Association of Common Variants in the IL-33/ST2 Axis with Ischemic Stroke

Page: [494 - 501] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Recent studies have reported that the levels of serum interleukin-33 (IL- 33) and its receptor, suppression of tumorigenicity 2 (ST2), are potential biomarkers for susceptibility of cardiovascular diseases. However, the genetic association of the IL-33/ST2 axis with cardiovascular diseases remains controversial.

Objective: We aimed to investigate the association between common variants in the IL-33/ST2 axis and ischemic stroke in the Han Chinese population.

Methods: We consecutively enrolled 1166 patients with ischemic stroke and 1079 age- and gender- matched controls. Eight single nucleotide polymorphisms (SNPs) within IL-33/ST2 axis were genotyped using the improved Multiple Ligase Detection Reaction platform. We analyzed the association between the tested SNPs and ischemic stroke at both the genotype and haplotype levels.

Results: Binary logistic regression analysis indicated that rs10435816 (additive model: odds ratio [OR]=0.72, 95% confidence interval [CI], 0.54-0.95; recessive model: OR=0.72, 95%CI, 0.56- 0.94) was associated with a decreased risk of ischemic stroke after adjustment of confounding factors. Subgroup analysis indicated that rs10435816 (additive model: OR=0.61, 95%CI, 0.41-0.89; recessive model: OR=0.56, 95%CI, 0.40-0.80), rs7025417 (additive model: OR=0.57, 95%CI, 0.39-0.83), rs11792633 (additive model: OR=0.66, 95%CI, 0.46-0.95; recessive model: OR=0.67, 95%CI, 0.49-0.93), and rs7044343 (additive model: OR=0.69, 95%CI, 0.48-0.97; recessive model: OR=0.67, 95%CI, 0.49-0.91) were associated with a decreased risk of large-artery atherosclerosis stroke after adjustment of confounding factors.

Conclusion: Our findings suggested an association between common variants in the IL-33/ST2 axis and a decreased risk of ischemic stroke in the Han Chinese population.

Keywords: Ischemic stroke, IL33, IL1RL1, IL-1RAcp, single nucleotide polymorphism, Han Chinese population.

[1]
Yang G, Wang Y, Zeng Y, et al. Rapid health transition in China, 1990-2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013; 381(9882): 1987-2015.
[http://dx.doi.org/10.1016/S0140-6736(13)61097-1] [PMID: 23746901]
[2]
Alvarez-Perez FJ, Castelo-Branco M, Alvarez-Sabin J. Usefulness of measurement of fibrinogen, D-dimer, D-dimer/fibrinogen ratio, C-reactive protein and erythrocyte sedimentation rate to assess the pathophysiology and mechanism of ischaemic stroke. J Neurol Neurosurg Psychiatry 2011; 82(9): 986-92.
[http://dx.doi.org/10.1136/jnnp.2010.230870] [PMID: 21296900]
[3]
Kaptoge S, Di Angelantonio E, Lowe G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010; 375(9709): 132-40.
[http://dx.doi.org/10.1016/S0140-6736(09)61717-7] [PMID: 20031199]
[4]
Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352(16): 1685-95.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[5]
Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23(5): 479-90.
[http://dx.doi.org/10.1016/j.immuni.2005.09.015] [PMID: 16286016]
[6]
Altara R, Ghali R, Mallat Z, Cataliotti A, Booz GW, Zouein FA. Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovasc Res 2018; 114(12): 1578-94.
[http://dx.doi.org/10.1093/cvr/cvy166] [PMID: 29982301]
[7]
Demyanets S, Speidl WS, Tentzeris I, et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: Relation to disease activity and adverse outcome. PLoS One 2014; 9(4)e95055
[http://dx.doi.org/10.1371/journal.pone.0095055] [PMID: 24751794]
[8]
Gruson D, Lepoutre T, Ahn SA, Rousseau MF. Increased soluble ST2 is a stronger predictor of long-term cardiovascular death than natriuretic peptides in heart failure patients with reduced ejection fraction. Int J Cardiol 2014; 172(1): e250-2.
[http://dx.doi.org/10.1016/j.ijcard.2013.12.101] [PMID: 24467978]
[9]
Qian L, Yuanshao L, Wensi H, et al. Serum IL-33 is a novel diagnostic and prognostic biomarker in acute ischemic stroke. Aging Dis 2016; 7(5): 614-22.
[http://dx.doi.org/10.14336/AD.2016.0207] [PMID: 27699084]
[10]
Yang JH, Wu FQ, Wen Q, et al. Association of IL33/ST2 signal pathway gene polymorphisms with myocardial infarction in a Chinese Han population. J Huazhong U Sci Med 2015; 35: 16-20.
[11]
Tu X, Nie S, Liao Y, et al. The IL-33-ST2L pathway is associated with coronary artery disease in a Chinese Han population. Am J Hum Genet 2013; 93(4): 652-60.
[http://dx.doi.org/10.1016/j.ajhg.2013.08.009] [PMID: 24075188]
[12]
Wu F, He M, Wen Q, et al. Associations between variants in IL-33/ST2 signaling pathway genes and coronary heart disease risk. Int J Mol Sci 2014; 15(12): 23227-39.
[http://dx.doi.org/10.3390/ijms151223227] [PMID: 25517029]
[13]
Angeles-Martínez J, Posadas-Sánchez R, Llorente L, et al. The rs7044343 polymorphism of the interleukin 33 gene is associated with decreased risk of developing premature coronary artery disease and central obesity, and could be involved in regulating the production of IL-33. PLoS One 2017; 12(1) e0168828
[http://dx.doi.org/10.1371/journal.pone.0168828] [PMID: 28045954]
[14]
Liu J, Xing Y, Gao Y, Zhou C. Changes in serum interleukin-33 levels in patients with acute cerebral infarction. J Clin Neurosci 2014; 21(2): 298-300.
[http://dx.doi.org/10.1016/j.jocn.2013.04.036] [PMID: 24210798]
[15]
Miller AM, Xu D, Asquith DL, et al. IL-33 reduces the development of atherosclerosis. J Exp Med 2008; 205(2): 339-46.
[http://dx.doi.org/10.1084/jem.20071868] [PMID: 18268038]
[16]
Rui T, Zhang J, Xu X, Yao Y, Kao R, Martin CM. Reduction in IL-33 expression exaggerates ischaemia/reperfusion-induced myocardial injury in mice with diabetes mellitus. Cardiovasc Res 2012; 94(2): 370-8.
[http://dx.doi.org/10.1093/cvr/cvs015] [PMID: 22258632]
[17]
Ridker PM, Everett BM, Thuren T, et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[18]
Chen WY, Tsai TH, Yang JL, Li LC. Therapeutic strategies for targeting IL-33/ST2 signalling for the treatment of inflammatory diseases. Cell Physiol Biochem 2018; 49(1): 349-58.
[http://dx.doi.org/10.1159/000492885] [PMID: 30138941]
[19]
Lee HY, Rhee CK, Kang JY, et al. Blockade of IL-33/ST2 ameliorates airway inflammation in a murine model of allergic asthma. Exp Lung Res 2014; 40(2): 66-76.
[http://dx.doi.org/10.3109/01902148.2013.870261] [PMID: 24446582]
[20]
Lei Y, Boinapally V, Zoltowska A, Adner M, Hellman L, Nilsson G. Vaccination against IL-33 inhibits airway hyperresponsiveness and inflammation in a house dust mite model of asthma. PLoS One 2015; 10(7) e0133774
[http://dx.doi.org/10.1371/journal.pone.0133774] [PMID: 26214807]
[21]
Yang F, Wen M, Pan D, et al. IL-33/ST2 Axis regulates vasculogenic mimicry via ERK1/2-MMP-2/9 pathway in melanoma. Dermatology 2019; 235(3): 225-33.https://www.ncbi.nlm.nih.gov/pubmed/30928981
[PMID: 30928981]
[22]
Choi JC. Genetics of cerebral small vessel disease. J Stroke 2015; 17(1): 7-16.
[http://dx.doi.org/10.5853/jos.2015.17.1.7] [PMID: 25692103]
[23]
Dichgans M, Pulit SL, Rosand J. Stroke genetics: Discovery, biology, and clinical applications. Lancet Neurol 2019; 18(6): 587-99.
[http://dx.doi.org/10.1016/S1474-4422(19)30043-2] [PMID: 30975520]