A Variety of Bio-nanogold in the Fabrication of Lateral Flow Biosensors for the Detection of Pathogenic Bacteria

Page: [2476 - 2493] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Pathogenic bacteria constitute one of the most serious threats to human health. This has led to the development of technologies for the rapid detection of bacteria. Bio-nanogold-based lateral flow biosensors (LFBs) are a promising assay due to their low limit of detection, high sensitivity, good selectivity, robustness, low cost, and quick assay performance ability. The aim of this review is to provide a critical overview of the current variety of bio-nanogold LFBs and their targets, with a special focus on whole-cell and DNA detection of pathogenic bacteria. The challenges of bio-nanogold-based LFBs in improving their performance and accessibility are also comprehensively discussed.

Keywords: Bio-nanogold, Lateral flow biosensor, Pathogenic bacteria, Rapid detection, LFBs, Nitrocellular membrane.

Graphical Abstract

[1]
Alvarez-Ordóñez, A.; Broussolle, V.; Colin, P.; Nguyen-The, C.; Prieto, M. The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. Int. J. Food Microbiol., 2015, 213, 99-109.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.06.004] [PMID: 26116419]
[2]
Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61.
[http://dx.doi.org/10.2147/IDR.S55778] [PMID: 25878509]
[3]
Lee, K-M. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control, 2015, 47, 264-276.
[http://dx.doi.org/10.1016/j.foodcont.2014.07.011]
[4]
Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect., 2015, 17(3), 173-183.
[http://dx.doi.org/10.1016/j.micinf.2015.01.004] [PMID: 25637951]
[5]
Bhunia, A.K. Foodborne microbial pathogens: mechanisms and pathogenesis; Springer: New York, 2018.
[http://dx.doi.org/10.1007/978-1-4939-7349-1]
[6]
Abraham, N.M.; Liu, L.; Jutras, B.L.; Yadav, A.K.; Narasimhan, S.; Gopalakrishnan, V.; Ansari, J.M.; Jefferson, K.K.; Cava, F.; Jacobs-Wagner, C.; Fikrig, E. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA, 2017, 114(5), E781-E790.
[http://dx.doi.org/10.1073/pnas.1613422114] [PMID: 28096373]
[7]
Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathog. Dis., 2015, 12(1), 32-38.
[http://dx.doi.org/10.1089/fpd.2014.1821] [PMID: 25587926]
[8]
Bennett, S.D.; Sodha, S.V.; Ayers, T.L.; Lynch, M.F.; Gould, L.H.; Tauxe, R.V. Produce-associated foodborne disease outbreaks, USA, 1998-2013. Epidemiol. Infect., 2018, 146(11), 1397-1406.
[http://dx.doi.org/10.1017/S0950268818001620] [PMID: 29923474]
[9]
Cacciò, S.M. Foodborne parasites: Outbreaks and outbreak investigations. A meeting report from the European network for foodborne parasites (Euro-FBP). Food Waterborne Parasitol., 2018, 10, 1-5.
[http://dx.doi.org/10.1016/j.fawpar.2018.01.001]
[10]
Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet., 2012, 13(9), 601-612.
[http://dx.doi.org/10.1038/nrg3226] [PMID: 22868263]
[11]
Deng, Y. An improved plate culture procedure for the rapid detection of beer‐spoilage lactic acid bacteria. J. Inst. Brew., 2014, 120(2), 127-132.
[http://dx.doi.org/10.1002/jib.121]
[12]
Yang, L. A review of multifunctions of dielectrophoresis in biosensors and biochips for bacteria detection. Anal. Lett., 2012, 45(2-3), 187-201.
[http://dx.doi.org/10.1080/00032719.2011.633182]
[13]
Tabit, F.T. Advantages and limitations of potential methods for the analysis of bacteria in milk: a review. J. Food Sci. Technol., 2016, 53(1), 42-49.
[http://dx.doi.org/10.1007/s13197-015-1993-y] [PMID: 26787931]
[14]
Hemraj, V. A review on commonly used biochemical test for bacteria. Innovare J Life Sci, 2013, 1(1), 1-7.
[15]
Zhang, G. Foodborne pathogenic bacteria detection: an evaluation of current and developing methods. The Meducator 1.,, 2013, 1(24)
[16]
Inglis, G.D.; Thomas, M.C.; Thomas, D.K.; Kalmokoff, M.L.; Brooks, S.P.; Selinger, L.B. Molecular methods to measure intestinal bacteria: A review. J. AOAC Int., 2012, 95(1), 5-23.
[http://dx.doi.org/10.5740/jaoacint.SGE_Inglis] [PMID: 22468337]
[17]
Lebonah, D. DNA barcoding on bacteria: A Review. Adv. Biol., 2014, 2014, 9.
[http://dx.doi.org/10.1155/2014/541787]
[18]
Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev., 2013, 42(2), 450-457.
[http://dx.doi.org/10.1039/C2CS35255A] [PMID: 23032871]
[19]
Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron., 2014, 54, 585-597.
[http://dx.doi.org/10.1016/j.bios.2013.10.075] [PMID: 24333570]
[20]
Lee, H.; Choi, S. An origami paper-based bacteria-powered battery. Nano Energy, 2015, 15, 549-557.
[http://dx.doi.org/10.1016/j.nanoen.2015.05.019]
[21]
Tian, T.; Li, J.; Song, Y.; Zhou, L.; Zhu, Z.; Yang, C.J. Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip, 2016, 16(7), 1139-1151.
[http://dx.doi.org/10.1039/C5LC01562F] [PMID: 26928571]
[22]
Leuvering, J.H.; Thal, P.J.; Van der Waart, M.; Schuurs, A.H. A sol particle agglutination assay for human chorionic gonadotrophin. J. Immunol. Methods, 1981, 45(2), 183-194.
[http://dx.doi.org/10.1016/0022-1759(81)90212-X] [PMID: 7288195]
[23]
Gnoth, C.; Johnson, S. Strips of hope: Accuracy of home pregnancy tests and new developments. Geburtshilfe Frauenheilkd., 2014, 74(7), 661-669.
[http://dx.doi.org/10.1055/s-0034-1368589] [PMID: 25100881]
[24]
Johnson, S.; Cushion, M.; Bond, S.; Godbert, S.; Pike, J. Comparison of analytical sensitivity and women’s interpretation of home pregnancy tests. Clin. Chem. Lab. Med., 2015, 53(3), 391-402.[CCLM]..
[http://dx.doi.org/10.1515/cclm-2014-0643] [PMID: 25274958]
[25]
Blum, J.; Shochet, T.; Lynd, K.; Lichtenberg, E.S.; Fischer, D.; Arnesen, M.; Winikoff, B.; Blumenthal, P.D. Can at-home semi-quantitative pregnancy tests serve as a replacement for clinical follow-up of medical abortion? A US study. Contraception, 2012, 86(6), 757-762.
[http://dx.doi.org/10.1016/j.contraception.2012.06.005] [PMID: 22895097]
[26]
Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 2016, 34(1), 7-25.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.012] [PMID: 26506111]
[27]
Huang, X.; Aguilar, Z.P.; Xu, H.; Lai, W.; Xiong, Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron., 2016, 75, 166-180.
[http://dx.doi.org/10.1016/j.bios.2015.08.032] [PMID: 26318786]
[28]
Raeisossadati, M.J.; Danesh, N.M.; Borna, F.; Gholamzad, M.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Lateral flow based immunobiosensors for detection of food contaminants. Biosens. Bioelectron., 2016, 86, 235-246.
[http://dx.doi.org/10.1016/j.bios.2016.06.061] [PMID: 27376194]
[29]
Banerjee, R.; Jaiswal, A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst (Lond.), 2018, 143(9), 1970-1996.
[http://dx.doi.org/10.1039/C8AN00307F] [PMID: 29645058]
[30]
Shan, S.; Lai, W.; Xiong, Y.; Wei, H.; Xu, H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J. Agric. Food Chem., 2015, 63(3), 745-753.
[http://dx.doi.org/10.1021/jf5046415] [PMID: 25539027]
[31]
Tang, R.; Yang, H.; Choi, J.R.; Gong, Y.; Hu, J.; Feng, S.; Pingguan-Murphy, B.; Mei, Q.; Xu, F. Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta, 2016, 152, 269-276.
[http://dx.doi.org/10.1016/j.talanta.2016.02.017] [PMID: 26992520]
[32]
Sajid, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc., 2015, 19(6), 689-705.
[http://dx.doi.org/10.1016/j.jscs.2014.09.001]
[33]
Zhan, L.; Guo, S.Z.; Song, F.; Gong, Y.; Xu, F.; Boulware, D.R.; McAlpine, M.C.; Chan, W.C.W.; Bischof, J.C. The role of nanoparticle design in determining analytical performance of lateral flow immunoassays. Nano Lett., 2017, 17(12), 7207-7212.
[http://dx.doi.org/10.1021/acs.nanolett.7b02302] [PMID: 29120648]
[34]
You, M.; Lin, M.; Gong, Y.; Wang, S.; Li, A.; Ji, L.; Zhao, H.; Ling, K.; Wen, T.; Huang, Y.; Gao, D.; Ma, Q.; Wang, T.; Ma, A.; Li, X.; Xu, F. Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano, 2017, 11(6), 6261-6270.
[http://dx.doi.org/10.1021/acsnano.7b02466] [PMID: 28482150]
[35]
Takalkar, S.; Baryeh, K.; Liu, G. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens. Bioelectron., 2017, 98, 147-154.
[http://dx.doi.org/10.1016/j.bios.2017.06.045] [PMID: 28668773]
[36]
Park, J-M.; Jung, H.W.; Chang, Y.W.; Kim, H.S.; Kang, M.J.; Pyun, J.C. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity. Anal. Chim. Acta, 2015, 853, 360-367.
[http://dx.doi.org/10.1016/j.aca.2014.10.011] [PMID: 25467480]
[37]
Rodríguez, M.O.; Covián, L.B.; García, A.C.; Blanco-López, M.C. Silver and gold enhancement methods for lateral flow immunoassays. Talanta, 2016, 148, 272-278.
[http://dx.doi.org/10.1016/j.talanta.2015.10.068] [PMID: 26653449]
[38]
Juntunen, E.; Arppe, R.; Kalliomäki, L.; Salminen, T.; Talha, S.M.; Myyryläinen, T.; Soukka, T.; Pettersson, K. Effects of blood sample anticoagulants on lateral flow assays using luminescent photon-upconverting and Eu(III) nanoparticle reporters. Anal. Biochem., 2016, 492, 13-20.
[http://dx.doi.org/10.1016/j.ab.2015.09.009] [PMID: 26408349]
[39]
Jiang, H.; Li, X.; Xiong, Y.; Pei, K.; Nie, L.; Xiong, Y. Silver nanoparticle-based fluorescence-quenching lateral flow immunoassay for sensitive detection of ochratoxin A in grape juice and wine. Toxins (Basel), 2017, 9(3), 83.
[http://dx.doi.org/10.3390/toxins9030083] [PMID: 28264472]
[40]
Hui, W.; Zhang, S.; Zhang, C.; Wan, Y.; Zhu, J.; Zhao, G.; Wu, S.; Xi, D.; Zhang, Q.; Li, N.; Cui, Y. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms. Nanoscale, 2016, 8(6), 3579-3587.
[http://dx.doi.org/10.1039/C5NR07547E] [PMID: 26804455]
[41]
Lago-Cachón, D. High frequency lateral flow affinity assay using superparamagnetic nanoparticles. J. Magn. Magn. Mater., 2017, 423, 436-440.
[http://dx.doi.org/10.1016/j.jmmm.2016.09.106]
[42]
Cheng, N. Nanozyme enhanced colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J. Analy. Test., 2018, 3(1), 1-8.
[http://dx.doi.org/10.1007/s41664-018-0079-z]
[43]
Cheng, N. An advanced visual qualitative and EVA green‐based quantitative isothermal amplification method to detect listeria monocytogenes. J. Food Saf., 2016, 36(2), 237-246.
[http://dx.doi.org/10.1111/jfs.12236]
[44]
Cheng, N.; Xu, Y.; Luo, Y.; Zhu, L.; Zhang, Y.; Huang, K.; Xu, W. Specific and relative detection of urinary microRNA signatures in bladder cancer for point-of-care diagnostics. Chem. Commun. (Camb.), 2017, 53(30), 4222-4225.
[http://dx.doi.org/10.1039/C7CC01007A] [PMID: 28357426]
[45]
Cheng, N.; Xu, Y.; Huang, K.; Chen, Y.; Yang, Z.; Luo, Y.; Xu, W. One-step competitive lateral flow biosensor running on an independent quantification system for smart phones based in-situ detection of trace Hg(II) in tap water. Food Chem., 2017, 214, 169-175.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.058] [PMID: 27507462]
[46]
Cheng, N.; Wang, Q.; Shang, Y.; Xu, Y.; Huang, K.; Yang, Z.; Pan, D.; Xu, W.; Luo, Y. Rapid and low-cost strategy for detecting genome-editing induced deletion: A single-copy case. Anal. Chim. Acta, 2018, 1019, 111-118.
[http://dx.doi.org/10.1016/j.aca.2018.02.060] [PMID: 29625676]
[47]
Cheng, N.; Song, Y.; Zeinhom, M.M.A.; Chang, Y.C.; Sheng, L.; Li, H.; Du, D.; Li, L.; Zhu, M.J.; Luo, Y.; Xu, W.; Lin, Y. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces, 2017, 9(46), 40671-40680.
[http://dx.doi.org/10.1021/acsami.7b12734] [PMID: 28914522]
[48]
Cheng, N.; Song, Y.; Fu, Q.; Du, D.; Luo, Y.; Wang, Y.; Xu, W.; Lin, Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron., 2018, 117, 75-83.
[http://dx.doi.org/10.1016/j.bios.2018.06.002] [PMID: 29886189]
[49]
Cheng, N.; Shang, Y.; Xu, Y.; Zhang, L.; Luo, Y.; Huang, K.; Xu, W. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. Biosens. Bioelectron., 2017, 91, 408-416.
[http://dx.doi.org/10.1016/j.bios.2016.12.066] [PMID: 28064126]
[50]
Degliangeli, F.; Kshirsagar, P.; Brunetti, V.; Pompa, P.P.; Fiammengo, R. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes. J. Am. Chem. Soc., 2014, 136(6), 2264-2267.
[http://dx.doi.org/10.1021/ja412152x] [PMID: 24491135]
[51]
Lv, W. Robust and smart gold nanoparticles: one-step synthesis, tunable optical property, and switchable catalytic activity. J. Mater. Chem., 2011, 21(17), 6173-6178.
[http://dx.doi.org/10.1039/c0jm04180g]
[52]
Guo, Y-J. Multifunctional optical probe based on gold nanorods for detection and identification of cancer cells. Sens. Actuators B Chem., 2014, 191, 741-749.
[http://dx.doi.org/10.1016/j.snb.2013.10.027]
[53]
Chen, S. Synthesis of near-infrared responsive gold nanorod-doped gelatin/hydroxyapatite composite microspheres with controlled photo-thermal property. Ceram. Int., 2018, 44(1), 900-904.
[http://dx.doi.org/10.1016/j.ceramint.2017.10.020]
[54]
Zhou, Y.; Han, S.T.; Xu, Z.X.; Roy, V.A. The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer. Nanoscale, 2013, 5(5), 1972-1979.
[http://dx.doi.org/10.1039/c2nr32579a] [PMID: 23361624]
[55]
Russell, A.G. Gold nanoparticles allow optoplasmonic evaporation from open silica cells with a logarithmic approach to steady-state thermal profiles. J. Phys. Chem. C, 2010, 114(22), 10132-10139.
[http://dx.doi.org/10.1021/jp101762n]
[56]
Niu, W.; Chua, Y.A.; Zhang, W.; Huang, H.; Lu, X. Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc., 2015, 137(33), 10460-10463.
[http://dx.doi.org/10.1021/jacs.5b05321] [PMID: 26259023]
[57]
Fang, J.; Du, S.; Lebedkin, S.; Li, Z.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett., 2010, 10(12), 5006-5013.
[http://dx.doi.org/10.1021/nl103161q] [PMID: 21090587]
[58]
Yi, S. One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties. RSC Advances, 2013, 3(26), 10139-10144.
[http://dx.doi.org/10.1039/c3ra40716k]
[59]
Ghosh, D.; Chattopadhyay, N. Gold nanoparticles: Acceptors for efficient energy transfer from the photoexcited fluorophores. OPJ, 2013, 3(1), 18-26.
[http://dx.doi.org/10.4236/opj.2013.31004]
[60]
Burrows, N.D.; Lin, W.; Hinman, J.G.; Dennison, J.M.; Vartanian, A.M.; Abadeer, N.S.; Grzincic, E.M.; Jacob, L.M.; Li, J.; Murphy, C.J. Surface chemistry of gold nanorods. Langmuir, 2016, 32(39), 9905-9921.
[http://dx.doi.org/10.1021/acs.langmuir.6b02706] [PMID: 27568788]
[61]
Wang, Z.; Zhang, J.; Ekman, J.M.; Kenis, P.J.; Lu, Y. DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett., 2010, 10(5), 1886-1891.
[http://dx.doi.org/10.1021/nl100675p] [PMID: 20405820]
[62]
Ondera, T.J.; Hamme, A.T. II A gold nanopopcorn attached single-walled carbon nanotube hybrid for rapid detection and killing of bacteria. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(43), 7534-7543.
[http://dx.doi.org/10.1039/C4TB01195C] [PMID: 25414794]
[63]
Xu, Q. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens. Actuators B Chem., 2017, 241, 1008-1013.
[http://dx.doi.org/10.1016/j.snb.2016.11.021]
[64]
Zhang, L.; Huang, Y.; Wang, J.; Rong, Y.; Lai, W.; Zhang, J.; Chen, T. Hierarchical flowerlike gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157: H7. Langmuir, 2015, 31(19), 5537-5544.
[http://dx.doi.org/10.1021/acs.langmuir.5b00592] [PMID: 25919084]
[65]
Ngom, B.; Guo, Y.; Wang, X.; Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal. Chem., 2010, 397(3), 1113-1135.
[http://dx.doi.org/10.1007/s00216-010-3661-4] [PMID: 20422164]
[66]
Anfossi, L.; Baggiani, C.; Giovannoli, C.; D’Arco, G.; Giraudi, G. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal. Bioanal. Chem., 2013, 405(2-3), 467-480.
[http://dx.doi.org/10.1007/s00216-012-6033-4] [PMID: 22543716]
[67]
Mak, W.C. Lateral-flow technology: From visual to instrumental. Trends Analyt. Chem., 2016, 79, 297-305.
[http://dx.doi.org/10.1016/j.trac.2015.10.017]
[68]
Gong, X. A review of fluorescent signal-based lateral flow immunochromatographic strips. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(26), 5079-5091.
[http://dx.doi.org/10.1039/C7TB01049D]
[69]
Wang, K. The application of lateral flow immunoassay in point of care testing: a review. Nano Biomed. Eng., 2016, 8(3), 172-183.
[http://dx.doi.org/10.5101/nbe.v8i3.p172-183]
[70]
Singh, J.; Sharma, S.; Nara, S. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem., 2015, 170, 470-483.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.092] [PMID: 25306373]
[71]
Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron., 2015, 71, 230-242.
[http://dx.doi.org/10.1016/j.bios.2015.04.041] [PMID: 25912679]
[72]
Miočević, O.; Cole, C.R.; Laughlin, M.J.; Buck, R.L.; Slowey, P.D.; Shirtcliff, E.A. Quantitative lateral flow assays for salivary biomarker assessment: a review. Front. Public Health, 2017, 5, 133.
[http://dx.doi.org/10.3389/fpubh.2017.00133] [PMID: 28660183]
[73]
Jeong, S-G.; Kim, J.; Jin, S.H.; Park, K-S.; Lee, C-S. Flow control in paper-based microfluidic device for automatic multistep assays: a focused minireview. Korean J. Chem. Eng., 2016, 33(10), 2761-2770.
[74]
Eltzov, E. Lateral flow immunoassays–from paper strip to smartphone technology. Electroanalysis, 2015, 27(9), 2116-2130.
[http://dx.doi.org/10.1002/elan.201500237]
[75]
Wang, J.; Katani, R.; Li, L.; Hegde, N.; Roberts, E.L.; Kapur, V. DebRoy, C. Rapid detection of Escherichia coli O157 and shiga toxins by lateral flow immunoassays. Toxins (Basel), 2016, 8(4), 92.
[http://dx.doi.org/10.3390/toxins8040092] [PMID: 27023604]
[76]
Cheng, S.; Chen, M.H.; Zhang, G.G.; Yu, Z.B.; Liu, D.F.; Xiong, Y.H.; Wei, H.; Lai, W.H. Strategy for accurate detection of Escherichia Coli O157: H7 in ground pork using a lateral flow immunoassay. Sensors (Basel), 2017, 17(4), 753.
[http://dx.doi.org/10.3390/s17040753] [PMID: 28368342]
[77]
Wang, W. Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. Food Agric. Immunol., 2017, 28(2), 274-287.
[http://dx.doi.org/10.1080/09540105.2016.1263986]
[78]
Zeng, H.; Guo, W.; Liang, B.; Li, J.; Zhai, X.; Song, C.; Zhao, W.; Fan, E.; Liu, Q. Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli. Anal. Bioanal. Chem., 2016, 408(22), 6071-6078.
[http://dx.doi.org/10.1007/s00216-016-9715-5] [PMID: 27370686]
[79]
Song, C. Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157: H7 in bread, milk and jelly samples. Food Control, 2016, 59, 345-351.
[http://dx.doi.org/10.1016/j.foodcont.2015.06.012]
[80]
Cui, X. A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157: H7. RSC Advances, 2015, 5(56), 45092-45097.
[http://dx.doi.org/10.1039/C5RA06237C]
[81]
Alcaine, S.D.; Law, K.; Ho, S.; Kinchla, A.J.; Sela, D.A.; Nugen, S.R. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria. Biosens. Bioelectron., 2016, 82, 14-19.
[http://dx.doi.org/10.1016/j.bios.2016.03.047] [PMID: 27031186]
[82]
Kong, M.; Shin, J.H.; Heu, S.; Park, J.K.; Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron., 2017, 96, 173-177.
[http://dx.doi.org/10.1016/j.bios.2017.05.010] [PMID: 28494369]
[83]
Bruno, J.G. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens, 2014, 3(2), 341-355.
[http://dx.doi.org/10.3390/pathogens3020341] [PMID: 25437803]
[84]
Fang, Z.; Wu, W.; Lu, X.; Zeng, L. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens. Bioelectron., 2014, 56, 192-197.
[http://dx.doi.org/10.1016/j.bios.2014.01.015] [PMID: 24491961]
[85]
Wu, W.; Zhao, S.; Mao, Y.; Fang, Z.; Lu, X.; Zeng, L. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta, 2015, 861, 62-68.
[http://dx.doi.org/10.1016/j.aca.2014.12.041] [PMID: 25702275]
[86]
Tao, Y.; Yang, J.; Chen, L.; Huang, Y.; Qiu, B.; Guo, L.; Lin, Z. Dialysis assisted ligand exchange on gold nanorods: Amplification of the performance of a lateral flow immunoassay for E. coli O157:H7. Mikrochim. Acta, 2018, 185(7), 350.
[http://dx.doi.org/10.1007/s00604-018-2897-0] [PMID: 29967949]
[87]
Cho, I.H.; Bhunia, A.; Irudayaraj, J. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int. J. Food Microbiol., 2015, 206, 60-66.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.032] [PMID: 25955290]
[88]
Park, J.; Shin, J.H.; Park, J.K. Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem., 2016, 88(7), 3781-3788.
[http://dx.doi.org/10.1021/acs.analchem.5b04743] [PMID: 26977712]
[89]
Shin, J.H.; Hong, J.; Go, H.; Park, J.; Kong, M.; Ryu, S.; Kim, K.P.; Roh, E.; Park, J.K. Multiplexed detection of foodborne pathogens from contaminated lettuces using a handheld multistep lateral flow assay device. J. Agric. Food Chem., 2018, 66(1), 290-297.
[http://dx.doi.org/10.1021/acs.jafc.7b03582] [PMID: 29198101]
[90]
Ren, W.; Ballou, D.R.; FitzGerald, R.; Irudayaraj, J. Plasmonic enhancement in lateral flow sensors for improved sensing of E. coli O157:H7. Biosens. Bioelectron., 2019, 126, 324-331.
[http://dx.doi.org/10.1016/j.bios.2018.10.066] [PMID: 30453132]
[91]
Jin, S-A. Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157: H7. Mikrochim. Acta, 2017, 184(12), 4879-4886.
[http://dx.doi.org/10.1007/s00604-017-2524-5]
[92]
Wang, Y.; Qin, Z.; Boulware, D.R.; Pritt, B.S.; Sloan, L.M.; González, I.J.; Bell, D.; Rees-Channer, R.R.; Chiodini, P.; Chan, W.C.; Bischof, J.C. thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays. Anal. Chem., 2016, 88(23), 11774-11782.
[http://dx.doi.org/10.1021/acs.analchem.6b03406] [PMID: 27750420]
[93]
Zhang, D.; Du, S.; Su, S.; Wang, Y.; Zhang, H. Rapid detection method and portable device based on the photothermal effect of gold nanoparticles. Biosens. Bioelectron., 2019, 123, 19-24.
[http://dx.doi.org/10.1016/j.bios.2018.09.039] [PMID: 30292074]
[94]
Gumustas, A. Paper based lateral flow immunoassay for the enumeration of Escherichia coli in urine. Anal. Methods, 2018, 10(10), 1213-1218.
[http://dx.doi.org/10.1039/C7AY02974H]
[95]
Wang, R. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sens. Actuators B Chem., 2018, 270, 72-79.
[http://dx.doi.org/10.1016/j.snb.2018.04.162]
[96]
Liu, C-C.; Yeung, C.Y.; Chen, P.H.; Yeh, M.K.; Hou, S.Y. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem., 2013, 141(3), 2526-2532.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.089] [PMID: 23870991]
[97]
Ben, A.A.; Jara, J.J.; Sebastián, R.M.; Vallribera, A.; Campoy, S.; Pividori, M.I. Comparing nucleic acid lateral flow and electrochemical genosensing for the simultaneous detection of foodborne pathogens. Biosens. Bioelectron., 2017, 88, 265-272.
[http://dx.doi.org/10.1016/j.bios.2016.08.046] [PMID: 27599431]
[98]
Blažková, M. Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeriamonocytogenes in food. Eur. Food Res. Technol., 2009, 229(6), 867.
[http://dx.doi.org/10.1007/s00217-009-1115-z]
[99]
Nihonyanagi, S.; Kanoh, Y.; Okada, K.; Uozumi, T.; Kazuyama, Y.; Yamaguchi, T.; Nakazaki, N.; Sakurai, K.; Hirata, Y.; Munekata, S.; Ohtani, S.; Takemoto, T.; Bandoh, Y.; Akahoshi, T. Clinical usefulness of multiplex PCR lateral flow in MRSA detection: a novel, rapid genetic testing method. Inflammation, 2012, 35(3), 927-934.
[http://dx.doi.org/10.1007/s10753-011-9395-4] [PMID: 21994180]
[100]
Wang, J.; Wang, X.; Li, Y.; Yan, S.; Zhou, Q.; Gao, B.; Peng, J.; Du, J.; Fu, Q.; Jia, S.; Zhang, J.; Zhan, L. A novel, universal and sensitive lateral-flow based method for the detection of multiple bacterial contamination in platelet concentrations. Anal. Sci., 2012, 28(3), 237-241.
[http://dx.doi.org/10.2116/analsci.28.237] [PMID: 22451363]
[101]
Ang, G.Y.; Yu, C.Y.; Yean, C.Y. Ambient temperature detection of PCR amplicons with a novel sequence-specific nucleic acid lateral flow biosensor. Biosens. Bioelectron., 2012, 38(1), 151-156.
[http://dx.doi.org/10.1016/j.bios.2012.05.019] [PMID: 22705404]
[102]
Zhan, F.; Wang, T.; Iradukunda, L.; Zhan, J. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Anal. Chim. Acta, 2018, 1036, 153-161.
[http://dx.doi.org/10.1016/j.aca.2018.06.083] [PMID: 30253826]
[103]
Chen, Y.; Cheng, N.; Xu, Y.; Huang, K.; Luo, Y.; Xu, W. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens. Bioelectron., 2016, 81, 317-323.
[http://dx.doi.org/10.1016/j.bios.2016.03.006] [PMID: 26985584]
[104]
Nurul Najian, A.B.; Engku Nur Syafirah, E.A.; Ismail, N.; Mohamed, M.; Yean, C.Y. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal. Chim. Acta, 2016, 903, 142-148.
[http://dx.doi.org/10.1016/j.aca.2015.11.015] [PMID: 26709307]
[105]
Phillips, E.A.; Moehling, T.J.; Bhadra, S.; Ellington, A.D.; Linnes, J.C. Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal. Chem., 2018, 90(11), 6580-6586.
[http://dx.doi.org/10.1021/acs.analchem.8b00269] [PMID: 29667809]
[106]
Park, B.H.; Oh, S.J.; Jung, J.H.; Choi, G.; Seo, J.H.; Kim, D.H.; Lee, E.Y.; Seo, T.S. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens. Bioelectron., 2017, 91, 334-340.
[http://dx.doi.org/10.1016/j.bios.2016.11.063] [PMID: 28043075]
[107]
Xu, Y.; Wei, Y.; Cheng, N.; Huang, K.; Wang, W.; Zhang, L.; Xu, W.; Luo, Y. Nucleic acid biosensor synthesis of an all-in-one universal blocking linker recombinase polymerase amplification with a peptide nucleic acid-based lateral flow device for ultrasensitive detection of food pathogens. Anal. Chem., 2018, 90(1), 708-715.
[http://dx.doi.org/10.1021/acs.analchem.7b01912] [PMID: 29202232]
[108]
Jauset-Rubio, M.; Tomaso, H.; El-Shahawi, M.S.; Bashammakh, A.S.; Al-Youbi, A.O.; O’Sullivan, C.K. Duplex lateral flow assay for the simultaneous detection of yersinia pestis and francisella tularensis. Anal. Chem., 2018, 90(21), 12745-12751.
[http://dx.doi.org/10.1021/acs.analchem.8b03105] [PMID: 30296053]
[109]
Kim, T.H.; Park, J.; Kim, C.J.; Cho, Y.K. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal. Chem., 2014, 86(8), 3841-3848.
[http://dx.doi.org/10.1021/ac403971h] [PMID: 24635032]
[110]
Liu, H.B.; Du, X.J.; Zang, Y.X.; Li, P.; Wang, S. SERS-based lateral flow strip biosensor for simultaneous detection of listeria monocytogenes and Salmonella enterica serotype enteritidis. J. Agric. Food Chem., 2017, 65(47), 10290-10299.
[http://dx.doi.org/10.1021/acs.jafc.7b03957] [PMID: 29095602]
[111]
Ying, N.; Ju, C.; Li, Z.; Liu, W.; Wan, J. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talanta, 2017, 164, 432-438.
[http://dx.doi.org/10.1016/j.talanta.2016.10.098] [PMID: 28107953]
[112]
Tarr, G.A.M.; Shringi, S.; Phipps, A.I.; Besser, T.E.; Mayer, J.; Oltean, H.N.; Wakefield, J.; Tarr, P.I.; Rabinowitz, P. Geogenomic segregation and temporal trends of human pathogenic escherichia coli O157:H7, Washington, USA, 2005-2014. Emerg. Infect. Dis., 2018, 24(1), 32-39.
[http://dx.doi.org/10.3201/eid2401.170851] [PMID: 29260688]
[113]
Vanitha, H. An epidemiological investigation on occurrence of enterohemorrhagic Escherichia coli in raw milk. Vet. World, 2018, 11(8), 1164-1170.
[114]
Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis., 2005, 11(4), 603-609.
[http://dx.doi.org/10.3201/eid1104.040739] [PMID: 15829201]
[115]
Liu, J.; Mazumdar, D.; Lu, Y. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. Engl., 2006, 45(47), 7955-7959.
[http://dx.doi.org/10.1002/anie.200603106] [PMID: 17094149]
[116]
Zhou, W.; Kong, W.; Dou, X.; Zhao, M.; Ouyang, Z.; Yang, M. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1022, 102-108.
[http://dx.doi.org/10.1016/j.jchromb.2016.04.016] [PMID: 27085019]
[117]
Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron., 2005, 20(12), 2424-2434.
[http://dx.doi.org/10.1016/j.bios.2004.11.006] [PMID: 15854817]
[118]
Kim, Y.S.; Raston, N.H.; Gu, M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron., 2016, 76, 2-19.
[http://dx.doi.org/10.1016/j.bios.2015.06.040] [PMID: 26139320]
[119]
Qin, Z.; Chan, W.C.; Boulware, D.R.; Akkin, T.; Butler, E.K.; Bischof, J.C. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew. Chem. Int. Ed. Engl., 2012, 51(18), 4358-4361.
[http://dx.doi.org/10.1002/anie.201200997] [PMID: 22447488]
[120]
Nie, S.; Emory, S.R. S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science.,, 1997, 275(5303), 1102-1106.
[http://dx.doi.org/10.1126/science.275.5303.1102]
[121]
Gao, X.; Zheng, P.; Kasani, S.; Wu, S.; Yang, F.; Lewis, S.; Nayeem, S.; Engler-Chiurazzi, E.B.; Wigginton, J.G.; Simpkins, J.W.; Wu, N. Paper-based surface-enhanced raman scattering lateral flow strip for detection of neuron-specific enolase in blood plasma. Anal. Chem., 2017, 89(18), 10104-10110.
[http://dx.doi.org/10.1021/acs.analchem.7b03015] [PMID: 28817769]
[122]
Maneeprakorn, W. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Advances, 2016, 6(113), 112079-112085.
[http://dx.doi.org/10.1039/C6RA24418A]
[123]
Randall, C.P.; Gupta, A.; Jackson, N.; Busse, D.; O’Neill, A.J. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother., 2015, 70(4), 1037-1046.
[http://dx.doi.org/10.1093/jac/dku523] [PMID: 25567964]
[124]
Ong, P.Y.; Leung, D.Y. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin. Rev. Allergy Immunol., 2016, 51(3), 329-337.
[http://dx.doi.org/10.1007/s12016-016-8548-5] [PMID: 27377298]
[125]
Png, C.W.; Lindén, S.K.; Gilshenan, K.S. Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol., 2010, 105(11), 2420-2428.
[http://dx.doi.org/10.1038/ajg.2010.281] [PMID: 20648002]
[126]
Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res., 2013, 41(15), 7429-7437.
[http://dx.doi.org/10.1093/nar/gkt520] [PMID: 23761437]
[127]
Nelson, K.E.; Fouts, D.E.; Mongodin, E.F.; Ravel, J.; DeBoy, R.T.; Kolonay, J.F.; Rasko, D.A.; Angiuoli, S.V.; Gill, S.R.; Paulsen, I.T.; Peterson, J.; White, O.; Nelson, W.C.; Nierman, W.; Beanan, M.J.; Brinkac, L.M.; Daugherty, S.C.; Dodson, R.J.; Durkin, A.S.; Madupu, R.; Haft, D.H.; Selengut, J.; Van Aken, S.; Khouri, H.; Fedorova, N.; Forberger, H.; Tran, B.; Kathariou, S.; Wonderling, L.D.; Uhlich, G.A.; Bayles, D.O.; Luchansky, J.B.; Fraser, C.M. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res., 2004, 32(8), 2386-2395.
[http://dx.doi.org/10.1093/nar/gkh562] [PMID: 15115801]
[128]
Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7687-7692.
[http://dx.doi.org/10.1073/pnas.122108599] [PMID: 12032344]
[129]
Becker, K.; Denis, O.; Roisin, S.; Mellmann, A.; Idelevich, E.A.; Knaack, D.; van Alen, S.; Kriegeskorte, A.; Köck, R.; Schaumburg, F.; Peters, G.; Ballhausen, B. Detection of mecA-and mecC-positive methicillin-resistant Staphylococcus aureus (MRSA) isolates by the new Xpert MRSA Gen 3 PCR assay. J. Clin. Microbiol., 2016, 54(1), 180-184.
[http://dx.doi.org/10.1128/JCM.02081-15] [PMID: 26491186]
[130]
Basanisi, M.G.; La Bella, G.; Nobili, G.; Franconieri, I.; La Salandra, G. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol., 2017, 62, 141-146.
[http://dx.doi.org/10.1016/j.fm.2016.10.020] [PMID: 27889140]
[131]
Liu, F.; Liu, H.; Liao, Y.; Wei, J.; Zhou, X.; Xing, D. Multiplex detection and genotyping of pathogenic bacteria on paper-based biosensor with a novel universal primer mediated asymmetric PCR. Biosens. Bioelectron., 2015, 74, 778-785.
[http://dx.doi.org/10.1016/j.bios.2015.06.054] [PMID: 26226347]
[132]
Heiat, M.; Ranjbar, R.; Latifi, A.M.; Rasaee, M.J.; Farnoosh, G. Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers. Biotechnol. Appl. Biochem., 2017, 64(4), 541-548.
[http://dx.doi.org/10.1002/bab.1507] [PMID: 27222205]
[133]
Yang, G. Construction of gene chip for detecting NDV-IBV-ILTV of chicken (Gallus gallus) with asymmetric PCR. J. Agric. Biotechnol., 2016, 24(1), 142-150.
[134]
Sanchez, J.A.; Pierce, K.E.; Rice, J.E.; Wangh, L.J. Linear-after-the-exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 1933-1938.
[http://dx.doi.org/10.1073/pnas.0305476101] [PMID: 14769930]
[135]
Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol., 2015, 53(1), 1-5.
[http://dx.doi.org/10.1007/s12275-015-4656-9] [PMID: 25557475]
[136]
Njiru, Z.K. Loop-mediated isothermal amplification technology: Towards point of care diagnostics. PLoS Negl. Trop. Dis., 2012, 6(6)e1572
[http://dx.doi.org/10.1371/journal.pntd.0001572] [PMID: 22745836]
[137]
Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP): Recent progress in research and development. J. Infect. Chemother., 2013, 19(3), 404-411.
[http://dx.doi.org/10.1007/s10156-013-0590-0] [PMID: 23539453]
[138]
Le, D.T.; Vu, N.T. Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases. Appl. Biolog. Chem., 2017, 60(2), 169-180.
[http://dx.doi.org/10.1007/s13765-017-0267-y]
[139]
Priye, A. Loop-Mediated Isothermal Amplification (LAMP): An insight into reaction mechanism and application in point-of-care diagnostics; Sandia National Lab: Livermore, CA, 2016.
[140]
Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol., 2018, 124(3), 626-643.
[http://dx.doi.org/10.1111/jam.13647] [PMID: 29165905]
[141]
Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem., 2016, 62(7), 947-958.
[http://dx.doi.org/10.1373/clinchem.2015.245829] [PMID: 27160000]
[142]
Lillis, L.; Siverson, J.; Lee, A.; Cantera, J.; Parker, M.; Piepenburg, O.; Lehman, D.A.; Boyle, D.S. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol. Cell. Probes, 2016, 30(2), 74-78.
[http://dx.doi.org/10.1016/j.mcp.2016.01.009] [PMID: 26854117]
[143]
James, A.; Macdonald, J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev. Mol. Diagn., 2015, 15(11), 1475-1489.
[http://dx.doi.org/10.1586/14737159.2015.1090877] [PMID: 26517245]
[144]
Bi, S.; Yue, S.; Zhang, S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev., 2017, 46(14), 4281-4298.
[http://dx.doi.org/10.1039/C7CS00055C] [PMID: 28573275]
[145]
Bi, S.; Chen, M.; Jia, X.; Dong, Y.; Wang, Z. Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew. Chem. Int. Ed. Engl., 2015, 54(28), 8144-8148.
[http://dx.doi.org/10.1002/anie.201501457] [PMID: 26012841]
[146]
Hou, T.; Li, W.; Liu, X.; Li, F. Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: A facile, sensitive, and highly specific microRNA assay. Anal. Chem., 2015, 87(22), 11368-11374.
[http://dx.doi.org/10.1021/acs.analchem.5b02790] [PMID: 26523931]
[147]
Koos, B.; Cane, G.; Grannas, K.; Löf, L.; Arngården, L.; Heldin, J.; Clausson, C.M.; Klaesson, A.; Hirvonen, M.K.; de Oliveira, F.M.; Talibov, V.O.; Pham, N.T.; Auer, M.; Danielson, U.H.; Haybaeck, J.; Kamali-Moghaddam, M.; Söderberg, O. Proximity-dependent initiation of hybridization chain reaction. Nat. Commun., 2015, 6, 7294.
[http://dx.doi.org/10.1038/ncomms8294] [PMID: 26065580]
[148]
Yang, D. Hybridization chain reaction directed DNA superstructures assembly for biosensing applications. Trends Analyt. Chem., 2017, 94, 1-13.
[http://dx.doi.org/10.1016/j.trac.2017.06.011]
[149]
Yamaguchi, T.; Kawakami, S.; Hatamoto, M.; Imachi, H.; Takahashi, M.; Araki, N.; Yamaguchi, T.; Kubota, K. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ. Microbiol., 2015, 17(7), 2532-2541.
[http://dx.doi.org/10.1111/1462-2920.12745] [PMID: 25523128]
[150]
Guo, Q.; Han, J.J.; Shan, S.; Liu, D.F.; Wu, S.S.; Xiong, Y.H.; Lai, W.H. DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157: H7 through ELISA. Biosens. Bioelectron., 2016, 86, 990-995.
[http://dx.doi.org/10.1016/j.bios.2016.07.049] [PMID: 27498326]
[151]
Tang, J.; Wang, Z.; Zhou, J.; Lu, Q.; Deng, L. Enzyme-free hybridization chain reaction-based signal amplification strategy for the sensitive detection of Staphylococcus aureus. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 215, 41-47.
[http://dx.doi.org/10.1016/j.saa.2019.02.035] [PMID: 30818216]