Current Topics in Medicinal Chemistry

Author(s): Huiqiong Jia, Mohamed S. Draz and Zhi Ruan*

DOI: 10.2174/1568026619666191023123407

Functional Nanomaterials for the Detection and Control of Bacterial Infections

Page: [2449 - 2475] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.

Keywords: Bacteria, Detection, Therapy, Toxicity, Nanoparticles, Antibiotic resistance.

Graphical Abstract

[1]
Cohen, J. Confronting the threat of multidrug-resistant Gram-negative bacteria in critically ill patients. J. Antimicrob. Chemother., 2013, 68(3), 490-491.
[http://dx.doi.org/10.1093/jac/dks460] [PMID: 23152481]
[2]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x]
[3]
Lammie, S.L.; Hughes, J.M. antimicrobial resistance, food safety and one health: The need for convergence. Annu. Rev. Food Sci. Technol., 2016, 7, 287-312.
[http://dx.doi.org/10.1146/annurev-food-041715-033251] [PMID: 26772408]
[4]
Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-e18.
[http://dx.doi.org/10.1128/CMR.00020-18] [PMID: 30209034]
[5]
Koch, A.; Cox, H.; Mizrahi, V. Drug-resistant tuberculosis: challenges and opportunities for diagnosis and treatment. Curr. Opin. Pharmacol., 2018, 42, 7-15.
[http://dx.doi.org/10.1016/j.coph.2018.05.013] [PMID: 29885623]
[6]
Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/biggest_threats.html(Accessed. 2018.
[7]
Tackling Drug-Resistant Infections Globally. http://amr-review.org/(Accessed. 2018.
[8]
Buchan, B.W.; Ledeboer, N.A. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev., 2014, 27(4), 783-822.
[http://dx.doi.org/10.1128/CMR.00003-14] [PMID: 25278575]
[9]
Lazcka, O.; Del Campo, F.J.; Muñoz, F.X. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron., 2007, 22(7), 1205-1217.
[http://dx.doi.org/10.1016/j.bios.2006.06.036] [PMID: 16934970]
[10]
Whitesides, G.M. Nanoscience, nanotechnology, and chemistry. Small, 2005, 1(2), 172-179.
[http://dx.doi.org/10.1002/smll.200400130] [PMID: 17193427]
[11]
Lee, D.E.; Koo, H.; Sun, I.C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 2012, 41(7), 2656-2672.
[http://dx.doi.org/10.1039/C2CS15261D] [PMID: 22189429]
[12]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[13]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[14]
Bamrungsap, S.; Zhao, Z.; Chen, T.; Wang, L.; Li, C.; Fu, T.; Tan, W. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond.), 2012, 7(8), 1253-1271.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[15]
Vilela, D.; González, M.C.; Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal. Chim. Acta, 2012, 751, 24-43.
[http://dx.doi.org/10.1016/j.aca.2012.08.043] [PMID: 23084049]
[16]
Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58, 267-297.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607] [PMID: 17067281]
[17]
Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, 111(6), 3828-3857.
[http://dx.doi.org/10.1021/cr100313v] [PMID: 21648956]
[18]
Guillot, N.; Shen, H.; Frémaux, B.; Péron, O.; Rinnert, E.; Toury, T.; Lamy de la Chapelle, M. Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength. Appl. Phys. Lett., 2010, 97(2)023113
[http://dx.doi.org/10.1063/1.3462068]
[19]
Jamshaid, T.; Neto, E.T.T.; Eissa, M.M.; Zine, N.; Kunita, M.H.; El-Salhi, A.E.; Elaissari, A. Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Trends Analyt. Chem., 2016, 79, 344-362.
[http://dx.doi.org/10.1016/j.trac.2015.10.022]
[20]
Koh, I.; Josephson, L. Magnetic nanoparticle sensors. Sensors (Basel), 2009, 9(10), 8130-8145.
[http://dx.doi.org/10.3390/s91008130] [PMID: 22408498]
[21]
Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem., 2004, 14(14), 2161.
[http://dx.doi.org/10.1039/b402025a]
[22]
Dwivedi, G.R. Sanchita; Singh, D.P.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Nano particles: Emerging warheads against bacterial superbugs. Curr. Top. Med. Chem., 2016, 16(18), 1963-1975.
[http://dx.doi.org/10.2174/1568026616666160215154556] [PMID: 26876525]
[23]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[24]
Edson, J.A.; Kwon, Y.J. RNAi for silencing drug resistance in microbes toward development of nanoantibiotics. J. Control. Release, 2014, 189, 150-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.054] [PMID: 24995951]
[25]
Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based Complement. Alternat. Med., 2015, 2015246012
[http://dx.doi.org/10.1155/2015/246012] [PMID: 25861355]
[26]
Ray, P.C.; Khan, S.A.; Singh, A.K.; Senapati, D.; Fan, Z. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev., 2012, 41(8), 3193-3209.
[http://dx.doi.org/10.1039/c2cs15340h] [PMID: 22331210]
[27]
Yuan, P.; Ding, X.; Yang, Y.Y.; Xu, Q.H. Metal nanoparticles for diagnosis and therapy of bacterial infection. Adv. Healthc. Mater., 2018, 7(13)e1701392
[http://dx.doi.org/10.1002/adhm.201701392] [PMID: 29582578]
[28]
Daniel, M-C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[29]
Eustis, S.; el-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006, 35(3), 209-217.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[30]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60(11), 1307-1315.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[31]
Brown, S.D.; Nativo, P.; Smith, J-A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132(13), 4678-4684.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[32]
Pissuwan, D.; Niidome, T.; Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release, 2011, 149(1), 65-71.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.006] [PMID: 20004222]
[33]
Deng, R.; Shen, N.; Yang, Y.; Yu, H.; Xu, S.; Yang, Y.W.; Liu, S.; Meguellati, K.; Yan, F. Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 80-90.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.013] [PMID: 29554483]
[34]
Zeng, S.; Yong, K-T.; Roy, I.; Dinh, X-Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 2011, 6(3), 491-506.
[http://dx.doi.org/10.1007/s11468-011-9228-1]
[35]
Jazayeri, M.H.; Aghaie, T.; Avan, A.; Vatankhah, A.; Ghaffari, M.R.S. Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens. Biosensing Res., 2018, 20, 1-8.
[http://dx.doi.org/10.1016/j.sbsr.2018.05.002]
[36]
Su, H.; Ma, Q.; Shang, K.; Liu, T.; Yin, H.; Ai, S. Gold nanoparticles as colorimetric sensor: A case study on E. coli O157:H7 as a model for Gram-negative bacteria. Sens. Actuators B Chem., 2012, 161(1), 298-303.
[http://dx.doi.org/10.1016/j.snb.2011.10.035]
[37]
Raj, V.; Vijayan, A.N.; Joseph, K. Cysteine capped gold nanoparticles for naked eye detection of E. coli bacteria in UTI patients. Sens. Biosensing Res., 2015, 5, 33-36.
[http://dx.doi.org/10.1016/j.sbsr.2015.05.004]
[38]
Verdoodt, N.; Basso, C.R.; Rossi, B.F.; Pedrosa, V.A. Development of a rapid and sensitive immunosensor for the detection of bacteria. Food Chem., 2017, 221, 1792-1796.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.102] [PMID: 27979163]
[39]
Ma, X.; Song, L.; Zhou, N.; Xia, Y.; Wang, Z. A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int. J. Food Microbiol., 2017, 245, 1-5.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.12.024] [PMID: 28107686]
[40]
Xu, Z.; Bi, X.; Huang, Y.; Che, Z.; Chen, X.; Fu, M.; Tian, H.; Yang, S. Sensitive colorimetric detection of Salmonella enteric serovar typhimurium based on a gold nanoparticle conjugated bifunctional oligonucleotide probe and aptamer. J. Food Saf., 2018, 38(5)e12482
[http://dx.doi.org/10.1111/jfs.12482]
[41]
Hubbard, B.K.; Walsh, C.T. Vancomycin assembly: nature’s way. Angew. Chem. Int. Ed. Engl., 2003, 42(7), 730-765.
[http://dx.doi.org/10.1002/anie.200390202] [PMID: 12596194]
[42]
You, Q.; Zhang, X.; Wu, F-G.; Chen, Y. Colorimetric and test stripe-based assay of bacteria by using vancomycin-modified gold nanoparticles. Sens. Actuators B Chem., 2019, 281, 408-414.
[http://dx.doi.org/10.1016/j.snb.2018.10.103]
[43]
Thiramanas, R.; Laocharoensuk, R. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria. Mikrochim. Acta, 2016, 183(1), 389-396.
[http://dx.doi.org/10.1007/s00604-015-1657-7]
[44]
Chan, P.H.; Wong, S.Y.; Lin, S.H.; Chen, Y.C. Lysozyme-encapsulated gold nanocluster-based affinity mass spectrometry for pathogenic bacteria. Rapid Commun. Mass Spectrom., 2013, 27(19), 2143-2148.
[http://dx.doi.org/10.1002/rcm.6674] [PMID: 23996387]
[45]
Lai, H.Z.; Wang, S.G.; Wu, C.Y.; Chen, Y.C. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2015, 87(4), 2114-2120.
[http://dx.doi.org/10.1021/ac503097v] [PMID: 25587929]
[46]
Ma, X.; Xu, X.; Xia, Y.; Wang, Z. SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles. Food Control, 2018, 84, 232-237.
[http://dx.doi.org/10.1016/j.foodcont.2017.07.016]
[47]
Pissuwan, D.; Cortie, C.H.; Valenzuela, S.M.; Cortie, M.B. Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol., 2010, 28(4), 207-213.
[http://dx.doi.org/10.1016/j.tibtech.2009.12.004] [PMID: 20071044]
[48]
Bhattacharya, D.; Saha, B.; Mukherjee, A.; Ranjan Santra, C.; Karmakar, P. Gold nanoparticles conjugated antibiotics: Stability and functional evaluation. Nanosci. Nanotechnol., 2012, 2(2), 14-21.
[http://dx.doi.org/10.5923/j.nn.20120202.04]
[49]
Payne, J.N.; Waghwani, H.K.; Connor, M.G.; Hamilton, W.; Tockstein, S.; Moolani, H.; Chavda, F.; Badwaik, V.; Lawrenz, M.B.; Dakshinamurthy, R. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front. Microbiol., 2016, 7, 607.
[http://dx.doi.org/10.3389/fmicb.2016.00607] [PMID: 27330535]
[50]
Kalita, S.; Kandimalla, R.; Sharma, K.K.; Kataki, A.C.; Deka, M.; Kotoky, J. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater. Sci. Eng. C, 2016, 61, 720-727.
[http://dx.doi.org/10.1016/j.msec.2015.12.078] [PMID: 26838902]
[51]
Bagga, P.; Siddiqui, H.H.; Akhtar, J.; Mahmood, T.; Zahera, M.; Khan, M.S. Gold nanoparticles conjugated levofloxacin: For improved antibacterial activity over levofloxacin alone. Curr. Drug Deliv., 2017, 14(8), 1114-1119.
[http://dx.doi.org/10.2174/1567201814666170316113432] [PMID: 28302030]
[52]
Cui, Y.; Zhao, Y.; Tian, Y.; Zhang, W.; Lü, X.; Jiang, X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 2012, 33(7), 2327-2333.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.057] [PMID: 22182745]
[53]
Zhao, Y.; Chen, Z.; Chen, Y.; Xu, J.; Li, J.; Jiang, X. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J. Am. Chem. Soc., 2013, 135(35), 12940-12943.
[http://dx.doi.org/10.1021/ja4058635] [PMID: 23957534]
[54]
Peng, L.H.; Huang, Y.F.; Zhang, C.Z.; Niu, J.; Chen, Y.; Chu, Y.; Jiang, Z.H.; Gao, J.Q.; Mao, Z.W. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials, 2016, 103, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.057] [PMID: 27376562]
[55]
Yeom, J.H.; Lee, B.; Kim, D.; Lee, J.K.; Kim, S.; Bae, J.; Park, Y.; Lee, K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials, 2016, 104, 43-51.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.009] [PMID: 27424215]
[56]
Singh, R.; Patil, S.; Singh, N.; Gupta, S. Dual functionality nanobioconjugates targeting intracellular bacteria in cancer cells with enhanced antimicrobial activity. Sci. Rep., 2017, 7(1), 5792.
[http://dx.doi.org/10.1038/s41598-017-06014-4] [PMID: 28724927]
[57]
Mocan, L.; Ilie, I.; Matea, C.; Tabaran, F.; Kalman, E.; Iancu, C.; Mocan, T. Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus. Int. J. Nanomedicine, 2014, 9, 1453-1461.
[http://dx.doi.org/10.2147/IJN.S54950] [PMID: 24711697]
[58]
Mocan, L.; Matea, C.; Tabaran, F.A.; Mosteanu, O.; Pop, T.; Puia, C.; Agoston-Coldea, L.; Gonciar, D.; Kalman, E.; Zaharie, G.; Iancu, C.; Mocan, T. Selective in vitro photothermal nano-therapy of MRSA infections mediated by IgG conjugated gold nanoparticles. Sci. Rep., 2016, 6, 39466.
[http://dx.doi.org/10.1038/srep39466] [PMID: 28008938]
[59]
Meeker, D.G.; Jenkins, S.V.; Miller, E.K.; Beenken, K.E.; Loughran, A.J.; Powless, A.; Muldoon, T.J.; Galanzha, E.I.; Zharov, V.P.; Smeltzer, M.S.; Chen, J. Synergistic photothermal and antibiotic killing of biofilm-associated staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect. Dis., 2016, 2(4), 241-250.
[http://dx.doi.org/10.1021/acsinfecdis.5b00117] [PMID: 27441208]
[60]
Silvero, C.M.J.; Rocca, D.M.; de la Villarmois, E.A.; Fournier, K.; Lanterna, A.E.; Pérez, M.F.; Becerra, M.C.; Scaiano, J.C. Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility. ACS Omega, 2018, 3(1), 1220-1230.
[http://dx.doi.org/10.1021/acsomega.7b01779] [PMID: 30023798]
[61]
Krutyakov, Y.A.; Kudrinskiy, A.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: advances and prospects. Russ. Chem. Rev., 2008, 77(3), 233-257.
[http://dx.doi.org/10.1070/RC2008v077n03ABEH003751]
[62]
Yang, Y.; Matsubara, S.; Xiong, L.; Hayakawa, T.; Nogami, M. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J. Phys. Chem. C, 2007, 111(26), 9095-9104.
[http://dx.doi.org/10.1021/jp068859b]
[63]
Zhao, X.; Li, M.; Xu, Z. Detection of foodborne pathogens by surface enhanced raman spectroscopy. Front. Microbiol., 2018, 9, 1236.
[http://dx.doi.org/10.3389/fmicb.2018.01236] [PMID: 29946307]
[64]
Durán, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol., 2007, 3(2), 203-208.
[http://dx.doi.org/10.1166/jbn.2007.022]
[65]
Anisha, B.S.; Biswas, R.; Chennazhi, K.P.; Jayakumar, R. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol., 2013, 62, 310-320.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.011] [PMID: 24060281]
[66]
Knetsch, M.L.W.; Koole, L.H. New Strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers (Basel), 2011, 3(1), 340-366.
[http://dx.doi.org/10.3390/polym3010340]
[67]
Haider, A.; Kang, I-K. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review. Adv. Mater. Sci. Eng., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/165257]
[68]
Naja, G.; Bouvrette, P.; Hrapovic, S.; Luong, J.H. Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst (Lond.), 2007, 132(7), 679-686.
[http://dx.doi.org/10.1039/b701160a] [PMID: 17592587]
[69]
Liu, T.T.; Lin, Y.H.; Hung, C.S.; Liu, T.J.; Chen, Y.; Huang, Y.C.; Tsai, T.H.; Wang, H.H.; Wang, D.W.; Wang, J.K.; Wang, Y.L.; Lin, C.H. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS One, 2009, 4(5)e5470
[http://dx.doi.org/10.1371/journal.pone.0005470] [PMID: 19421405]
[70]
Yang, D.; Zhou, H.; Haisch, C.; Niessner, R.; Ying, Y. Reproducible, E. Reproducible E. coli detection based on label-free SERS and mapping. Talanta, 2016, 146, 457-463.
[http://dx.doi.org/10.1016/j.talanta.2015.09.006] [PMID: 26695290]
[71]
Zhang, Q.; Wang, X-D.; Tian, T.; Chu, L-Q. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection. Appl. Surf. Sci., 2017, 407, 185-191.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.202]
[72]
Gasparyan, V.K.; Bazukyan, I.L. Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria. Anal. Chim. Acta, 2013, 766, 83-87.
[http://dx.doi.org/10.1016/j.aca.2012.12.015] [PMID: 23427804]
[73]
Zhou, H.; Yang, D.; Ivleva, N.P.; Mircescu, N.E.; Niessner, R.; Haisch, C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem., 2014, 86(3), 1525-1533.
[http://dx.doi.org/10.1021/ac402935p] [PMID: 24387044]
[74]
Zhou, H.; Yang, D.; Ivleva, N.P.; Mircescu, N.E.; Schubert, S.; Niessner, R.; Wieser, A.; Haisch, C. Label-free in situ discrimination of live and dead bacteria by surface-enhanced raman scattering. Anal. Chem., 2015, 87(13), 6553-6561.
[http://dx.doi.org/10.1021/acs.analchem.5b01271] [PMID: 26017069]
[75]
Chen, L.; Mungroo, N.; Daikuara, L.; Neethirajan, S. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. J. Nanobiotechnology, 2015, 13, 45.
[http://dx.doi.org/10.1186/s12951-015-0106-4] [PMID: 26108554]
[76]
Gao, W.; Li, B.; Yao, R.; Li, Z.; Wang, X.; Dong, X.; Qu, H.; Li, Q.; Li, N.; Chi, H.; Zhou, B.; Xia, Z. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis. Anal. Chem., 2017, 89(18), 9836-9842.
[http://dx.doi.org/10.1021/acs.analchem.7b01813] [PMID: 28803475]
[77]
Zheng, L.; Qi, P.; Zhang, D. A simple, rapid and cost-effective colorimetric assay based on the 4-mercaptophenylboronic acid functionalized silver nanoparticles for bacteria monitoring. Sens. Actuators B Chem., 2018, 260, 983-989.
[http://dx.doi.org/10.1016/j.snb.2018.01.115]
[78]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9)e1534
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[79]
Taglietti, A.; Arciola, C.R.; D’Agostino, A.; Dacarro, G.; Montanaro, L.; Campoccia, D.; Cucca, L.; Vercellino, M.; Poggi, A.; Pallavicini, P.; Visai, L. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials, 2014, 35(6), 1779-1788.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.047] [PMID: 24315574]
[80]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[81]
Li, J.; Tang, M.; Xue, Y. Review of the effects of silver nanoparticle exposure on gut bacteria. J. Appl. Toxicol., 2019, 39(1), 27-37.
[http://dx.doi.org/10.1002/jat.3729] [PMID: 30247756]
[82]
Yang, X.; Gondikas, A.P.; Marinakos, S.M.; Auffan, M.; Liu, J.; Hsu-Kim, H.; Meyer, J.N. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol., 2012, 46(2), 1119-1127.
[http://dx.doi.org/10.1021/es202417t] [PMID: 22148238]
[83]
Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. Size and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials (Basel), 2016, 6(4)E74
[http://dx.doi.org/10.3390/nano6040074] [PMID: 28335201]
[84]
Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 2014, 4(8), 3974-3983.
[http://dx.doi.org/10.1039/C3RA44507K]
[85]
Kubo, A.L.; Capjak, I.; Vrček, I.V.; Bondarenko, O.M.; Kurvet, I.; Vija, H.; Ivask, A.; Kasemets, K.; Kahru, A. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids Surf. B Biointerfaces, 2018, 170, 401-410.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.027] [PMID: 29945052]
[86]
Wang, X.; Ji, Z.; Chang, C.H.; Zhang, H.; Wang, M.; Liao, Y.P.; Lin, S.; Meng, H.; Li, R.; Sun, B.; Winkle, L.V.; Pinkerton, K.E.; Zink, J.I.; Xia, T.; Nel, A.E. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small, 2014, 10(2), 385-398.
[http://dx.doi.org/10.1002/smll.201301597] [PMID: 24039004]
[87]
Acharya, D.; Singha, K.M.; Pandey, P.; Mohanta, B.; Rajkumari, J.; Singha, L.P. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci. Rep., 2018, 8(1), 201.
[http://dx.doi.org/10.1038/s41598-017-18590-6] [PMID: 29317760]
[88]
Gao, M.; Sun, L.; Wang, Z.; Zhao, Y. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater. Sci. Eng. C, 2013, 33(1), 397-404.
[http://dx.doi.org/10.1016/j.msec.2012.09.005] [PMID: 25428087]
[89]
Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. Int., 2015, 22(6), 4122-4143.
[http://dx.doi.org/10.1007/s11356-014-3994-1] [PMID: 25548015]
[90]
Kora, A.J.; Rastogi, L. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg. Chem. Appl., 2013, 2013871097
[http://dx.doi.org/10.1155/2013/871097] [PMID: 23970844]
[91]
Sintubin, L.; De Gusseme, B.; Van der Meeren, P.; Pycke, B.F.; Verstraete, W.; Boon, N. The antibacterial activity of biogenic silver and its mode of action. Appl. Microbiol. Biotechnol., 2011, 91(1), 153-162.
[http://dx.doi.org/10.1007/s00253-011-3225-3] [PMID: 21468709]
[92]
Liu, L.; Yang, J.; Xie, J.; Luo, Z.; Jiang, J.; Yang, Y.Y.; Liu, S. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5(9), 3834-3840.
[http://dx.doi.org/10.1039/c3nr34254a] [PMID: 23525222]
[93]
Kim, D.; Kwon, S.J.; Wu, X.; Sauve, J.; Lee, I.; Nam, J.; Kim, J.; Dordick, J.S. Selective killing of pathogenic bacteria by antimicrobial silver nanoparticle-cell wall binding domain conjugates. ACS Appl. Mater. Interfaces, 2018, 10(16), 13317-13324.
[http://dx.doi.org/10.1021/acsami.8b00181] [PMID: 29619821]
[94]
Xiu, Z.M.; Zhang, Q.B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett., 2012, 12(8), 4271-4275.
[http://dx.doi.org/10.1021/nl301934w] [PMID: 22765771]
[95]
Morones-Ramirez, J.R.; Winkler, J.A.; Spina, C.S.; Collins, J.J. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med., , 2013, 5(190), 190-ra81.
[http://dx.doi.org/10.1126/scitranslmed.3006276] [PMID: 23785037]
[96]
Panáček, A.; Smékalová, M.; Kilianová, M.; Prucek, R.; Bogdanová, K.; Večeřová, R.; Kolář, M.; Havrdová, M.; Płaza, G.A.; Chojniak, J.; Zbořil, R.; Kvítek, L. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules, 2015, 21(1)E26
[http://dx.doi.org/10.3390/molecules21010026] [PMID: 26729075]
[97]
Gurunathan, S.; Han, J.W.; Kwon, D-N.; Kim, J-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett., 2014, 9(1), 373.
[http://dx.doi.org/10.1186/1556-276X-9-373] [PMID: 25136281]
[98]
Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Cameotra, S.S.; Bellare, J.; Dhavale, D.D.; Jabgunde, A.; Chopade, B.A. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomedicine, 2012, 7, 483-496.
[http://dx.doi.org/ 10.2147/IJN.S24793] [PMID: 22334779]
[99]
McShan, D.; Zhang, Y.; Deng, H.; Ray, P.C.; Yu, H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant salmonella typhimurium DT104. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 2015, 33(3), 369-384.
[http://dx.doi.org/10.1080/10590501.2015.1055165] [PMID: 26072671]
[100]
Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ. Sci. Technol., 2016, 50(16), 8840-8848.
[http://dx.doi.org/10.1021/acs.est.6b00998] [PMID: 27390928]
[101]
Pal, I.; Brahmkhatri, V.P.; Bera, S.; Bhattacharyya, D.; Quirishi, Y.; Bhunia, A.; Atreya, H.S. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J. Colloid Interface Sci., 2016, 483, 385-393.
[http://dx.doi.org/10.1016/j.jcis.2016.08.043] [PMID: 27585423]
[102]
Habash, M.B.; Park, A.J.; Vis, E.C.; Harris, R.J.; Khursigara, C.M. Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms. Antimicrob. Agents Chemother., 2014, 58(10), 5818-5830.
[http://dx.doi.org/10.1128/AAC.03170-14] [PMID: 25049240]
[103]
Singh, P.; Kim, Y.J.; Singh, H.; Mathiyalagan, R.; Wang, C.; Yang, D.C. biosynthesis of anisotropic silver nanoparticles by bhargavaea indicaand their synergistic effect with antibiotics against pathogenic microorganisms. J. Nanomater., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/234741]
[104]
Beveridge, J.S.; Stephens, J.R.; Williams, M.E. The use of magnetic nanoparticles in analytical chemistry. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2011, 4, 251-273.
[http://dx.doi.org/10.1146/annurev-anchem-061010-114041] [PMID: 21417723]
[105]
Ren, J.; Zhang, Z.; Wang, F.; Yang, Y.; Liu, Y.; Wei, G.; Yang, A.; Zhang, R.; Huan, Y.; Cui, Y.; Larson, A.C. MRI of prostate stem cell antigen expression in prostate tumors. Nanomedicine (Lond.), 2012, 7(5), 691-703.
[http://dx.doi.org/10.2217/nnm.11.147] [PMID: 22630152]
[106]
Zhu, X.; Zhou, J.; Chen, M.; Shi, M.; Feng, W.; Li, F. Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials, 2012, 33(18), 4618-4627.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.007] [PMID: 22444645]
[107]
Sun, C.; Lee, J.S.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60(11), 1252-1265.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[108]
Bi, L.; Pan, G. Facile and green fabrication of multiple magnetite nano-cores@void@porous shell microspheres for delivery vehicles. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(11), 3715-3718.
[http://dx.doi.org/10.1039/C3TA15020H]
[109]
Liu, B.; Zhang, W.; Zhang, Q.; Zhang, H.; Yu, J.; Yang, X. Facile method for synthesis of hollow porous magnetic microspheres with controllable structure. J. Colloid Interface Sci., 2012, 375(1), 70-77.
[http://dx.doi.org/10.1016/j.jcis.2012.02.023] [PMID: 22405563]
[110]
Yuan, Q.; Rana, S.; Srivastava, R.S.; Gallo, A.; Misra, R.D.K. Synthesis and physicochemical response of polyethylene glycol encapsulated nickel ferrite nanoparticles. Mater. Sci. Technol., 2013, 24(3), 361-368.
[http://dx.doi.org/10.1179/174328408X278493]
[111]
Montagne, F.; Mondain-Monval, O.; Pichot, C.; Elaïssari, A. Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions. J. Polym. Sci. A Polym. Chem., 2006, 44(8), 2642-2656.
[http://dx.doi.org/10.1002/pola.21391]
[112]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[113]
Mahdavi, M.; Ahmad, M.B.; Haron, M.J.; Namvar, F.; Nadi, B.; Rahman, M.Z.; Amin, J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 2013, 18(7), 7533-7548.
[http://dx.doi.org/10.3390/molecules18077533] [PMID: 23807578]
[114]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[115]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16(2)023501
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[116]
Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.U.; Akram, M.W.; Udego, I.O.; Li, H.; Niu, X. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials (Basel), 2018, 8(10)E810
[http://dx.doi.org/10.3390/nano8100810] [PMID: 30304823]
[117]
Park, J.Y.; Jeong, H.Y.; Kim, M.I.; Park, T.J. Colorimetric detection system for salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J. Nanomater., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/527126]
[118]
Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep., 2015, 5, 14813.
[http://dx.doi.org/10.1038/srep14813] [PMID: 26437582]
[119]
Nehra, P.; Chauhan, R.P.; Garg, N.; Verma, K. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br. J. Biomed. Sci., 2018, 75(1), 13-18.
[http://dx.doi.org/10.1080/09674845.2017.1347362] [PMID: 28945174]
[120]
Soares, P.I.; Machado, D.; Laia, C.; Pereira, L.C.; Coutinho, J.T.; Ferreira, I.M.; Novo, C.M.; Borges, J.P. Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydr. Polym., 2016, 149, 382-390.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.123] [PMID: 27261762]
[121]
Reddy, P.M.; Chang, K-C.; Liu, Z-J.; Chen, C-T.; Ho, Y-P. Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria. J. Biomed. Nanotechnol., 2014, 10(8), 1429-1439.
[http://dx.doi.org/10.1166/jbn.2014.1848] [PMID: 25016643]
[122]
Inbaraj, B.S.; Kao, T.H.; Tsai, T.Y.; Chiu, C.P.; Kumar, R.; Chen, B.H. The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. Nanotechnology, 2011, 22(7)075101
[http://dx.doi.org/10.1088/0957-4484/22/7/075101] [PMID: 21233545]
[123]
Shrifian-Esfahni, A.; Salehi, M.T.; Nasr-Esfahni, M.; Ekramian, E. Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik, 2015, 69(1), 19-32.
[124]
El-Sigeny, S.M.; Abou Taleb, M. Synthesis, characterization, and application of dendrimer modified magnetite nanoparticles as antimicrobial agent. Life Sci. J., 2015, 12(6), 161-170.
[125]
Abbas, M.; Parvatheeswara Rao, B.; Nazrul Islam, M.; Naga, S.M.; Takahashi, M.; Kim, C. Highly stable- silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless- polyol process. Ceram. Int., 2014, 40(1), 1379-1385.
[http://dx.doi.org/10.1016/j.ceramint.2013.07.019]
[126]
Kiasat, A.R.; Davarpanah, J. Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones. J. Mol. Catal. Chem., 2013, 373, 46-54.
[http://dx.doi.org/10.1016/j.molcata.2013.03.003]
[127]
Sun, W.; Sun, W.; Kessler, M.R.; Bowler, N.; Dennis, K.W.; McCallum, R.W.; Li, Q.; Tan, X. Multifunctional properties of cyanate ester composites with SiO2 coated Fe3O4 fillers. ACS Appl. Mater. Interfaces, 2013, 5(5), 1636-1642.
[http://dx.doi.org/10.1021/am302520e] [PMID: 23431998]
[128]
Wang, Y.; Ravindranath, S.; Irudayaraj, J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal. Bioanal. Chem., 2011, 399(3), 1271-1278.
[http://dx.doi.org/10.1007/s00216-010-4453-6] [PMID: 21136046]
[129]
Lim, Y.S.; Lai, C.W.; Abd Hamid, S.B. Porous 3D carbon decorated Fe3O4 nanocomposite electrode for highly symmetrical supercapacitor performance. RSC Advances, 2017, 7(37), 23030-23040.
[http://dx.doi.org/10.1039/C7RA00572E]
[130]
Liu, J.; Liu, S.; Zhuang, S.; Wang, X.; Tu, F. Synthesis of carbon-coated Fe3O4 nanorods as electrode material for supercapacitor. Ionics, 2013, 19(9), 1255-1261.
[http://dx.doi.org/10.1007/s11581-013-0857-6]
[131]
Zhang, X.; He, M.; Liu, J-H.; Liao, R.; Zhao, L.; Xie, J.; Wang, R.; Yang, S-T.; Wang, H.; Liu, Y. Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Chin. Sci. Bull., 2014, 59(27), 3406-3412.
[http://dx.doi.org/10.1007/s11434-014-0439-7]
[132]
Guven, B.; Basaran-Akgul, N.; Temur, E.; Tamer, U.; Boyaci, I.H. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst (Lond.), 2011, 136(4), 740-748.
[http://dx.doi.org/10.1039/C0AN00473A] [PMID: 21125089]
[133]
Huang, W.C.; Tsai, P.J.; Chen, Y.C. Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small, 2009, 5(1), 51-56.
[http://dx.doi.org/10.1002/smll.200801042] [PMID: 19040217]
[134]
Ma, X.; Liu, Y.; Zhou, N.; Duan, N.; Wu, S.; Wang, Z. SERS aptasensor detection of Salmonella typhimurium using a magnetic gold nanoparticle and gold nanoparticle based sandwich structure. Anal. Methods, 2016, 8(45), 8099-8105.
[http://dx.doi.org/10.1039/C6AY02623K]
[135]
Zhang, C.; Wang, C.; Xiao, R.; Tang, L.; Huang, J.; Wu, D.; Liu, S.; Wang, Y.; Zhang, D.; Wang, S.; Chen, X. Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(22), 3751-3761.
[http://dx.doi.org/10.1039/C8TB00504D]
[136]
Cheng, D.; Yu, M.; Fu, F.; Han, W.; Li, G.; Xie, J.; Song, Y.; Swihart, M.T.; Song, E. Dual Recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal. Chem., 2016, 88(1), 820-825.
[http://dx.doi.org/10.1021/acs.analchem.5b03320] [PMID: 26641108]
[137]
Fan, Z.; Senapati, D.; Khan, S.A.; Singh, A.K.; Hamme, A.; Yust, B.; Sardar, D.; Ray, P.C. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chemistry, 2013, 19(8), 2839-2847.
[http://dx.doi.org/10.1002/chem.201202948] [PMID: 23296491]
[138]
Lai, H.; Xu, F.; Wang, L. A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering. J. Mater. Sci., 2018, 53(12), 8677-8698.
[http://dx.doi.org/10.1007/s10853-018-2095-9]
[139]
Najafi, R.; Mukherjee, S.; Hudson, J., Jr; Sharma, A.; Banerjee, P. Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int. J. Food Microbiol., 2014, 189, 89-97.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.07.036] [PMID: 25133877]
[140]
Wang, C.; Wang, J.; Li, M.; Qu, X.; Zhang, K.; Rong, Z.; Xiao, R.; Wang, S. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst (Lond.), 2016, 141(22), 6226-6238.
[http://dx.doi.org/10.1039/C6AN01105E] [PMID: 27704076]
[141]
Wang, C.; Xu, S.; Zhang, K.; Li, M.; Li, Q.; Xiao, R.; Wang, S. Streptomycin-modified Fe3O4–Au@Ag core–satellite magnetic nanoparticles as an effective antibacterial agent. J. Mater. Sci., 2016, 52(3), 1357-1368.
[http://dx.doi.org/10.1007/s10853-016-0430-6]
[142]
Zhang, H.; Ma, X.; Liu, Y.; Duan, N.; Wu, S.; Wang, Z.; Xu, B. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens. Bioelectron., 2015, 74, 872-877.
[http://dx.doi.org/10.1016/j.bios.2015.07.033] [PMID: 26241735]
[143]
Zhang, L.; Xu, J.; Mi, L.; Gong, H.; Jiang, S.; Yu, Q. Multifunctional magnetic-plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens. Bioelectron., 2012, 31(1), 130-136.
[http://dx.doi.org/10.1016/j.bios.2011.10.006] [PMID: 22036668]
[144]
Ghaseminezhad, S.M.; Shojaosadati, S.A.; Meyer, R.L. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Colloids Surf. B Biointerfaces, 2018, 163, 192-200.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.035] [PMID: 29301116]
[145]
Ivashchenko, O.; Lewandowski, M.; Peplińska, B.; Jarek, M.; Nowaczyk, G.; Wiesner, M.; Załęski, K.; Babutina, T.; Warowicka, A.; Jurga, S. Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Mater. Sci. Eng. C, 2015, 55, 343-359.
[http://dx.doi.org/10.1016/j.msec.2015.05.023] [PMID: 26117765]
[146]
Prucek, R.; Tuček, J.; Kilianová, M.; Panáček, A.; Kvítek, L.; Filip, J.; Kolář, M.; Tománková, K.; Zbořil, R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials, 2011, 32(21), 4704-4713.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.039] [PMID: 21507482]
[147]
Zomorodian, K.; Veisi, H.; Mousavi, S.M.; Ataabadi, M.S.; Yazdanpanah, S.; Bagheri, J.; Mehr, A.P.; Hemmati, S.; Veisi, H. Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles (Fe3O4@PEG-Ag) as a core/shell nanocomposite and evaluation of its antimicrobial activity. Int. J. Nanomedicine, 2018, 13, 3965-3973.
[http://dx.doi.org/10.2147/IJN.S161002] [PMID: 30022820]
[148]
Ivashchenko, O.; Coy, E.; Peplinska, B.; Jarek, M.; Lewandowski, M.; Załęski, K.; Warowicka, A.; Wozniak, A.; Babutina, T.; Jurga-Stopa, J.; Dolinsek, J.; Jurga, S. Influence of silver content on rifampicin adsorptivity for magnetite/Ag/rifampicin nanoparticles. Nanotechnology, 2017, 28(5)055603
[http://dx.doi.org/10.1088/1361-6528/28/5/055603] [PMID: 28029097]
[149]
Hasan, N.; Guo, Z.; Wu, H.F. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles. Anal. Bioanal. Chem., 2016, 408(23), 6269-6281.
[http://dx.doi.org/10.1007/s00216-016-9730-6] [PMID: 27565791]
[150]
Singh, S.; Upadhyay, M.; Sharma, J.; Gupta, S.; Vivekanandan, P.; Elangovan, R. A portable immunomagnetic cell capture system to accelerate culture diagnosis of bacterial infections. Analyst (Lond.), 2016, 141(11), 3358-3366.
[http://dx.doi.org/10.1039/C6AN00291A] [PMID: 27118505]
[151]
Xu, C.; Sun, S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev., 2013, 65(5), 732-743.
[http://dx.doi.org/10.1016/j.addr.2012.10.008] [PMID: 23123295]
[152]
Taimoory, S.M.; Rahdar, A.; Aliahmad, M.; Sadeghfar, F.; Hajinezhad, M.R.; Jahantigh, M.; Shahbazi, P.; Trant, J.F. The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J. Mol. Liq., 2018, 265, 96-104.
[http://dx.doi.org/10.1016/j.molliq.2018.05.105]
[153]
Hussein-Al-Ali, S.H.; El Zowalaty, M.E.; Hussein, M.Z.; Ismail, M.; Webster, T.J. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. Int. J. Nanomedicine, 2014, 9, 549-557.
[http://dx.doi.org/10.2147/IJN.S53079] [PMID: 24549109]
[154]
El Zowalaty, M.E.; Hussein Al Ali, S.H.; Husseiny, M.I.; Geilich, B.M.; Webster, T.J.; Hussein, M.Z. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int. J. Nanomedicine, 2015, 10, 3269-3274.
[http://dx.doi.org/10.2147/IJN.S74469] [PMID: 25995633]
[155]
Zhang, W.; Shi, X.; Huang, J.; Zhang, Y.; Wu, Z.; Xian, Y. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity. ChemPhysChem, 2012, 13(14), 3388-3396.
[http://dx.doi.org/10.1002/cphc.201200161] [PMID: 22753190]
[156]
Grumezescu, A.M.; Gestal, M.C.; Holban, A.M.; Grumezescu, V.; Vasile, B.S.; Mogoantă, L.; Iordache, F.; Bleotu, C.; Mogoșanu, G.D. Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria. Molecules, 2014, 19(4), 5013-5027.
[http://dx.doi.org/10.3390/molecules19045013] [PMID: 24759068]
[157]
Hasanova, U.A.; Ramazanov, M.A.; Maharramov, A.M.; Eyvazova, Q.M.; Agamaliyev, Z.A.; Parfyonova, Y.V.; Hajiyeva, S.F.; Hajiyeva, F.V.; Veliyeva, S.B. Nano-coupling of cephalosporin antibiotics with Fe3O4 nanoparticles: Trojan horse approach in antimicrobial chemotherapy of infections caused by klebsiella spp. J. Biomater. Nanobiotechnol., 2015, 06(03), 225-235.
[http://dx.doi.org/10.4236/jbnb.2015.63021]
[158]
Mahmoudi, M.; Serpooshan, V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano, 2012, 6(3), 2656-2664.
[http://dx.doi.org/10.1021/nn300042m] [PMID: 22397679]
[159]
Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med., 2017, 28(6), 92.
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[160]
Zhang, X.D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y.M.; Liu, P.X.; Liang, X.J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 2012, 33(27), 6408-6419.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.047] [PMID: 22681980]
[161]
Rosli, N.S.b.; Rahman, A.A.; Aziz, A.A.; Shamsuddin, S. In:AIP Conference Proceedings; AIP Publishing. , 2015, Vol 1657, p. 060001.
[162]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[163]
Li, X.; Hu, Z.; Ma, J.; Wang, X.; Zhang, Y.; Wang, W.; Yuan, Z. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf. B Biointerfaces, 2018, 167, 260-266.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.005] [PMID: 29677597]
[164]
Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine (Lond.), 2018, 14(1), 1-12.
[http://dx.doi.org/10.1016/j.nano.2017.08.011] [PMID: 30548078]
[165]
Murphy, C.J.; Gole, A.M.; Stone, J.W.; Sisco, P.N.; Alkilany, A.M.; Goldsmith, E.C.; Baxter, S.C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res., 2008, 41(12), 1721-1730.
[http://dx.doi.org/10.1021/ar800035u] [PMID: 18712884]
[166]
Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine, 2012, 7, 5577-5591.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[167]
Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U.; Kreyling, W.G. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm., 2011, 77(3), 407-416.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.029] [PMID: 21195759]
[168]
Schaeublin, N.M.; Braydich-Stolle, L.K.; Schrand, A.M.; Miller, J.M.; Hutchison, J.; Schlager, J.J.; Hussain, S.M. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale, 2011, 3(2), 410-420.
[http://dx.doi.org/10.1039/c0nr00478b] [PMID: 21229159]
[169]
Gu, Y.J.; Cheng, J.; Lin, C.C.; Lam, Y.W.; Cheng, S.H.; Wong, W.T. Nuclear penetration of surface functionalized gold nanoparticles. Toxicol. Appl. Pharmacol., 2009, 237(2), 196-204.
[http://dx.doi.org/10.1016/j.taap.2009.03.009] [PMID: 19328820]
[170]
Panyala, N.R.; Peña-Méndez, E.M.; Havel, J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? J. Appl. Biomed., 2008, 6(3)
[http://dx.doi.org/10.32725/jab.2008.015]
[171]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 2(1), 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[172]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[173]
Devi, G.P.; Ahmed, K.B.; Varsha, M.K.; Shrijha, B.S.; Lal, K.K.; Anbazhagan, V.; Thiagarajan, R. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat. Toxicol., 2015, 158, 149-156.
[http://dx.doi.org/10.1016/j.aquatox.2014.11.007] [PMID: 25438120]
[174]
Choi, O.; Clevenger, T.E.; Deng, B.; Surampalli, R.Y.; Ross, L., Jr; Hu, Z. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res., 2009, 43(7), 1879-1886.
[http://dx.doi.org/10.1016/j.watres.2009.01.029] [PMID: 19249075]
[175]
Kittler, S.; Greulich, C.; Diendorf, J.; Koller, M.; Epple, M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater., 2010, 22(16), 4548-4554.
[http://dx.doi.org/10.1021/cm100023p]
[176]
Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater., 2018, 7(5)
[http://dx.doi.org/10.1002/adhm.201700845] [PMID: 29280314]
[177]
Mahmoudi, M.; Laurent, S.; Shokrgozar, M.A.; Hosseinkhani, M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: Cell “vision” versus physicochemical properties of nanoparticles. ACS Nano, 2011, 5(9), 7263-7276.
[http://dx.doi.org/10.1021/nn2021088] [PMID: 21838310]
[178]
Liu, G.; Gao, J.; Ai, H.; Chen, X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small, 2013, 9(9-10), 1533-1545.
[http://dx.doi.org/10.1002/smll.201201531] [PMID: 23019129]
[179]
Wu, W.; Jiang, C.Z.; Roy, V.A. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, 8(47), 19421-19474.
[http://dx.doi.org/10.1039/C6NR07542H] [PMID: 27812592]
[180]
Gupta, A.K.; Naregalkar, R.R.; Vaidya, V.D.; Gupta, M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond.), 2007, 2(1), 23-39.
[http://dx.doi.org/10.2217/17435889.2.1.23] [PMID: 17716188]
[181]
Baber, O.; Jang, M.; Barber, D.; Powers, K. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells. Inhal. Toxicol., 2011, 23(9), 532-543.
[http://dx.doi.org/10.3109/08958378.2011.592869] [PMID: 21819260]
[182]
Soenen, S.J.; Himmelreich, U.; Nuytten, N.; Pisanic, T.R., II; Ferrari, A.; De Cuyper, M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small, 2010, 6(19), 2136-2145.
[http://dx.doi.org/10.1002/smll.201000763] [PMID: 20818621]
[183]
Almeida, J.P.M.; Chen, A.L.; Foster, A.; Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond.), 2011, 6(5), 815-835.
[http://dx.doi.org/10.2217/nnm.11.79] [PMID: 21793674]
[184]
Gu, L.; Fang, R.H.; Sailor, M.J.; Park, J-H. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano, 2012, 6(6), 4947-4954.
[http://dx.doi.org/10.1021/nn300456z] [PMID: 22646927]
[185]
Soenen, S.J.; Nuytten, N.; De Meyer, S.F.; De Smedt, S.C.; De Cuyper, M. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small, 2010, 6(7), 832-842.
[http://dx.doi.org/10.1002/smll.200902084] [PMID: 20213651]
[186]
Wang, J.; Wu, X.; Wang, C.; Rong, Z.; Ding, H.; Li, H.; Li, S.; Shao, N.; Dong, P.; Xiao, R.; Wang, S. Facile synthesis of au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl. Mater. Interfaces, 2016, 8(31), 19958-19967.
[http://dx.doi.org/10.1021/acsami.6b07528] [PMID: 27420923]
[187]
Rambanapasi, C.; Zeevaart, J.R.; Buntting, H.; Bester, C.; Kotze, D.; Hayeshi, R.; Grobler, A. Bioaccumulation and subchronic toxicity of 14 nm gold nanoparticles in rats. Molecules, 2016, 21(6)E763
[http://dx.doi.org/10.3390/molecules21060763] [PMID: 27294904]