[1]
(a)Katritzky, A.R. Handbook of Heterocyclic Chemistry; Pergamon Press: Oxford, 1985.
(b)Katritzky, A.R.; and Rees, C.W. Comprehensive Heterocyclic Chemistry; Vol. 1-8 Pergamon Press: Oxford, 1984.
[5]
“Comprehensive Heterocyclic Chemistry. The structure, reactions, synthesis
and uses of heterocyclic compounds”. Eds. Katritzky, A. R.; and Rees C. W, Vols. 1-8 Pergamon Press: Oxford. 1984.
[9]
(a)Katritzky, A.R.; Pozharskii, A.F. Handbook of Heterocyclic Chemistry, 2000 2nd Ed.; Pergamon Press: New York, 2000.
(b)Craig, P.N. In Comprehensive Medicinal Chemistry., Drayton, C.J., Ed.;
Pergamon Press: New York, Vol.8. 1991.
[13]
(a) Gilchrist, T.L. Heterocyclic Chemistry, 2nd Ed; Longman/Wiley: Harlow, Chichester, 1992.
(b) Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed; John Wiley and Sons, Ltd.: Chichester, UK, 2010.
[56]
Lwowski, W. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, Vol. 1, pp. 559-651.
[58]
Tornøe, C.W.; Meldal, M. Peptidotriazoles: Copper(I)-catalyzed 1,3-dipolar
cycloadditions on solid-phase. In: Lebl, M., Houghten, R. A. (Eds.), American
Peptide Society and Kluwer Academic Publishers, San Diego. 2001, pp.
263-264.
[59]
Rostovtsev, V.V. Green, L. G.; Fokin, V. V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
[66]
(a) Konwar, M.; Ali, A.A.; Chetia, M.; Saikia, P.J.; and Sarma, D. Fehling solution/DIPEA/hydrazine: An alternative catalytic medium for regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles using azide–alkyne cycloaddition reaction. Tetrahedron Lett., 2016, 57, 4473.
(b) Jayaramulu, K.; Suresh, V.M.; Maji, T.K. Stabilization of Cu2O nanoparticles on a 2D metal-organic framework for catalytic Huisgen 1,3-dipolar cycloaddition reaction. Dalton Trans., 2015, 44, 83-86.
[72]
(a) Ramachary, D.B.; Shashank, A.B.; and Karthik, S. An Organocatalytic Azide-Aldehyde [3+ 2] Cycloaddition: High-Yielding Regioselective Synthesis of 1, 4-Disubstituted 1, 2, 3-Triazoles. Angew. Chem. Int. Ed. Engl., 2014, 53, 10420-10424.
(b) Shashank, A.B.; Karthik, S.; Madhavachary, R.; and Ramachary, D.B. An enolate-mediated organocatalytic azide–ketone [3+2]-cycloaddition reaction: regioselective high-yielding synthesis of fully decorated 1, 2, 3-triazoles. Chemistry–A European Journal,, 2014, 20, 16877-16881.
[93]
(a) Huisgen, R.; Knorr, R.; Möbius, L.; and Szeimies, G. 1,3-Dipolar Cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an C-C-Dreifachbindungen.
Chem. Ber., 1965,
98, 4014-4021.
[
http://dx.doi.org/10.1002/cber.19650981228]
(b) Tanaka, Y.; and Miller, S.I. 2H-1, 2, 3-Triazoles from the ethyl nitrocinnamates.
J. Org. Chem., 1972,
37, 3370-3372.
[
http://dx.doi.org/10.1021/jo00986a048]
(c) Adamo, I.; Benedetti, F.; Berti, F.; Nardin, G.; and Norbedo, S. Unexpected 1, 2, 3-triazole formation in the reaction of diethylaluminum azide with α′-amino-α, β-unsaturated ketones.
Tetrahedron Lett., 2003,
44, 9095-9097.
[
http://dx.doi.org/10.1016/j.tetlet.2003.10.051]
(d) Kamalraj, V.R.; Senthil, S.; and Kannan, P. One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers.
J. Mol. Struct., 2008,
892, 210-215.
[
http://dx.doi.org/10.1016/j.molstruc.2008.05.028]
(e) Donohoe, T.J.; Bower, J.F.; Baker, D.B.; Basutto, J.A.; Chan, L.K.; Gallagher, P. Synthesis of 2, 4, 6-trisubstituted pyridines
via an olefin cross-metathesis/Heck–cyclisation–elimination sequence.
Chem. Commun. (Camb.), 2011,
47, 10611-10613.
[
http://dx.doi.org/10.1039/c1cc14257g] [PMID:
21870019]
[105]
Li, Y.; Ju, Y.; Zhao, Y.F. Application of azoles synthesis in bioconjugate chemistry. Chin. J. Org. Chem.,, 2006, 26, 1640-1646.
[107]
Wu, P.; Fokin, V.V. Catalytic azide-alkyne cycloaddition: Reactivity and applications. Aldrichim Acta, 2007, 40, 7-17.
[116]
Martin, A.; Martin, R. A review on the antimicrobial activity of 1, 2, 4-triazole derivatives. Int. J. Life Sc. Bt & Pharm. Res., 2014, 3, 321-329.