Evaluation of Neurobehavioral and Biochemical Parameters of Poly- Herbal Formulation on MPTP-Intoxicated Mice for the Treatment of PD

Page: [1290 - 1298] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Formulations containing two or more than two herbs are called polyherbal formulation. Single herb formulation has been well established due to its active phytoconstituents, which are usually present in minute amount and sometimes these are insufficient to achieve the desired therapeutic effects. The popularity of polyherbal formulation is due to its high effectiveness in a vast number of diseases.

Methods: In this study, poly-herbal formulations were prepared by using different solvent extracts with the help of the hot extraction process through Soxhlet apparatus. The poly-herbal formulations were prepared by using traditional herbal plants namely, Bacopa monereri (BM), Embelica officinalis (EO), Mucuna pruriens (MP), & Withania somnifera (WS). Different combinations of PHFs (PHF1-5) were prepared by using the extracts in different ratios. The prepared PHFs were optimized for antioxidant potential by the DPPH assay. Eighteen Swiss albino mice (30-50 g) were grouped into Control, MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MPTP+PHF1 (6 mice in each group). Experimental mice were given PHF1 (50 mg/kg body weight by intraperitoneal route). MPTP(1-methyl 4- phenyl 1,2,3,6-tetrahydropyridine) treatment was given orally for 2 weeks with prior use of 20 mg/kg body weight for 2 weeks.

Results: After the treatment period, neurobehavioral study and evaluation of neuroprotective effects were done according to biochemical parameters.

Discussion: In the above study, it was found that PHF1 has upgraded the dopaminic neurons in the brain. A significant diminution was found in SLA activity in MPTP treated mice as compared to the control group which was restored by MPTP+PHF1 treated group as compared to MPTP treated group.

Conclusion: The result concluded that PHF1 enhanced the dopaminic neurons in the substantia nigra region of the brain. Hence, this poly-herbal formulation gives a better and novel treatment base for future drug discoveries in the case of Parkinson’s Disease (PD).

Keywords: Parkinson's disease, bioactive molecules, neurodegenerative, impairments, population, blender.

Graphical Abstract

[1]
Kavitha, P.; Sowmia, C. screening of phytochemical and in-vitro antioxidant property of a polyherbal formulation. Int. J. Pharm. Sci. Res., 2016, 7, 4608-4614.
[2]
Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord., 2014, 29(13), 1583-1590.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[3]
Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; Halliday, G.; Goetz, C.G.; Gasser, T.; Dubois, B.; Chan, P.; Bloem, B.R.; Adler, C.H.; Deuschl, G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord., 2015, 30(12), 1591-1601.
[http://dx.doi.org/10.1002/mds.26424] [PMID: 26474316]
[4]
Bastide, M.F.; Meissner, W.G.; Picconi, B.; Fasano, S.; Fernagut, P.O.; Feyder, M.; Francardo, V.; Alcacer, C.; Ding, Y.; Brambilla, R.; Fisone, G.; Jon Stoessl, A.; Bourdenx, M.; Engeln, M.; Navailles, S.; De Deurwaerdère, P.; Ko, W.K.; Simola, N.; Morelli, M.; Groc, L.; Rodriguez, M.C.; Gurevich, E.V.; Quik, M.; Morari, M.; Mellone, M.; Gardoni, F.; Tronci, E.; Guehl, D.; Tison, F.; Crossman, A.R.; Kang, U.J.; Steece-Collier, K.; Fox, S.; Carta, M.; Angela Cenci, M.; Bézard, E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog. Neurobiol., 2015, 132, 96-168.
[http://dx.doi.org/10.1016/j.pneurobio.2015.07.002] [PMID: 26209473]
[5]
Aznavour, N.; Cendres-Bozzi, C.; Lemoine, L.; Buda, C.; Sastre, J.P.; Mincheva, Z.; Zimmer, L.; Lin, J.S. MPTP animal model of Parkinsonism: Dopamine cell death or only tyrosine hydroxylase impairment? A study using PET imaging, autoradiography, and immunohistochemistry in the cat. CNS Neurosci. Ther., 2012, 18(11), 934-941.
[http://dx.doi.org/10.1111/cns.12009] [PMID: 23106974]
[6]
Banjari, I.; Marček, T.; Tomić, S.; Waisundara, V.Y. forestalling the epidemics of Parkinson’s disease through plant-based remedies for Parkinson’s disease. Front. Nutr., 2018, 5, 95.
[http://dx.doi.org/10.3389/fnut.2018.00095] [PMID: 30425989]
[7]
Bhatnagar, M.; Goel, I.; Roy, T.; Shukla, S.D.; Khurana, S. Complete Comparison Display (CCD) evaluation of ethanol extracts of Centella asiatica and Withania somnifera shows that they can non-synergistically ameliorate biochemical and behavioural damages in MPTP induced Parkinson’s model of mice. PLoS One, 2017, 12(5)e0177254
[http://dx.doi.org/10.1371/journal.pone.0177254] [PMID: 28510600]
[8]
Meredith, G.E.; Rademacher, D.J. MPTP mouse models of Parkinson’s disease: An update. J. Parkinsons Dis., 2011, 1(1), 19-33.
[http://dx.doi.org/10.3233/JPD-2011-11023] [PMID: 23275799]
[9]
Chan, P.; DeLanney, L.E.; Irwin, I.; Langston, J.W.; Di Monte, D. Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J. Neurochem., 1991, 57(1), 348-351.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb02134.x] [PMID: 2051170]
[10]
Chaturvedi, R.K.; Shukla, S.; Seth, K.; Chauhan, S.; Sinha, C.; Shukla, Y.; Agrawal, A.K. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol. Dis., 2006, 22(2), 421-434.
[http://dx.doi.org/10.1016/j.nbd.2005.12.008] [PMID: 16480889]
[11]
Cilia, R.; Laguna, J.; Cassani, E.; Cereda, E.; Pozzi, N.G.; Isaias, I.U.; Contin, M.; Barichella, M.; Pezzoli, G. Mucuna pruriens in Parkinson disease: A double-blind, randomized, controlled, crossover study. Neurology, 2017, 89(5), 432-438.
[http://dx.doi.org/10.1212/WNL.0000000000004175] [PMID: 28679598]
[12]
Naudí, A.; Cabré, R.; Dominguez-Gonzalez, M.; Ayala, V.; Jové, M.; Mota-Martorell, N.; Piñol-Ripoll, G.; Gil-Villar, M.P.; Rué, M.; Portero-Otín, M.; Ferrer, I.; Pamplona, R. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(5), 485-495.
[http://dx.doi.org/10.1016/j.bbalip.2017.02.001] [PMID: 28185952]
[13]
Smesny, S.; Milleit, B.; Schaefer, M.R.; Hipler, U.C.; Milleit, C.; Wiegand, C.; Hesse, J.; Klier, C.M.; Holub, M.; Holzer, I.; Berk, M.; McGorry, P.D.; Sauer, H.; Amminger, G.P. Effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system in individuals at ultra-high risk of psychosis. Prostaglandins Leukot. Essent. Fatty Acids, 2015, 101, 15-21.
[http://dx.doi.org/10.1016/j.plefa.2015.07.001] [PMID: 26260538]
[14]
Hewitt, V.L.; Whitworth, A.J. Mechanisms of Parkinson’s disease: Lessons from drosophila. Curr. Top. Dev. Biol., 2017, 121, 173-200.
[http://dx.doi.org/10.1016/bs.ctdb.2016.07.005] [PMID: 28057299]
[15]
Asha, B.; Madhav, N.V.; Satheesh, U.K. Standardization and characterization parameters for novel hypolipidemic poly-phyto combination. J. Pharm. Res., 2011, 4, 12.
[16]
Kunchandy, E.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm., 1990, 58, 237-240.
[http://dx.doi.org/10.1016/0378-5173(90)90201-E]
[17]
Kasture, S.; Pontis, S.; Pinna, A.; Schintu, N.; Spina, L.; Longoni, R.; Simola, N.; Ballero, M.; Morelli, M. Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson’s disease. Neurotox. Res., 2009, 15(2), 111-122.
[http://dx.doi.org/10.1007/s12640-009-9011-7] [PMID: 19384573]
[18]
Gibrat, C.; Saint-Pierre, M.; Bousquet, M.; Lévesque, D.; Rouillard, C.; Cicchetti, F. Differences between subacute and chronic MPTP mice models: Investigation of dopaminergic neuronal degeneration and α-synuclein inclusions. J. Neurochem., 2009, 109(5), 1469-1482.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06072.x] [PMID: 19457163]
[19]
Kumar, A.; Lakshman, K.; Jayaveera, K.N.; Tripathi, S.N.M.; Satish, K.V. Estimation of Gallic acid in Terminalia chebula by HPTLC. J. Pharm. Sci., 2010, 3, 63-67.
[20]
Johnson, S.L.; Park, H.Y.; DaSilva, N.A.; Vattem, D.A.; Ma, H.; Seeram, N.P. Levodopa reduced Mucuna pruriens seed extract shows neu-roprotective effects against parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients, 2018, 10(9), 1-14.
[http://dx.doi.org/10.3390/nu10091139] [PMID: 30131460]
[21]
Misra, L.; Wagner, H. Extraction of bioactive principles from Mucuna pruriens seeds. Indian J. Biochem. Biophys., 2007, 44(1), 56-60.
[PMID: 17385342]
[22]
Ali, M.M.; Mathur, N.; Chandra, S.V. Effect of chronic cadmium exposure on locomotor behaviour of rats. Indian J. Exp. Biol., 1990, 28(7), 653-656.
[PMID: 2272652]
[23]
Liberatore, G.T.; Jackson-Lewis, V.; Vukosavic, S.; Mandir, A.S.; Vila, M.; McAuliffe, W.G.; Dawson, V.L.; Dawson, T.M.; Przedborski, S. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med., 1999, 5(12), 1403-1409.
[http://dx.doi.org/10.1038/70978] [PMID: 10581083]
[24]
Monisha, S.; Ramar, M.; Ragavan, B.; Manonmani, P.; Arumugam, P. Preparation of Poly Herbal Formulation (PHF) extracts and effect of histopathological and TCA cycle enzymes on isoproterenol induced mycocardial rats Int. j. drug dev, 2017, 9, 16-21.
[25]
Yadav, S.K.; Rai, S.N.; Singh, S.P. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J. Chem. Neuroanat., 2017, 80, 1-10.
[http://dx.doi.org/10.1016/j.jchemneu.2016.11.009] [PMID: 27919828]
[26]
Ovallath, S.; Deepa, P. The history of parkinsonism: Descriptions in ancient Indian medical literature. Mov. Disord., 2013, 28(5), 566-568.
[http://dx.doi.org/10.1002/mds.25420] [PMID: 23483637]