Targeting the Neuronal Activity of Prefrontal Cortex: New Directions for the Therapy of Depression

Page: [332 - 346] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Depression is one of the prevalent psychiatric illnesses with a comprehensive performance such as low self-esteem, lack of motivation, anhedonia, poor appetite, low energy, and uncomfortableness without a specific cause. So far, the cause of depression is not very clear, but it is certain that many aspects of biological psychological and social environment are involved in the pathogenesis of depression. Recently, the prefrontal cortex (PFC) has been indicated to be a pivotal brain region in the pathogenesis of depression. And increasing evidence showed that the abnormal activity of the PFC neurons is linked with depressive symptoms. Unveiling the molecular and cellular, as well as the circuit properties of the PFC neurons will help to find out how abnormalities in PFC neuronal activity are associated with depressive disorders. In addition, concerning many antidepressant drugs, in this review, we concluded the effect of several antidepressants on PFC neuronal activity to better understand its association with depression.

Keywords: Depression, prefrontal cortex, circuit, molecular, synapse, drug.

Graphical Abstract

[1]
Almada, R.C.; Coimbra, N.C.; Brandão, M.L. Medial prefrontal cortex serotonergic and GABAergic mechanisms modulate the expression of contextual fear: intratelencephalic pathways and differential involvement of cortical subregions. Neuroscience, 2015, 284, 988-997.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.001] [PMID: 25451298]
[2]
Szczepanski, S.M.; Knight, R.T. Insights into human behavior from lesions to the prefrontal cortex. Neuron, 2014, 83(5), 1002-1018.
[http://dx.doi.org/10.1016/j.neuron.2014.08.011] [PMID: 25175878]
[3]
Braun, C.; Bschor, T.; Franklin, J.; Baethge, C. Suicides and suicide attempts during long-term treatment with antidepressants: A meta-analysis of 29 placebo-controlled studies including 6,934 patients with major depressive disorder. Psychother. Psychosom., 2016, 85(3), 171-179.
[http://dx.doi.org/10.1159/000442293] [PMID: 27043848]
[4]
Driessen, E.; Hollon, S.D. Cognitive behavioral therapy for mood disorders: efficacy, moderators and mediators. Psychiatr. Clin. North Am., 2010, 33(3), 537-555.
[http://dx.doi.org/10.1016/j.psc.2010.04.005] [PMID: 20599132]
[5]
Vos, T. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The lancet, 2013, 386, 743-800.
[6]
Covington, H.E., III; Lobo, M.K.; Maze, I.; Vialou, V.; Hyman, J.M.; Zaman, S.; LaPlant, Q.; Mouzon, E.; Ghose, S.; Tamminga, C.A.; Neve, R.L.; Deisseroth, K.; Nestler, E.J. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci., 2010, 30(48), 16082-16090.
[http://dx.doi.org/10.1523/JNEUROSCI.1731-10.2010] [PMID: 21123555]
[7]
Yun, S.; Reynolds, R.P.; Petrof, I.; White, A.; Rivera, P.D.; Segev, A.; Gibson, A.D.; Suarez, M.; DeSalle, M.J.; Ito, N.; Mukherjee, S.; Richardson, D.R.; Kang, C.E.; Ahrens-Nicklas, R.C.; Soler, I.; Chetkovich, D.M.; Kourrich, S.; Coulter, D.A.; Eisch, A.J. Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive. Nat. Med., 2018, 24(5), 658-666.
[http://dx.doi.org/10.1038/s41591-018-0002-1] [PMID: 29662202]
[8]
Cryan, J.F.; Holmes, A. The ascent of mouse: advances in modelling human depression and anxiety. Nat. Rev. Drug Discov., 2005, 4(9), 775-790.
[http://dx.doi.org/10.1038/nrd1825] [PMID: 16138108]
[9]
Zhou, W.; Jin, Y.; Meng, Q.; Zhu, X.; Bai, T.; Tian, Y.; Mao, Y.; Wang, L.; Xie, W.; Zhong, H.; Zhang, N.; Luo, M.H.; Tao, W.; Wang, H.; Li, J.; Li, J.; Qiu, B.S.; Zhou, J.N.; Li, X.; Xu, H.; Wang, K.; Zhang, X.; Liu, Y.; Richter-Levin, G.; Xu, L.; Zhang, Z. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci., 2019, 22(10), 1649-1658.
[http://dx.doi.org/10.1038/s41593-019-0468-2] [PMID: 31451801]
[10]
Czéh, B.; Fuchs, E.; Wiborg, O.; Simon, M. Animal models of major depression and their clinical implications. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 293-310.
[http://dx.doi.org/10.1016/j.pnpbp.2015.04.004] [PMID: 25891248]
[11]
Duman, R.S.; Aghajanian, G.K. Synaptic dysfunction in depression: potential therapeutic targets. Science, 2012, 338(6103), 68-72.
[http://dx.doi.org/10.1126/science.1222939] [PMID: 23042884]
[12]
Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The role of neural plasticity in depression: From hippocampus to Prefrontal cortex. Neural Plast., 2017, 20176871089
[http://dx.doi.org/10.1155/2017/6871089] [PMID: 28246558]
[13]
Cook, S.C.; Wellman, C.L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol., 2004, 60(2), 236-248.
[http://dx.doi.org/10.1002/neu.20025] [PMID: 15266654]
[14]
Radley, J.J.; Sisti, H.M.; Hao, J.; Rocher, A.B.; McCall, T.; Hof, P.R.; McEwen, B.S.; Morrison, J.H. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience, 2004, 125(1), 1-6.
[http://dx.doi.org/10.1016/j.neuroscience.2004.01.006] [PMID: 15051139]
[15]
Brown, S.M.; Henning, S.; Wellman, C.L. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb. Cortex, 2005, 15(11), 1714-1722.
[http://dx.doi.org/10.1093/cercor/bhi048] [PMID: 15703248]
[16]
Izquierdo, A.; Wellman, C.L.; Holmes, A. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J. Neurosci., 2006, 26(21), 5733-5738.
[http://dx.doi.org/10.1523/JNEUROSCI.0474-06.2006] [PMID: 16723530]
[17]
Liu, R.J.; Aghajanian, G.K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: Role of corticosterone-mediated apical dendritic atrophy. Proc. Natl. Acad. Sci. USA, 2008, 105(1), 359-364.
[http://dx.doi.org/10.1073/pnas.0706679105] [PMID: 18172209]
[18]
McEwen, B.S.; Eiland, L.; Hunter, R.G.; Miller, M.M. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology, 2012, 62(1), 3-12.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.014] [PMID: 21807003]
[19]
Morrison, J.H.; Baxter, M.G. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat. Rev. Neurosci., 2012, 13(4), 240-250.
[http://dx.doi.org/10.1038/nrn3200] [PMID: 22395804]
[20]
Yuen, E.Y.; Wei, J.; Liu, W.; Zhong, P.; Li, X.; Yan, Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron, 2012, 73(5), 962-977.
[http://dx.doi.org/10.1016/j.neuron.2011.12.033] [PMID: 22405206]
[21]
Kang, H.J.; Voleti, B.; Hajszan, T.; Rajkowska, G.; Stockmeier, C.A.; Licznerski, P.; Lepack, A.; Majik, M.S.; Jeong, L.S.; Banasr, M.; Son, H.; Duman, R.S. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med., 2012, 18(9), 1413-1417.
[http://dx.doi.org/10.1038/nm.2886] [PMID: 22885997]
[22]
Grazyna Rajkowska, J.J.M-H.; Wei, J. Ginny Dilley, Stephen D. Pittman, Herbert Y. Meltzer, James C. Overholser, Bryan L. Roth, and Craig A. Stockmeier, morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry, 1999, 45, 1085-1098.
[23]
Rajkowska, G.; O’Dwyer, G.; Teleki, Z.; Stockmeier, C.A.; Miguel-Hidalgo, J.J. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology, 2007, 32(2), 471-482.
[http://dx.doi.org/10.1038/sj.npp.1301234] [PMID: 17063153]
[24]
Stockmeier, C.A.; Mahajan, G.J.; Konick, L.C.; Overholser, J.C.; Jurjus, G.J.; Meltzer, H.Y.; Uylings, H.B.; Friedman, L.; Rajkowska, G. Cellular changes in the postmortem hippocampus in major depression. Biol. Psychiatry, 2004, 56(9), 640-650.
[http://dx.doi.org/10.1016/j.biopsych.2004.08.022] [PMID: 15522247]
[25]
MacQueen, G.; Frodl, T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry, 2011, 16(3), 252-264.
[http://dx.doi.org/10.1038/mp.2010.80] [PMID: 20661246]
[26]
Price, J.L.; Drevets, W.C. Neurocircuitry of mood disorders. Neuropsychopharmacology, 2010, 35(1), 192-216.
[http://dx.doi.org/10.1038/npp.2009.104] [PMID: 19693001]
[27]
Ongür, D.; Drevets, W.C.; Price, J.L. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc. Natl. Acad. Sci. USA, 1998, 95(22), 13290-13295.
[http://dx.doi.org/10.1073/pnas.95.22.13290] [PMID: 9789081]
[28]
Wayne, C.; Drevets, T.V; Joseph, L. Price, Sheldon H.; Preskorn, S.; Thomas, Carmichael; Marcus E, Raichle . A Functional Anatomical Study of Unipolar Depression The Journal of Neuroscience,, 1992, 12(9), 3628-3641.
[29]
Drevets, W.C. Functional neuroimaging studies of depression: the anatomy of melancholia. Annu. Rev. Med., 1998, 49, 341-361.
[http://dx.doi.org/10.1146/annurev.med.49.1.341] [PMID: 9509268]
[30]
Chana, G.; Landau, S.; Beasley, C.; Everall, I.P.; Cotter, D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol. Psychiatry, 2003, 53(12), 1086-1098.
[http://dx.doi.org/10.1016/S0006-3223(03)00114-8] [PMID: 12814860]
[31]
Drevets, W.C.; Videen, T.O.; Price, J.L.; Preskorn, S.H.; Carmichael, S.T.; Raichle, M.E. A functional anatomical study of unipolar depression. J. Neurosci., 1992, 12(9), 3628-3641.
[http://dx.doi.org/10.1523/JNEUROSCI.12-09-03628.1992] [PMID: 1527602]
[32]
Tsujii, N.; Mikawa, W.; Tsujimoto, E.; Akashi, H.; Adachi, T.; Kirime, E.; Shirakawa, O. Relationship between prefrontal hemodynamic responses and quality of life differs between melancholia and non-melancholic depression. Psychiatry Res. Neuroimaging, 2016, 253, 26-35.
[http://dx.doi.org/10.1016/j.pscychresns.2016.04.015] [PMID: 27259838]
[33]
Helen, S.; Mayberg, S.K.B.; Janet, L.; Tekell, J.; Arturo, S.; Roderick, K.M. Scott, McGinnis, and Paul A. J. Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biol. Psychiatry, 2000, 48, 830-843.
[http://dx.doi.org/10.1016/S0006-3223(00)01036-2]
[34]
Wang, L.; Paul, N.; Stanton, S.J.; Greeson, J.M.; Smoski, M.J. Loss of sustained activity in the ventromedial prefrontal cortex in response to repeated stress in individuals with early-life emotional abuse: implications for depression vulnerability. Front. Psychol., 2013, 4, 320.
[http://dx.doi.org/10.3389/fpsyg.2013.00320] [PMID: 23761775]
[35]
Zaletel, I.; Filipović, D.; Puškaš, N. Hippocampal BDNF in physiological conditions and social isolation. Rev. Neurosci., 2017, 28(6), 675-692.
[http://dx.doi.org/10.1515/revneuro-2016-0072] [PMID: 28593903]
[36]
Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci., 2013, 14(1), 7-23.
[http://dx.doi.org/10.1038/nrn3379] [PMID: 23254191]
[37]
Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature, 2008, 455(7215), 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[38]
Duman, R.S.; Voleti, B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci., 2012, 35(1), 47-56.
[http://dx.doi.org/10.1016/j.tins.2011.11.004] [PMID: 22217452]
[39]
Yu, H.; Wang, D.D.; Wang, Y.; Liu, T.; Lee, F.S.; Chen, Z.Y. Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. J. Neurosci., 2012, 32(12), 4092-4101.
[http://dx.doi.org/10.1523/JNEUROSCI.5048-11.2012] [PMID: 22442074]
[40]
Deyama, S. Neurotrophic and antidepressant actions of brain-derived neurotrophic factor require vascular endothelial growth factor. Biol. Psychiatry, 2018, 86(2), 143-152.
[41]
Duric, V.; Banasr, M.; Licznerski, P.; Schmidt, H.D.; Stockmeier, C.A.; Simen, A.A.; Newton, S.S.; Duman, R.S. A negative regulator of MAP kinase causes depressive behavior. Nat. Med., 2010, 16(11), 1328-1332.
[http://dx.doi.org/10.1038/nm.2219] [PMID: 20953200]
[42]
Collingridge, G.L.; Peineau, S.; Howland, J.G.; Wang, Y.T. Long-term depression in the CNS. Nat. Rev. Neurosci., 2010, 11(7), 459-473.
[http://dx.doi.org/10.1038/nrn2867] [PMID: 20559335]
[43]
Hoeffer, C.A.; Klann, E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci., 2010, 33(2), 67-75.
[http://dx.doi.org/10.1016/j.tins.2009.11.003] [PMID: 19963289]
[44]
Son, H.; Banasr, M.; Choi, M.; Chae, S.Y.; Licznerski, P.; Lee, B.; Voleti, B.; Li, N.; Lepack, A.; Fournier, N.M.; Lee, K.R.; Lee, I.Y.; Kim, J.; Kim, J.H.; Kim, Y.H.; Jung, S.J.; Duman, R.S. Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11378-11383.
[http://dx.doi.org/10.1073/pnas.1201191109] [PMID: 22733766]
[45]
Wang, J.Q.; Mao, L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol. Neurobiol., 2019, 56(9), 6197-6205.
[46]
Li, X.; Jope, R.S. Is glycogen synthase kinase-3 a central modulator in mood regulation? Neuropsychopharmacology, 2010, 35(11), 2143-2154.
[http://dx.doi.org/10.1038/npp.2010.105] [PMID: 20668436]
[47]
Wilkinson, M.B.; Dias, C.; Magida, J.; Mazei-Robison, M.; Lobo, M.; Kennedy, P.; Dietz, D.; Covington, H., III; Russo, S.; Neve, R.; Ghose, S.; Tamminga, C.; Nestler, E.J. A novel role of the WNT-dishevelled-GSK3β signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J. Neurosci., 2011, 31(25), 9084-9092.
[http://dx.doi.org/10.1523/JNEUROSCI.0039-11.2011] [PMID: 21697359]
[48]
Fatima, M.; Srivastav, S.; Ahmad, M.H.; Mondal, A.C. Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: Role of GSK-3β. Sci. Rep., 2019, 9(1), 1305.
[http://dx.doi.org/10.1038/s41598-018-38085-2] [PMID: 30718708]
[49]
Kim, W.Y.; Wang, X.; Wu, Y.; Doble, B.W.; Patel, S.; Woodgett, J.R.; Snider, W.D. GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci., 2009, 12(11), 1390-1397.
[http://dx.doi.org/10.1038/nn.2408] [PMID: 19801986]
[50]
Takahashi-Yanaga, F. Activator or inhibitor? GSK-3 as a new drug target. Biochem. Pharmacol., 2013, 86(2), 191-199.
[http://dx.doi.org/10.1016/j.bcp.2013.04.022] [PMID: 23643839]
[51]
Lucas, J.J.; Hernández, F.; Gómez-Ramos, P.; Morán, M.A.; Hen, R.; Avila, J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3˜ conditional transgenic mice. EMBO J., 2001, 20(1-2), 27-39.
[PMID: 11226152]
[52]
Hooper, C.; Markevich, V.; Plattner, F.; Killick, R.; Schofield, E.; Engel, T.; Hernandez, F.; Anderton, B.; Rosenblum, K.; Bliss, T.; Cooke, S.F.; Avila, J.; Lucas, J.J.; Giese, K.P.; Stephenson, J.; Lovestone, S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur. J. Neurosci., 2007, 25(1), 81-86.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05245.x] [PMID: 17241269]
[53]
Chen, Y.; Yue, S.; Xie, L.; Pu, X.H.; Jin, T.; Cheng, S.Y. Dual Phosphorylation of suppressor of fused (Sufu) by PKA and GSK3beta regulates its stability and localization in the primary cilium. J. Biol. Chem., 2011, 286(15), 13502-13511.
[http://dx.doi.org/10.1074/jbc.M110.217604] [PMID: 21317289]
[54]
Foltz, D.R.; Santiago, M.C.; Berechid, B.E.; Nye, J.S. Glycogen synthase kinase-3β modulates notch signaling and stability. Curr. Biol., 2002, 12(12), 1006-1011.
[http://dx.doi.org/10.1016/S0960-9822(02)00888-6] [PMID: 12123574]
[55]
Jourdi, H.; Hsu, Y.T.; Zhou, M.; Qin, Q.; Bi, X.; Baudry, M. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J. Neurosci., 2009, 29(27), 8688-8697.
[http://dx.doi.org/10.1523/JNEUROSCI.6078-08.2009] [PMID: 19587275]
[56]
Li, N.; Lee, B.; Liu, R.J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.Y.; Aghajanian, G.; Duman, R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 2010, 329(5994), 959-964.
[http://dx.doi.org/10.1126/science.1190287] [PMID: 20724638]
[57]
Jernigan, C.S.; Goswami, D.B.; Austin, M.C.; Iyo, A.H.; Chandran, A.; Stockmeier, C.A.; Karolewicz, B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(7), 1774-1779.
[http://dx.doi.org/10.1016/j.pnpbp.2011.05.010] [PMID: 21635931]
[58]
Nicolini, C.; Ahn, Y.; Michalski, B.; Rho, J.M.; Fahnestock, M. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol. Commun., 2015, 3, 3.
[http://dx.doi.org/10.1186/s40478-015-0184-4] [PMID: 25627160]
[59]
Andreou, A.Z.; Harms, U.; Klostermeier, D. eIF4B stimulates eIF4A ATPase and unwinding activities by direct interaction through its 7-repeats region. RNA Biol., 2017, 14(1), 113-123.
[http://dx.doi.org/10.1080/15476286.2016.1259782] [PMID: 27858515]
[60]
Vialou, V.; Bagot, R.C.; Cahill, M.E.; Ferguson, D.; Robison, A.J.; Dietz, D.M.; Fallon, B.; Mazei-Robison, M.; Ku, S.M.; Harrigan, E.; Winstanley, C.A.; Joshi, T.; Feng, J.; Berton, O.; Nestler, E.J. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔFosB. J. Neurosci., 2014, 34(11), 3878-3887.
[http://dx.doi.org/10.1523/JNEUROSCI.1787-13.2014] [PMID: 24623766]
[61]
Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides, 2004, 38(4), 213-224.
[http://dx.doi.org/10.1016/j.npep.2004.05.002] [PMID: 15337373]
[62]
Larhammar, D.; Ericsson, A.; Persson, H. Structure and expression of the rat neuropeptide Y gene. Proc. Natl. Acad. Sci. USA, 1987, 84(7), 2068-2072.
[http://dx.doi.org/10.1073/pnas.84.7.2068] [PMID: 3031663]
[63]
Cohen, H.; Liu, T.; Kozlovsky, N.; Kaplan, Z.; Zohar, J.; Mathé, A.A. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology, 2012, 37(2), 350-363.
[http://dx.doi.org/10.1038/npp.2011.230] [PMID: 21976046]
[64]
Feder, A.; Nestler, E.J.; Charney, D.S. Psychobiology and molecular genetics of resilience. Nat. Rev. Neurosci., 2009, 10(6), 446-457.
[http://dx.doi.org/10.1038/nrn2649] [PMID: 19455174]
[65]
Melas, P.A.; Mannervik, M.; Mathé, A.A.; Lavebratt, C. Neuropeptide Y: identification of a novel rat mRNA splice-variant that is downregulated in the hippocampus and the prefrontal cortex of a depression-like model. Peptides, 2012, 35(1), 49-55.
[http://dx.doi.org/10.1016/j.peptides.2012.02.020] [PMID: 22406386]
[66]
Jiang, C.; Lin, W.J.; Labonté, B.; Tamminga, C.A.; Turecki, G.; Nestler, E.J.; Russo, S.J.; Salton, S.R. VGF and its C-terminal peptide TLQP-62 in ventromedial prefrontal cortex regulate depression-related behaviors and the response to ketamine. Neuropsychopharmacology, 2019, 44(5), 971-981.
[http://dx.doi.org/10.1038/s41386-018-0277-4] [PMID: 30504797]
[67]
Lin, W.J.; Jiang, C.; Sadahiro, M.; Bozdagi, O.; Vulchanova, L.; Alberini, C.M.; Salton, S.R. VGF and its C-Terminal peptide TLQP-62 regulate memory formation in hippocampus via a BDNF-TrkB-dependent mechanism. J. Neurosci., 2015, 35(28), 10343-10356.
[http://dx.doi.org/10.1523/JNEUROSCI.0584-15.2015] [PMID: 26180209]
[68]
Kohler, O.; Krogh, J.; Mors, O.; Benros, M.E. Inflammation in depression and the potential for anti-inflammatory treatment. Curr. Neuropharmacol., 2016, 14(7), 732-742.
[http://dx.doi.org/10.2174/1570159X14666151208113700] [PMID: 27640518]
[69]
Kim, Y.K.; Na, K.S.; Myint, A.M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 277-284.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.008] [PMID: 26111720]
[70]
Tripathi, S.J.; Chakraborty, S.; Srikumar, B.N.; Raju, T.R.; Shankaranarayana Rao, B.S. Prevention of chronic immobilization stress-induced enhanced expression of glucocorticoid receptors in the prefrontal cortex by inactivation of basolateral amygdala. J. Chem. Neuroanat., 2019, 95, 134-145.
[http://dx.doi.org/10.1016/j.jchemneu.2017.12.006] [PMID: 29277704]
[71]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry, 2010, 67(5), 446-457.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[72]
Kim, Y.K.; Na, K.S.; Shin, K.H.; Jung, H.Y.; Choi, S.H.; Kim, J.B. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(5), 1044-1053.
[http://dx.doi.org/10.1016/j.pnpbp.2007.03.004] [PMID: 17433516]
[73]
Hamani, C.; Diwan, M.; Macedo, C.E.; Brandão, M.L.; Shumake, J.; Gonzalez-Lima, F.; Raymond, R.; Lozano, A.M.; Fletcher, P.J.; Nobrega, J.N. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol. Psychiatry, 2010, 67(2), 117-124.
[http://dx.doi.org/10.1016/j.biopsych.2009.08.025] [PMID: 19819426]
[74]
Chang, C.H.; Chen, M.C.; Lu, J. Effect of antidepressant drugs on the vmPFC-limbic circuitry. Neuropharmacology, 2015, 92, 116-124.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.010] [PMID: 25637091]
[75]
Nestler, E.J.; Carlezon, W.A., Jr The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry, 2006, 59(12), 1151-1159.
[http://dx.doi.org/10.1016/j.biopsych.2005.09.018] [PMID: 16566899]
[76]
Warden, M.R.; Selimbeyoglu, A.; Mirzabekov, J.J.; Lo, M.; Thompson, K.R.; Kim, S.Y.; Adhikari, A.; Tye, K.M.; Frank, L.M.; Deisseroth, K. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature, 2012, 492(7429), 428-432.
[http://dx.doi.org/10.1038/nature11617] [PMID: 23160494]
[77]
Gonçalves, L.; Nogueira, M.I.; Shammah-Lagnado, S.J.; Metzger, M. Prefrontal afferents to the dorsal raphe nucleus in the rat. Brain Res. Bull., 2009, 78(4-5), 240-247.
[http://dx.doi.org/10.1016/j.brainresbull.2008.11.012] [PMID: 19103268]
[78]
Pau, C.M.V.P.; Josep, M.C.; Gemma, G.; Francesc, A. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABAA, and glutamate receptors. J. Neurosci., 2001, 21(24), 9917-9929.
[http://dx.doi.org/10.1523/JNEUROSCI.21-24-09917.2001] [PMID: 11739599]
[79]
Sartorius, A.; Kiening, K.L.; Kirsch, P.; von Gall, C.C.; Haberkorn, U.; Unterberg, A.W.; Henn, F.A.; Meyer-Lindenberg, A. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry, 2010, 67, e9-e11.
[http://dx.doi.org/10.1016/j.biopsych.2009.08.027]
[80]
Sesack, S.R.; Deutch, A.Y.; Roth, R.H.; Bunney, B.S. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with phaseolus vulgaris leucoagglutinin. J. Comp. Neurol., 1989, 290(2), 213-242.
[http://dx.doi.org/10.1002/cne.902900205] [PMID: 2592611]
[81]
Bacon, S.J.; Headlam, A.J.; Gabbott, P.L.; Smith, A.D. Amygdala input to medial prefrontal cortex (mPFC) in the rat: A light and electron microscope study. Brain Res., 1996, 720, 21-219.
[82]
Little, J.P.; Carter, A.G. Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J. Neurosci., 2013, 33(39), 15333-15342.
[http://dx.doi.org/10.1523/JNEUROSCI.2385-13.2013] [PMID: 24068800]
[83]
St Onge, J.R.; Stopper, C.M.; Zahm, D.S.; Floresco, S.B. Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. J. Neurosci., 2012, 32(8), 2886-2899.
[http://dx.doi.org/10.1523/JNEUROSCI.5625-11.2012] [PMID: 22357871]
[84]
Riga, D.; Matos, M.R.; Glas, A.; Smit, A.B.; Spijker, S.; Van den Oever, M.C. Optogenetic dissection of medial prefrontal cortex circuitry. Front. Syst. Neurosci., 2014, 8, 230.
[http://dx.doi.org/10.3389/fnsys.2014.00230] [PMID: 25538574]
[85]
Likhtik, E.; Paz, R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci., 2015, 38(3), 158-166.
[http://dx.doi.org/10.1016/j.tins.2014.12.007] [PMID: 25583269]
[86]
Burgos-Robles, A.; Kimchi, E.Y.; Izadmehr, E.M.; Porzenheim, M.J.; Ramos-Guasp, W.A.; Nieh, E.H.; Felix-Ortiz, A.C.; Namburi, P.; Leppla, C.A.; Presbrey, K.N.; Anandalingam, K.K.; Pagan-Rivera, P.A.; Anahtar, M.; Beyeler, A.; Tye, K.M. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat. Neurosci., 2017, 20(6), 824-835.
[http://dx.doi.org/10.1038/nn.4553] [PMID: 28436980]
[87]
Hiser, J.; Koenigs, M. The multifaceted role of the ventromedial Prefrontal cortex in emotion, decision making, social Cognition, and psychopathology. Biol. Psychiatry, 2018, 83(8), 638-647.
[http://dx.doi.org/10.1016/j.biopsych.2017.10.030] [PMID: 29275839]
[88]
Koenigs, M.; Huey, E.D.; Calamia, M.; Raymont, V.; Tranel, D.; Grafman, J. Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. J. Neurosci., 2008, 28(47), 12341-12348.
[http://dx.doi.org/10.1523/JNEUROSCI.2324-08.2008] [PMID: 19020027]
[89]
Ghazizadeh, A.; Ambroggi, F.; Odean, N.; Fields, H.L. Prefrontal cortex mediates extinction of responding by two distinct neural mechanisms in accumbens shell. J. Neurosci., 2012, 32(2), 726-737.
[http://dx.doi.org/10.1523/JNEUROSCI.3891-11.2012] [PMID: 22238108]
[90]
Liu, K. Effect of selective serotonin reuptake inhibitor on prefrontal-striatal connectivity is dependent on the level of TNF-alpha in patients with major depressive disorder. Psychol. Med., 2018, 1-9.
[PMID: 30520409]
[91]
Hajnalka, B.A.C.k.; Katalin, K. JoÂzsef, K. Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat. Eur. Neurosci., 2002, 16, 1227-1239.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02189.x]
[92]
Wouterlood, F.G.; Saldana, E.; Witter, M.P. Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol., 1990, 296(2), 179-203.
[http://dx.doi.org/10.1002/cne.902960202] [PMID: 2358531]
[93]
Belzung, C.; Willner, P.; Philippot, P. Depression: from psychopathology to pathophysiology. Curr. Opin. Neurobiol., 2015, 30, 24-30.
[http://dx.doi.org/10.1016/j.conb.2014.08.013] [PMID: 25218233]
[94]
Belleau, E.L.; Treadway, M.T.; Pizzagalli, D.A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol. Psychiatry, 2019, 85(6), 443-453.
[http://dx.doi.org/10.1016/j.biopsych.2018.09.031] [PMID: 30470559]
[95]
Helm, K.; Viol, K.; Weiger, T.M.; Tass, P.A.; Grefkes, C.; Del Monte, D.; Schiepek, G. Neuronal connectivity in major depressive disorder: A systematic review. Neuropsychiatr. Dis. Treat., 2018, 14, 2715-2737.
[http://dx.doi.org/10.2147/NDT.S170989] [PMID: 30425491]
[96]
Sheline, Y.I.; Wang, P.W.; Gado, M.H.; Csernansky, J.G.; Vannier, M.W. Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. USA, 1996, 93, 3908-3913.
[97]
Sheline, Y.I.; Price, J.L.; Yan, Z.; Mintun, M.A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 11020-11025.
[http://dx.doi.org/10.1073/pnas.1000446107] [PMID: 20534464]
[98]
Genzel, L.; Dresler, M.; Cornu, M.; Jäger, E.; Konrad, B.; Adamczyk, M.; Friess, E.; Steiger, A.; Czisch, M.; Goya-Maldonado, R. Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol. Psychiatry, 2015, 77(2), 177-186.
[http://dx.doi.org/10.1016/j.biopsych.2014.06.004] [PMID: 25037555]
[99]
Zheng, C.; Zhang, T. Synaptic plasticity-related neural oscillations on hippocampus-prefrontal cortex pathway in depression. Neuroscience, 2015, 292, 170-180.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.071] [PMID: 25684752]
[100]
Tierney, P.L.; Dégenètais, E.; Thierry, A.M.; Glowinski, J.; Gioanni, Y. Influence of the hippocampus on interneurons of the rat prefrontal cortex. Eur. J. Neurosci., 2004, 20(2), 514-524.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03501.x] [PMID: 15233760]
[101]
Adhikari, A.; Topiwala, M.A.; Gordon, J.A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 2010, 65(2), 257-269.
[http://dx.doi.org/10.1016/j.neuron.2009.12.002] [PMID: 20152131]
[102]
Padilla-Coreano, N.; Bolkan, S.S.; Pierce, G.M.; Blackman, D.R.; Hardin, W.D.; Garcia-Garcia, A.L.; Spellman, T.J.; Gordon, J.A. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural Activity and behavior. Neuron, 2016, 89(4), 857-866.
[http://dx.doi.org/10.1016/j.neuron.2016.01.011] [PMID: 26853301]
[103]
Ciocchi, S.; Passecker, J.; Malagon-Vina, H.; Mikus, N.; Klausberger, T. Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science, 2015, 348(6234), 560-563.
[http://dx.doi.org/10.1126/science.aaa3245] [PMID: 25931556]
[104]
Goldman-Rakic, P.S.; Porrino, L.J. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J. Comp. Neurol., 1985, 242(4), 535-560.
[http://dx.doi.org/10.1002/cne.902420406] [PMID: 2418080]
[105]
Zikopoulos, B.; Barbas, H. Parallel driving and modulatory pathways link the prefrontal cortex and thalamus. PLoS One, 2007, 2(9)e848
[http://dx.doi.org/10.1371/journal.pone.0000848] [PMID: 17786219]
[106]
Jay, T.M.; Witter, M.P. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol., 1991, 313(4), 574-586.
[http://dx.doi.org/10.1002/cne.903130404] [PMID: 1783682]
[107]
Price, J.P.R.J.L. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol., 1993, 337, 1-31.
[http://dx.doi.org/10.1002/cne.903370102] [PMID: 7506270]
[108]
Krettek, J.E.; Price, J.L. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J. Comp. Neurol.,, 1977, 171(2), 157-191.
[http://dx.doi.org/10.1002/cne.901710204] [PMID: 64477]
[109]
Rubio-Garrido, P.; Pérez-de-Manzo, F.; Porrero, C.; Galazo, M.J.; Clascá, F. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb. Cortex, 2009, 19(10), 2380-2395.
[http://dx.doi.org/10.1093/cercor/bhn259] [PMID: 19188274]
[110]
Ferguson, B.R.; Gao, W.J. Thalamic control of cognition and social behavior Via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol. Psychiatry, 2018, 83(8), 657-669.
[http://dx.doi.org/10.1016/j.biopsych.2017.11.033] [PMID: 29373121]
[111]
Koenigs, M.; Grafman, J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res., 2009, 201(2), 239-243.
[http://dx.doi.org/10.1016/j.bbr.2009.03.004] [PMID: 19428640]
[112]
Dellarole, A.; Morton, P.; Brambilla, R.; Walters, W.; Summers, S.; Bernardes, D.; Grilli, M.; Bethea, J.R. Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling. Brain Behav. Immun., 2014, 41, 65-81.
[http://dx.doi.org/10.1016/j.bbi.2014.04.003]
[113]
She, Y.; Xu, J.; Duan, Y.; Su, N.; Sun, Y.; Cao, X.; Lao, L.; Zhang, R.; Xu, S. Possible antidepressant effects and mechanism of electroacupuncture in behaviors and hippocampal synaptic plasticity in a depression rat model. Brain Res., 2015, 1629, 291-297.
[http://dx.doi.org/10.1016/j.brainres.2015.10.033] [PMID: 26505920]
[114]
Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep brain stimulation for treatment-resistant depression. Neuron, 2005, 45(5), 651-660.
[http://dx.doi.org/10.1016/j.neuron.2005.02.014] [PMID: 15748841]
[115]
Chakraborty, S.; Tripathi, S.J.; Srikumar, B.N.; Raju, T.R.; Shankaranarayana, R.B.S. Chronic brain stimulation rewarding experience ameliorates depression-induced cognitive deficits and restores aberrant plasticity in the prefrontal cortex. Brain Stimul., 2019, 12(3), 752-766.
[http://dx.doi.org/10.1016/j.brs.2019.01.020] [PMID: 30765272]
[116]
Alboni, S.; van Dijk, R.M.; Poggini, S.; Milior, G.; Perrotta, M.; Drenth, T.; Brunello, N.; Wolfer, D.P.; Limatola, C.; Amrein, I.; Cirulli, F.; Maggi, L.; Branchi, I. Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Mol. Psychiatry, 2017, 22(4), 552-561.
[http://dx.doi.org/10.1038/mp.2015.142] [PMID: 26645631]
[117]
Ampuero, E.; Rubio, F.J.; Falcon, R.; Sandoval, M.; Diaz-Veliz, G.; Gonzalez, R.E.; Earle, N.; Dagnino-Subiabre, A.; Aboitiz, F.; Orrego, F.; Wyneken, U. Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience, 2010, 169(1), 98-108.
[http://dx.doi.org/10.1016/j.neuroscience.2010.04.035] [PMID: 20417256]
[118]
Sousa, J.B.D.F.N. Hippocampal neurogenesis induced by antidepressant drugs: an epiphenomenon in their mood-improving actions. Mol. Psychiatry, 2009, 14, 739.
[http://dx.doi.org/10.1038/mp.2009.75]
[119]
Magariños, A.M.; McEwen, B.S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience, 1995, 69(1), 89-98.
[http://dx.doi.org/10.1016/0306-4522(95)00259-L] [PMID: 8637636]
[120]
Bath, K.G.; Jing, D.Q.; Dincheva, I.; Neeb, C.C.; Pattwell, S.S.; Chao, M.V.; Lee, F.S.; Ninan, I. BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology, 2012, 37(5), 1297-1304.
[121]
Chen, Z.Y.; Jing, D.; Bath, K.G.; Ieraci, A.; Khan, T.; Siao, C.J.; Herrera, D.G.; Toth, M.; Yang, C.; McEwen, B.S.; Hempstead, B.L.; Lee, F.S. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 2006, 314(5796), 140-143.
[http://dx.doi.org/10.1126/science.1129663] [PMID: 17023662]
[122]
Bath, K.G.; Jing, D.Q.; Dincheva, I.; Neeb, C.C.; Pattwell, S.S.; Chao, M.V.; Lee, F.S.; Ninan, I. BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology, 2012, 37(5), 1297-1304.
[http://dx.doi.org/10.1038/npp.2011.318] [PMID: 22218094]
[123]
Turcotte-Cardin, V.; Vahid-Ansari, F.; Luckhart, C.; Daigle, M.; Geddes, S.D.; Tanaka, K.F.; Hen, R.; James, J.; Merali, Z.; Béïque, J.C.; Albert, P.R. Loss of adult 5-HT1A autoreceptors results in a paradoxical anxiogenic response to antidepressant treatment. J. Neurosci., 2019, 39(8), 1334-1346.
[http://dx.doi.org/10.1523/JNEUROSCI.0352-18.2018] [PMID: 30552180]
[124]
Djordjevic, A.; Djordjevic, J.; Elaković, I.; Adzic, M.; Matić, G.; Radojcic, M.B. Effects of fluoxetine on plasticity and apoptosis evoked by chronic stress in rat prefrontal cortex. Eur. J. Pharmacol., 2012, 693(1-3), 37-44.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.042] [PMID: 22959317]
[125]
Song, T.; Wu, H.; Li, R.; Xu, H.; Rao, X.; Gao, L.; Zou, Y.; Lei, H. Repeated fluoxetine treatment induces long-lasting neurotrophic changes in the medial prefrontal cortex of adult rats. Behav. Brain Res., 2019, 365, 114-124.
[http://dx.doi.org/10.1016/j.bbr.2019.03.009] [PMID: 30849415]
[126]
Carlos, A.; Zarate, J.M.D.; Jaskaran, B.; Singh, M.D.; Paul, J. Carlson, M.D.; Nancy, E.; Brutsche, M.S.N; Rezvan, A.;PhD; David, A. Luckenbaugh, M.A.; Dennis, S. Charney, M.D.; Husseini, K. M. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 2006, 63, 856-864.
[127]
Robert, M.B.; Angela, C.; Amit, A.; Dan, A. Oren, George R. Heninger, Dennis S. Charney, and John H. Krystal, antidepressant effects of ketamine in depressed patients. Soc. Biol. Psychiatry, 2000, 47, 351-354.
[128]
Machado-Vieira, R.; Ibrahim, L.; Henter, I.D.; Zarate, C.A., Jr Novel glutamatergic agents for major depressive disorder and bipolar disorder. Pharmacol. Biochem. Behav., 2012, 100(4), 678-687.
[http://dx.doi.org/10.1016/j.pbb.2011.09.010] [PMID: 21971560]
[129]
Nakayama, K.; Kiyosue, K.; Taguchi, T. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses. J. Neurosci., 2005, 25(16), 4040-4051.
[http://dx.doi.org/10.1523/JNEUROSCI.4115-04.2005] [PMID: 15843606]
[130]
Li, N.; Lee, B.; Liu, R.J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.Y.; Aghajanian, G.; Duman, R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 2010, 329(5994), 959-964.
[http://dx.doi.org/10.1126/science.1190287] [PMID: 20724638]
[131]
Autry, A.E.; Adachi, M.; Nosyreva, E.; Na, E.S.; Los, M.F.; Cheng, P.F.; Kavalali, E.T.; Monteggia, L.M. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 2011, 475(7354), 91-95.
[http://dx.doi.org/10.1038/nature10130] [PMID: 21677641]
[132]
Wohleb, E.S.; Gerhard, D.; Thomas, A.; Duman, R.S. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr. Neuropharmacol., 2017, 15(1), 11-20.
[http://dx.doi.org/10.2174/1570159X14666160309114549] [PMID: 26955968]
[133]
Li, N.; Liu, R.J.; Dwyer, J.M.; Banasr, M.; Lee, B.; Son, H.; Li, X.Y.; Aghajanian, G.; Duman, R.S. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry, 2011, 69(8), 754-761.
[http://dx.doi.org/10.1016/j.biopsych.2010.12.015] [PMID: 21292242]
[134]
Adaikkan, C.; Taha, E.; Barrera, I.; David, O.; Rosenblum, K. Calcium/Calmodulin-Dependent Protein Kinase II and Eukaryotic Elongation Factor 2 Kinase Pathways Mediate the Antidepressant Action of Ketamine. Biol. Psychiatry, 2018, 84(1), 65-75.
[http://dx.doi.org/10.1016/j.biopsych.2017.11.028] [PMID: 29395043]
[135]
Maeng, S.; Zarate, C.A., Jr; Du, J.; Schloesser, R.J.; McCammon, J.; Chen, G.; Manji, H.K. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry, 2008, 63(4), 349-352.
[http://dx.doi.org/10.1016/j.biopsych.2007.05.028] [PMID: 17643398]
[136]
Deyama, S.; Bang, E.; Wohleb, E.S.; Li, X.Y.; Kato, T.; Gerhard, D.M.; Dutheil, S.; Dwyer, J.M.; Taylor, S.R.; Picciotto, M.R.; Duman, R.S. Role of Neuronal VEGF Signaling in the Prefrontal Cortex in the Rapid Antidepressant Effects of Ketamine. Am. J. Psychiatry, 2019, 176(5), 388-400.
[http://dx.doi.org/10.1176/appi.ajp.2018.17121368] [PMID: 30606046]
[137]
Fukumoto, K.; Fogaça, M.V.; Liu, R.J.; Duman, C.; Kato, T.; Li, X.Y.; Duman, R.S. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc. Natl. Acad. Sci. USA, 2019, 116(1), 297-302.
[http://dx.doi.org/10.1073/pnas.1814709116] [PMID: 30559184]
[138]
Castrén, E.; Antila, H. Neuronal plasticity and neurotrophic factors in drug responses. Mol. Psychiatry, 2017, 22(8), 1085-1095.
[http://dx.doi.org/10.1038/mp.2017.61] [PMID: 28397840]
[139]
Nava, N.; Treccani, G.; Alabsi, A.; Kaastrup Mueller, H.; Elfving, B.; Popoli, M.; Wegener, G.; Nyengaard, J.R. Temporal Dynamics of Acute Stress-Induced Dendritic Remodeling in Medial Prefrontal Cortex and the Protective Effect of Desipramine. Cereb. Cortex, 2017, 27(1), 694-705.
[PMID: 26523035]
[140]
Higashino, K.; Ago, Y.; Umehara, M.; Kita, Y.; Fujita, K.; Takuma, K.; Matsuda, T. Effects of acute and chronic administration of venlafaxine and desipramine on extracellular monoamine levels in the mouse prefrontal cortex and striatum. Eur. J. Pharmacol., 2014, 729, 86-93.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.012] [PMID: 24561044]
[141]
Nava, N.; Treccani, G.; Müller, H.K.; Popoli, M.; Wegener, G.; Elfving, B. The expression of plasticity-related genes in an acute model of stress is modulated by chronic desipramine in a time-dependent manner within medial prefrontal cortex. Eur. Neuropsychopharmacol., 2017, 27(1), 19-28.
[http://dx.doi.org/10.1016/j.euroneuro.2016.11.010] [PMID: 27890541]
[142]
Freitas, D. Neonatal tactile stimulation decreases depression-like and anxiety-like behaviors and potentiates sertraline action in young rats. Int J Dev Neurosci., 2015, 47(Pt B), 192-7.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.09.010]
[143]
Roversi, K. Tactile stimulation on adulthood modifies the HPA axis, neurotrophic factors, and GFAP signaling reverting depression-like behavior in female rats. Mol Neurobiol, 2019. Press
[144]
Zhang, J.C.; Yao, W.; Hashimoto, K. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets. Curr. Neuropharmacol., 2016, 14(7), 721-731.
[http://dx.doi.org/10.2174/1570159X14666160119094646] [PMID: 26786147]
[145]
Jang, S.W.; Liu, X.; Yepes, M.; Shepherd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; Ye, K. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2687-2692.
[http://dx.doi.org/10.1073/pnas.0913572107] [PMID: 20133810]
[146]
Ren, Q.; Zhang, J.C.; Fujita, Y.; Ma, M.; Wu, J.; Hashimoto, K. Effects of TrkB agonist 7,8-dihydroxyflavone on sensory gating deficits in mice after administration of methamphetamine. Pharmacol. Biochem. Behav., 2013, 106, 124-127.
[http://dx.doi.org/10.1016/j.pbb.2013.03.016] [PMID: 23567202]
[147]
Ren, Q.; Zhang, J.C.; Ma, M.; Fujita, Y.; Wu, J.; Hashimoto, K. 7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine. Psychopharmacology (Berl.), 2014, 231(1), 159-166.
[http://dx.doi.org/10.1007/s00213-013-3221-7] [PMID: 23934209]
[148]
Zhang, J.C.; Yao, W.; Dong, C.; Yang, C.; Ren, Q.; Ma, M.; Han, M.; Hashimoto, K. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology (Berl.), 2015, 232(23), 4325-4335.
[http://dx.doi.org/10.1007/s00213-015-4062-3] [PMID: 26337614]]