J Am Geriatr Soc 2014; 62(10): 1906-11.
[http://dx.doi.org/10.1111/jgs.13062] [PMID: 25284354]
[130]
Hwang AC, Liu LK, Lee WJ, et al. Association of frailty and cardiometabolic risk among community-dwelling middle-aged and older people: results from the I-Lan longitudinal aging study. Rejuvenation Res 2015; 18(6): 564-72.
[http://dx.doi.org/10.1089/rej.2015.1699] [PMID: 26556635]
[131]
Cicero AFG, Fogacci F, Colletti A. Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach. Food Funct 2017; 8(6): 2076-88.
[http://dx.doi.org/10.1039/C7FO00178A] [PMID: 28541356]
[132]
Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med 2015; 128(3): 229-38.
[http://dx.doi.org/10.1016/j.amjmed.2014.10.014] [PMID: 25447615]
[133]
Zugravu C-A, Baciu A, Patrascu D, Tarcea M, Stoian A, Eds. Depression and diabetes: are there any consequences on self-care?. 2012.
[134]
Marungruang N, Tovar J, Björck I, Hållenius FF. Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects. Eur J Nutr 2018; 57(8): 2927-36.
[http://dx.doi.org/10.1007/s00394-017-1563-3] [PMID: 29098426]
[135]
García-Ríos A, Camargo Garcia A, Perez-Jimenez F, Perez-Martinez P. Gut microbiota: a new protagonist in the risk of cardiovascular disease? Clin Investig Arterioscler 2019; 31(4): 178-85.
[PMID: 30737071]
[136]
Gadecka A, Bielak-Zmijewska A. Slowing down ageing: the role of nutrients and microbiota in modulation of the epigenome. Nutrients 2019; 11(6): 1251.
[http://dx.doi.org/10.3390/nu11061251] [PMID: 31159371]
[137]
de Almeida AJPO, Ribeiro TP, de Medeiros IA. Aging: molecular pathways and implications on the cardiovascular system. Oxid Med Cell Longev 2017; 20177941563
[http://dx.doi.org/10.1155/2017/7941563] [PMID: 28874954]
[138]
Pantea Stoian A, Mitrofan G, Colceag F, et al. Oxidative stress in diabetes: a model of complex thinking applied in medicine 2018; 69: 2515-9.
[139]
Gheorghe G, Pantea Stoian A, Găman M, et al. Benefits and Risks of Antioxidant Treatment in Liver Diseases 2019; 70: 651-5.
[140]
Quindry JC, Franklin BA. Cardioprotective exercise and pharmacologic interventions as complementary antidotes to cardiovascular disease. Exerc Sport Sci Rev 2018; 46(1): 5-17.
[http://dx.doi.org/10.1249/JES.0000000000000134] [PMID: 28885265]