Biomass Conversion to Fuels and Value-Added Chemicals: A Comprehensive Review of the Thermochemical Processes

Page: [3 - 25] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Fossil fuels have fueled the world economy for decades. However, given their limited nature, fluctuating prices and the escalating environmental concerns, there is an urgent need to develop and valorize cheaper, cleaner and sustainable alternative energy sources to curb these challenges. Biomass represents a valid alternative to fossil fuels, especially for fuel and chemical production as it represents the only natural organic renewable resource with vast abundance. A vast array of conversion technologies is used to process biomass from one form to another, to release energy, high-value products or chemical intermediates. This paper extensively reviews the thermochemical processing of biomass to fuels and high-value chemicals, with an emphasis on the process performance, conditions, and weaknesses. Technologies with great future prospects as well as those with possible linkage to CO2 capture and sequestration are highlighted. The important chemical compositions of biomass feedstock, their conversion technologies and most importantly, the role of catalysis in their conversion to fuels, fuel additives, based chemicals, and added-value chemicals are also discussed. Special attention is given to biofuel production for transportation as this sector is responsible for the highest global greenhouse gas emissions, and has an emerging market with promising future prospects for sustainable large-scale biomass processing. The processes involved in the purification and upgrading of biomass-derived products into higher-value products are equally discussed and reviewed.

Keywords: Biofuel, biomass processing, biomass, biorefinery, green chemistry, thermochemical routes.

Graphical Abstract

[1]
D.J.M. Hayes, “Biomass composition and its relevance to biorefining,” in The role of catalysis for the sustainable production of bio-fuels and bio-chemicals., Elsevier B.V., 2013, pp. 27-65.
[2]
J.C. Serrano-Ruiz, R. Luque, and J.H. Clark, The Role of heterogeneous catalysis in the biorefinery of the future. In:The role of catalysis for the sustainable production of bio-fuels and bio-chemicals., Elsevier B.V., 2013, pp. 557-576.
[3]
M. Pande, and A.N. Bhaskarwar, "“Biomass conversion to energy”, in", In: Biomass Conversion, C. Baskar, S. Baskar, R. S. Dhillon, Eds., Yongin, Korea, Springer:: Berlin, Heidelberg, 2012, pp. 1-90.
[4]
S. Heidenreich, and P. Ugo, "New concepts in biomass gasification", Pror. Energy Combust. Sci., vol. 46, pp. 72-95, 2015.
[http://dx.doi.org/10.1016/j.pecs.2014.06.002]
[5]
M.K. Hrncic, G. Kravanja, and Z. Knez, "Hydrothermal treatment of biomass for energy and chemicals", Energy, vol. 116, pp. 1312-1322, 2016.
[6]
D. Baruah, and D.C. Baruah, "Modeling of biomass gasification: a review", Renew. Sustain. Energy Rev., vol. 39, pp. 806-815, 2014.
[http://dx.doi.org/10.1016/j.rser.2014.07.129]
[7]
B. De Caprariis, P. De Filippis, A. Petrullo, and M. Scarsella, "Hydrothermal liquefaction of biomass : influence of temperature and biomass composition on the bio-oil production", Fuel, vol. 208, pp. 618-625, 2017.
[http://dx.doi.org/10.1016/j.fuel.2017.07.054]
[8]
L. Hu, L. Lin, Z. Wu, S. Zhou, and S. Liu, "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethyl-furfural into the innovative fuels and chemicals", Renew. Sustain. Energy Rev., vol. 74, pp. 230-257, 2017.
[http://dx.doi.org/10.1016/j.rser.2017.02.042]
[9]
M. Balat, M. Balat, E. Kırtay, and H. Balat, "Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems", Energy Convers. Manage., vol. 50, no. 12, pp. 3147-3157, 2009.
[http://dx.doi.org/10.1016/j.enconman.2009.08.014]
[10]
A. Sharma, V. Pareek, and D. Zhang, "Biomass pyrolysis - A review of modelling, process parameters and catalytic studies", Renew. Sustain. Energy Rev., vol. 50, pp. 1081-1096, 2015.
[http://dx.doi.org/10.1016/j.rser.2015.04.193]
[11]
E. Muh, and F. Tabet, "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons", Renew. Energy, vol. 135, pp. 41-54, 2019.
[http://dx.doi.org/10.1016/j.renene.2018.11.105]
[12]
E. Muh, F. Tabet, and S. Amara, "The Future of biogas production in Cameroon: prospects, challenges, and opportunities", Curr. Altern. Energy, vol. 2, pp. 82-101, 2018.
[http://dx.doi.org/10.2174/2405463102666180925141102]
[13]
P. Adams, T. Bridgwater, A. Lea-Langton, A. Ross, and I. Watson, "Biomass conversion technologies", In: Greenhouse gas balance of bioenergy systems. P. Thornley, P. Adams, Ed. Elsevier Inc., 2018, pp. 107-139.
[http://dx.doi.org/10.1016/B978-0-08-101036-5.00008-2]
[14]
N.L. Panwar, R. Kothari, and V.V. Tyagi, "Thermo chemical conversion of biomass – Eco-friendly energy routes", Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 1801-1816, 2012.
[http://dx.doi.org/10.1016/j.rser.2012.01.024]
[15]
A. Deneyer, T. Renders, J. Van Aelst, S. Van den Bosch, D. Gabriëls, and B.F. Sels, "Alkane production from biomass: chemo-, bio- and integrated catalytic approaches", Curr. Opin. Chem. Biol., vol. 29, pp. 40-48, 2015.
[http://dx.doi.org/10.1016/j.cbpa.2015.08.010] [PMID: 26360875]
[16]
A.L. Marshall, and P.J. Alaimo, "Useful products from complex starting materials: common chemicals from biomass feedstocks", Chemistry, vol. 16, no. 17, pp. 4970-4980, 2010.
[http://dx.doi.org/10.1002/chem.200903028] [PMID: 20394084]
[17]
J.C. Serrano-Ruiz, R. Luque, and A. Sepúlveda-Escribano, "Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing", Chem. Soc. Rev., vol. 40, no. 11, pp. 5266-5281, 2011.
[http://dx.doi.org/10.1039/c1cs15131b] [PMID: 21713268]
[18]
J.Q. Bond, J.A. Dumesic, and Y. Roma, "Role of acid catalysis in the conversion of lignocellulosic biomass to fuels and chemicals”", In: in The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 2013, pp. 261-288.
[19]
V.S. Sikarwar, M. Zhao, P.S. Fennell, N. Shab, and E.J. Anthony, "Progress in biofuel production from gasification", Pror. Energy Combust. Sci., vol. 61, pp. 189-248, 2017.
[http://dx.doi.org/10.1016/j.pecs.2017.04.001]
[20]
H. Chen, and L. Wang, Technologies for biochemical conversion of biomass., Elsevier Inc., 2017, p. 284.
[21]
A. Demirbas, "Biomass resource facilities and biomass conversion processing for fuels and chemicals", Energy Convers. Manage., vol. 42, pp. 1357-1378, 2001.
[http://dx.doi.org/10.1016/S0196-8904(00)00137-0]
[22]
S. Sharma, R. Meena, A. Sharma, and P. Goyal, "Biomass conversion technologies for renewable energy and fuels: a review note", IOSR J. Mech. Civ. Eng., vol. 11, no. 2, pp. 28-35, 2014.
[http://dx.doi.org/10.9790/1684-11232835]
[23]
N. Laksmono, M. Paraschiv, K. Loubar, and M. Tazerout, "Biodiesel production from biomass gasification tar via thermal/catalytic cracking", Fuel Process. Technol., vol. 106, pp. 776-783, 2013.
[http://dx.doi.org/10.1016/j.fuproc.2012.10.016]
[24]
A. Molino, S. Chianese, and D. Musmarra, "Biomass gasification technology: the state of the art overview", J. Energy Chem., vol. 25, no. 1, pp. 10-25, 2016.
[http://dx.doi.org/10.1016/j.jechem.2015.11.005]
[25]
L. Zhang, C. Charles, and P. Champagne, "Overview of recent advances in thermo-chemical conversion of biomass", Energy Convers. Manage., vol. 51, no. 5, pp. 969-982, 2010.
[http://dx.doi.org/10.1016/j.enconman.2009.11.038]
[26]
P. O’Connor, “A general introduction to biomass utilization possibilities,” in The role of catalysis for the sustainable production of bio-fuels and bio-chemicals., Elsevier, 2013, pp. 1-25.
[27]
A. Demirbas, Biorefineries, for biomass upgrading facilities.in Green Energy and Technology., Springer, pp. 1-240, 2010.
[http://dx.doi.org/10.1007/978-1-84882-721-9]
[28]
K. Tekin, S. Karagöz, and S. Bekta, "A review of hydrothermal biomass processing", Renew. Sustain. Energy Rev., vol. 40, pp. 673-687, 2014.
[http://dx.doi.org/10.1016/j.rser.2014.07.216]
[29]
X. Tong, Y. Ma, and Y. Li, "Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes", Appl. Catal. A Gen., vol. 385, no. 1-2, pp. 1-13, 2010.
[http://dx.doi.org/10.1016/j.apcata.2010.06.049]
[30]
M. Kumar, A.O. Oyedun, and A. Kumar, "A review on the current status of various hydrothermal technologies on biomass feedstock", Renew. Sustain. Energy Rev., pp. 1742-1770, 2017.
[31]
H. Liu, M. Ma, and X. Xie, "New materials from solid residues for investigation the mechanism of biomass hydrothermal liquefaction", Ind. Crops Prod., vol. 108, pp. 63-71, 2017.
[http://dx.doi.org/10.1016/j.indcrop.2017.06.026]
[32]
E. Taarning, C.M. Osmundsen, X. Yang, B. Voss, I. Andersen, and C.H. Christensen, "Zeolite-catalyzed biomass conversion to fuels and chemicals", Energy Environ. Sci., vol. 4, pp. 793-804, 2011.
[http://dx.doi.org/10.1039/C004518G]
[33]
A.P.S. Chouhan, and A.K. Sarma, "Modern heterogeneous catalysts for biodiesel production: a comprehensive review", Renew. Sustain. Energy Rev., vol. 15, no. 9, pp. 4378-4399, 2011.
[http://dx.doi.org/10.1016/j.rser.2011.07.112]
[34]
M. Balat, M. Balat, E. Kırtay, and H. Balat, "Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: gasification systems", Energy Convers. Manage., vol. 50, no. 12, pp. 3158-3168, 2009.
[http://dx.doi.org/10.1016/j.enconman.2009.08.013]
[35]
T. Damartzis, and A. Zabaniotou, "Thermochemical conversion of biomass to second-generation biofuels through integrated process design - A review", Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 366-378, 2011.
[http://dx.doi.org/10.1016/j.rser.2010.08.003]
[36]
M. Patel, X. Zhang, and A. Kumar, "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review", Renew. Sustain. Energy Rev., vol. 53, pp. 1486-1499, 2016.
[http://dx.doi.org/10.1016/j.rser.2015.09.070]
[37]
T.R. Brown, "A techno-economic review of thermochemical cellulosic biofuel pathways", Bioresour. Technol., vol. 178, pp. 166-176, 2015.
[PMID: 25266684]
[38]
A.R.K. Gollakota, N. Kishore, and S. Gu, "A review on hydrothermal liquefaction of biomass", Renew. Sustain. Energy Rev., vol. 81, pp. 1378-1392, 2018.
[39]
T. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties", Renew. Sustain. Energy Rev., vol. 90, pp. 223-247, 2018.
[http://dx.doi.org/10.1016/j.rser.2018.03.071]
[40]
J. Akhtar, N. Aishah, and S. Amin, "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass", Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1615-1624, 2011.
[http://dx.doi.org/10.1016/j.rser.2010.11.054]
[41]
S. Karagöz, T. Bhaskar, A. Muto, and Y. Sakata, "Catalytic hydrothermal treatment of pine wood biomass: effect of RbOH and CsOH on product distribution", J. Chem. Technol. Biotechnol., vol. 80, pp. 1097-1102, 2005.
[http://dx.doi.org/10.1002/jctb.1287]
[42]
S. Karagöz, T. Bhaskar, A. Muto, Y. Sakata, T. Oshiki, and T. Kishimoto, "Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products", Chem. Eng. J., vol. 108, pp. 127-137, 2005.
[http://dx.doi.org/10.1016/j.cej.2005.01.007]
[43]
X. Yan, J. Ma, W. Wang, Y. Zhao, and J. Zhou, "The effect of different catalysts and process parameters on the chemical content of bio-oils from hydrothermal liquefaction of sugarcane bagasse", BioResources, vol. 13, no. 1, pp. 997-1018, 2018.
[44]
A. Hammerschmidt, N. Boukis, E. Hauer, U. Galla, E. Dinjus, B. Hitzmann, T. Larsen, and S.D. Nygaard, "Catalytic conversion of waste biomass by hydrothermal treatment", Fuel, vol. 90, no. 2, pp. 555-562, 2011.
[http://dx.doi.org/10.1016/j.fuel.2010.10.007]
[45]
A.R. Maag, A.D. Paulsen, T.J. Amundsen, P.E. Yelvington, G.A. Tompsett, and M.T. Timko, "Catalytic hydrothermal liquefaction of food waste using CeZrOx", Energies, vol. 11, pp. 1-14, 2018.
[http://dx.doi.org/10.3390/en11030564]
[46]
T.M. Yeh, J.G. Dickinson, A. Franck, S. Linic, L.T. Thompson Jr, and P.E. Savage, "Hydrothermal catalytic production of fuels and chemicals from aquatic biomass", J. Chem. Technol. Biotechnol., vol. 88, pp. 13-24, 2013.
[http://dx.doi.org/10.1002/jctb.3933]
[47]
D. Xu, G. Lin, S. Guo, S. Wang, Y. Guo, and Z. Jing, "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review", Renew. Sustain. Energy Rev., vol. 97, pp. 103-118, 2018.
[http://dx.doi.org/10.1016/j.rser.2018.08.042]
[48]
Z. Zhu, S.S. Toor, L. Rosendahl, D. Yu, and G. Chen, "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw", Energy, vol. 80, pp. 284-292, 2015.
[http://dx.doi.org/10.1016/j.energy.2014.11.071]
[49]
S. Cheng, L. Wei, M. Alsowij, F. Corbin, E. Boakye, Z. Gu, and D. Raynie, "Catalytic Hydrothermal Liquefaction (HTL) of biomass for bio-crude production using Ni/HZSM-5 catalysts", AIMS Environ. Sci., vol. 4, pp. 417-430, 2017.
[http://dx.doi.org/10.3934/environsci.2017.3.417]
[50]
F. Hardi, E. Furusjö, K. Kirtania, A. Imai, K. Umeki, and K. Yoshikawa, "Catalytic hydrothermal liquefaction of biomass with K2CO3 for production of gasification feedstock", Biofuels, vol. 12, pp. 1-12, 2018.
[http://dx.doi.org/10.1080/17597269.2018.1461521]