Abstract
Melanoma is a malignant skin tumor that results in poor disease prognosis due to unsuccessful
treatment options. During the early stages of tumor progression, surgery is the primary approach
that assures a good outcome. However, in the presence of metastasis, melanoma hasbecome almost
immedicable, since the tumors can not be removed and the disease recurs easily in a short period of
time. However, in recent years, the combination of nanomedicine and chemotherapeutic drugs has offered
promising solutions to the treatment of late-stage melanoma. Extensive studies have demonstrated
that nanomaterials and their advanced applications can improve the efficacy of traditional chemotherapeutic
drugs in order to overcome the disadvantages, such as drug resistance, low drug delivery rate and
reduced targeting to the tumor tissue. In the present review, we summarized the latest progress in imaging
diagnosis and treatment of melanoma using functional nanomaterials, including polymers,
liposomes, metal nanoparticles, magnetic nanoparticles and carbon-based nanoparticles. These
nanoparticles are reported widely in melanoma chemotherapy, gene therapy, immunotherapy, photodynamic
therapy, and hyperthermia.
Keywords:
Melanoma, Nanomaterials, Imaging, Chemotherapy, Targeted therapy, Biomedicine.
Graphical Abstract
[5]
U.S. Department of Health and Human Services; Office of the
Surgeon General. In: The surgeon general’s call to action to prevent skin cancer; CreateSpace: California, 2014.
[10]
Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; Larkin, J.G.; Lorigan, P.; Neyns, B.; Blank, C.U.; Petrella, T.M.; Hamid, O.; Su, S.C.; Krepler, C. Ibrahim, Nageatte.; Long, G.V. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol., 2019, 372, 2521-2532.
[45]
Krogan, N.J.; Cagney, G.; Yu, H.; Zhong, G.; Guo, X.; Ignatchenko, A.; Li, J.; Pu, S.; Datta, N.; Tikuisis, A.P.; Punna, T.; Peregrín-Alvarez, J.M.; Shales, M.; Zhang, X.; Davey, M.; Robinson, M.D.; Paccanaro, A.; Bray, J.E.; Sheung, A.; Beattie, B.; Richards, D.P.; Canadien, V.; Lalev, A.; Mena, F.; Wong, P.; Starostine, A.; Canete, M.M.; Vlasblom, J.; Wu, S.; Orsi, C.; Collins, S.R.; Chandran, S.; Haw, R.; Rilstone, J.J.; Gandi, K.; Thompson, N.J.; Musso, G.; St Onge, P.; Ghanny, S.; Lam, M.H.; Butland, G.; Altaf-Ul, A.M.; Kanaya, S.; Shilatifard, A.; O’Shea, E.; Weissman, J.S.; Ingles, C.J.; Hughes, T.R.; Parkinson, J.; Gerstein, M.; Wodak, S.J.; Emili, A.; Greenblatt, J.F. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.
Nature, 2006,
440(7084), 637-643.
[
http://dx.doi.org/10.1038/nature04670] [PMID:
16554755]
[53]
Sousa, F.; Castro, P.; Fonte, P.; Fonte, P.; Kennedy, P.J.; Neves-Petersen, M.T.; Sarmento, B. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy? Expert Opin. Drug Deliv., 2017, 14, 1163-1176.
[64]
Guo, S.; Lin, C.M.; Xu, Z.; Miao, L.; Wang, Y.; Huang, L. Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS Nano, 2014, 8, 4996-5009.
[69]
Nilubol, N.; Yuan, Z.; Paciotti, G.F.; Tamarkin, L.; Sanchez, C.; Gaskins, K.; Freedman, E.M.; Cao, S.; Zhao, J.; Kingston, D.G.I.; Libutti, S.K.; Kebebew, E. Novel dual-action targeted nanomedicine in mice with metastatic thyroid cancer and pancreatic neuroendocrine tumors. J. Natl. Cancer Inst., 2018, 110, 1019-1029.
[80]
Daniel, Y.J.; Lova, S.; Melissa, S.; Ajlan, A.Z.; Surya, M.; Phillip, P.S.; James, J.D.; Brian, C.B.; Michelle, A.B.; Dongha, B.; Gary, D.K.; Andrew, T.; Jay, F.D. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One, 2013, 8(4)e62425
[99]
Oliner, J.; Min, H.; Leal, J.; Yu, D.; Rao, S.; You, E.; Tang, X.; Kim, H.; Meyer, S.; Han, S.J.; Hawkins, N.; Rosenfeld, R.; Davy, E.; Graham, K.; Jacobsen, F.; Stevenson, S.; Ho, J.; Chen, Q.; Hartmann, T.; Michaels, M.; Kelley, M.; Li, L.; Sitney, K.; Martin, F.; Sun, J.R.; Zhang, N.; Lu, J.; Estrada, J.; Kumar, R.; Coxon, A.; Kaufman, S.; Pretorius, J.; Scully, S.; Cattley, R.; Payton, M.; Coats, S.; Nguyen, L.; Desilva, B.; Ndifor, A.; Hayward, I.; Radinsky, R.; Boone, T.; Kendall, R. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2.
Cancer Cell, 2004,
6(5), 507-516.
[
http://dx.doi.org/10.1016/j.ccr.2004.09.030] [PMID:
15542434]