Pharmacological and Cellular Significance of Triazole-Surrogated Compounds

Page: [2505 - 2572] Pages: 68

  • * (Excluding Mailing and Handling)

Abstract

Heterocyclic compounds have been at the hierarchy position in academia, and industrial arena, particularly the compounds containing triazole-core are found to be potent with a broad range of biological activities. The resistance of triazole ring towards chemical (acid and base) hydrolysis, oxidative and reductive reaction conditions, metabolic degradation and its higher aromatic stabilization energy makes it a better heterocyclic core as therapeutic agents. These triazole-linked compounds are used for clinical purposes for antifungal, anti-mycobacterium, anticancer, anti-migraine and antidepressant drugs. Triazole scaffolds are also found to act as a spacer for the sake of covalent attachment of the high molecular weight bio-macromolecules with an experimental building blocks to explore structure-function relationships. Herein, several methods and strategies for the synthesis of compounds with 1,2,3-triazole moiety exploring Hüisgen, Meldal and Sharpless 1,3-dipolar cycloaddition reaction between azide and alkyne derivatives have been deliberated for a series of representative compounds. Moreover, this review article highlights in-depth applications of the [3+2]-cycloaddition reaction for the advances of triazole-containing antibacterial as well as metabolic labelling agents for the in vitro and in vivo studies on cellular level.

Keywords: [3+2]-cycloaddition, Hüisgen reaction, triazole, click reaction, antibacterial, cellular function.

Graphical Abstract

[1]
(a)Katritzky, A.R. Handbook of Heterocyclic Chemistry; Pergamon Press: Oxford, 1985.
(b)Katritzky, A.R.; and Rees, C.W. Comprehensive Heterocyclic Chemistry; Vol. 1-8 Pergamon Press: Oxford, 1984.
[2]
Henke, B.R.; Aquino, C.J.; Birkemo, L.S.; Croom, D.K.; Dougherty, R.W., Jr; Ervin, G.N.; Grizzle, M.K.; Hirst, G.C.; James, M.K.; Johnson, M.F.; Queen, K.L.; Sherrill, R.G.; Sugg, E.E.; Suh, E.M.; Szewczyk, J.W.; Unwalla, R.J.; Yingling, J.; Willson, T.M. Optimization of 3-(1H-indazol-3-ylmethyl)-1,5-benzodiazepines as potent, orally active CCK-A agonists. J. Med. Chem., 1997, 40(17), 2706-2725.
[http://dx.doi.org/10.1021/jm970265x] [PMID: 9276016]
[3]
Giovannoni, M.P.; Vergelli, C.; Ghelardini, C.; Galeotti, N.; Bartolini, A.; Dal Piaz, V. [(3-Chlorophenyl)piperazinylpropyl]pyridazinones and analogues as potent antinociceptive agents. J. Med. Chem., 2003, 46(6), 1055-1059.
[http://dx.doi.org/10.1021/jm021057u] [PMID: 12620082]
[4]
Li, W.T.; Hwang, D.R.; Chen, C.P.; Shen, C.W.; Huang, C.L.; Chen, T.W.; Lin, C.H.; Chang, Y.L.; Chang, Y.Y.; Lo, Y.K.; Tseng, H.Y.; Lin, C.C.; Song, J.S.; Chen, H.C.; Chen, S.J.; Wu, S.H.; Chen, C.T. Synthesis and biological evaluation of N-heterocyclic indolyl glyoxylamides as orally active anticancer agents. J. Med. Chem., 2003, 46, 1706-1715.
[http://dx.doi.org/10.1021/jm020471r] [PMID: 12699388]
[5]
“Comprehensive Heterocyclic Chemistry. The structure, reactions, synthesis and uses of heterocyclic compounds”. Eds. Katritzky, A. R.; and Rees C. W, Vols. 1-8 Pergamon Press: Oxford. 1984.
[6]
Katritzky, A.R.; Karelson, M.; Malhotra, N. Heterocyclic Aromaticity. Heterocycles, 1991, 32, 127.
[http://dx.doi.org/10.3987/REV-90-420]
[7]
Eichner, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions Synthesis and Applications, 2nd Ed; Wiley-VCH: Weinheim, Germany, 2003.
[http://dx.doi.org/10.1002/352760183X]
[8]
Gupta, U.C.; Bhatia, S.; Garg, A.; Sharma, A.; Choudhary, V. Phase 0 clinical trials in oncology new drug development. Perspect. Clin. Res., 2011, 2(1), 13-22.
[http://dx.doi.org/10.4103/2229-3485.76285] [PMID: 21584177]
[9]
(a)Katritzky, A.R.; Pozharskii, A.F. Handbook of Heterocyclic Chemistry, 2000 2nd Ed.; Pergamon Press: New York, 2000.
(b)Craig, P.N. In Comprehensive Medicinal Chemistry., Drayton, C.J., Ed.; Pergamon Press: New York, Vol.8. 1991.
[10]
Mital, A. Synthetic nitroimidazoles: biological activities and mutagenicity relationships. Sci. Pharm., 2009, 77, 497-520.
[http://dx.doi.org/10.3797/scipharm.0907-14]
[11]
Sperry, J.B.; Wright, D.L. Furans, thiophenes and related heterocycles in drug discovery. Curr. Opin. Drug Discov. Devel., 2005, 8(6), 723-740.
[PMID: 16312148]
[12]
(a) Benson, F.R.; Savell, W.L. The chemistry of the vicinal triazoles. Chem. Rev., 1950, 46(1), 1-68.
[http://dx.doi.org/10.1021/cr60143a001] [PMID: 24537518 b-Potts,]
(b) K.T. The chemistry of 1, 2, 4-triazoles. Chem. Rev., 1961, 61, 87-127.
[http://dx.doi.org/10.1021/cr60210a001]
[13]
(a) Gilchrist, T.L. Heterocyclic Chemistry, 2nd Ed; Longman/Wiley: Harlow, Chichester, 1992.
(b) Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed; John Wiley and Sons, Ltd.: Chichester, UK, 2010.
[14]
Ko, E.; Liu, J.; Perez, L.M.; Lu, G.; Schaefer, A.; Burgess, K. Universal peptidomimetics. J. Am. Chem. Soc., 2011, 133(3), 462-477.
[http://dx.doi.org/10.1021/ja1071916] [PMID: 21182254]
[15]
Bertrup, M.; Nielsen, C.J.; Nygaard, L.; Samdal, S.; Sjøgren, C.E.; Sørensen, G.O. The molecular structure and tautomer equilibrium of gaseous 1, 2, 3-triazole studied by microwave spectroscopy, electron diffraction and Ab initio calculations. Acta Chem. Scand. A, 1988, 42, 500-514.
[http://dx.doi.org/10.3891/acta.chem.scand.42a-0500]
[16]
(a) Brik, A.; Alexandratos, J.; Lin, Y.C.; Elder, J.H.; Olson, A.J.; Wlodawer, A.; Goodsell, D.S.; Wong, C.H. 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem, 2005, 6(7), 1167-1169.
[http://dx.doi.org/10.1002/cbic.200500101] [PMID: 15934050]
(b) Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: The latest addition to anion supramolecular chemistry. Chem. Soc. Rev., 2010, 39(4), 1262-1271.
[http://dx.doi.org/10.1039/b818033b] [PMID: 20349532]
[17]
(a) Haider, S.; Alam, M.S.; Hamid, H. 1, 2, 3-Triazoles: Scaffold with medicinal significance. Inflamm. Cell Signal, 2014, 1, 1, e95.
(b) Kappe, C.O.; Van der Eycken, E. Click chemistry under non-classical reaction conditions. Chem. Soc. Rev., 2010, 39(4), 1280-1290.
[http://dx.doi.org/10.1039/B901973C] [PMID: 20309486]
(c) Ferreira, S.B.; Sodero, A.C.; Cardoso, M.F.; Lima, E.S.; Kaiser, C.R.; Silva, F.P., Jr; Ferreira, V.F. Synthesis, biological activity, and molecular modeling studies of 1H-1,2,3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. J. Med. Chem., 2010, 53(6), 2364-2375.
[http://dx.doi.org/10.1021/jm901265h] [PMID: 20170190]
[18]
(a) Whiting, M.; Muldoon, J.; Lin, Y.C.; Silverman, S.M.; Lindstrom, W.; Olson, A.J.; Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Elder, J.H.; Fokin, V.V. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. Engl., 2006, 45(9), 1435-1439.
[http://dx.doi.org/10.1002/anie.200502161] [PMID: 16425339]
(b) Horne, W.S.; Yadav, M.K.; Stout, C.D.; Ghadiri, M.R. Heterocyclic peptide backbone modifications in an α-helical coiled coil. J. Am. Chem. Soc., 2004, 126(47), 15366-15367.
[http://dx.doi.org/10.1021/ja0450408] [PMID: 15563148]
(c) Lau, Y.H.; Rutledge, P.J.; Watkinson, M.; Todd, M.H. Chemical sensors that incorporate click-derived triazoles. Chem. Soc. Rev., 2011, 40(5), 2848-2866.
[http://dx.doi.org/10.1039/c0cs00143k] [PMID: 21380414]
(d) El-Sagheer, A.H.; Brown, T. Click nucleic acid ligation: Applications in biology and nanotechnology. Acc. Chem. Res., 2012, 45(8), 1258-1267.
[http://dx.doi.org/10.1021/ar200321n] [PMID: 22439702]
[19]
Lewis, R.E. Current concepts in antifungal pharmacology. Mayo Clin. Proc., 2011, 86(8), 805-817.
[http://dx.doi.org/10.4065/mcp.2011.0247] [PMID: 21803962]
[20]
Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clinical Microbiology Reviews., 1999, 12, 40-79.
[http://dx.doi.org/10.1128/cmr.12.1.40. PMC 88906] [PMID: 9880474]
[21]
Di Santo, R.; Tafi, A.; Costi, R.; Botta, M.; Artico, M.; Corelli, F.; Forte, M.; Caporuscio, F.; Angiolella, L.; Palamara, A.T. Antifungal agents. 11. N-substituted derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole: Synthesis, anti-Candida activity, and QSAR studies. J. Med. Chem., 2005, 48(16), 5140-5153.
[http://dx.doi.org/10.1021/jm048997u] [PMID: 16078834]
[22]
Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol., 2003, 11(6), 272-279.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[23]
Shyadehi, A.Z.; Lamb, D.C.; Kelly, S.L.; Kelly, D.E.; Schunck, W.H.; Wright, J.N.; Corina, D.; Akhtar, M. The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 α-demethylase of Candida albicans (other names are: Lanosterol 14 α-demethylase, P-45014DM, and CYP51). J. Biol. Chem., 1996, 271(21), 12445-12450.
[http://dx.doi.org/10.1074/jbc.271.21.12445] [PMID: 8647850]
[24]
Zoumpoulakis, P.; Camoutsis, Ch.; Pairas, G.; Soković, M.; Glamočlija, J.; Potamitis, C.; Pitsas, A. Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorg. Med. Chem., 2012, 20(4), 1569-1583.
[http://dx.doi.org/10.1016/j.bmc.2011.12.031] [PMID: 22264752]
[25]
(a) Al-Soud, Y.A.; Al-Dweri, M.N.; Al-Masoudi, N.A. Synthesis, antitumor and antiviral properties of some 1, 2, 4-triazole derivatives. Farmaco, 2004, 59, 775-783.
[http://dx.doi.org/10.1016/j.farmac.2004.05.006]
(b) Wang, Y.; Zhou, C.H. Recent advances in the researches of triazole compounds as medicinal drugs. Scientia Sinica Chemica, 2011, 41, 1429-1456.
[http://dx.doi.org/10.1360/032010-843]
(c) Shi, Y.; Zhou, C.H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21, 956-960.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059]
(d) Shi, Y.; Zhou, C.H.; Zhou, X.D.; Geng, R.X.; Ji, Q.G. Synthesis and antimicrobial evaluation of coumarin-based benzotriazoles and their synergistic effects with chloromycin and fluconazole. Acta Pharm. Sinica, 2011, 46, 798-810.
[PMID: 22010349]
[26]
Molina, J.; Martins-filho, O.; Btener, Z.; Romanha, A.; Loebenberg, D.; Urbina, A.J. Activities of the Triazole Derivative SCH 56592 (Posaconazole) against Drug-Resistant Strains of the Protozoan Parasite Trypanosoma (Schizotrypanum) cruzi in Immunocompetent and Immunosuppressed Murine Hosts. Am. Soc. Microbiol., 2000, 44, 150-155.
[http://dx.doi.org/10.1128/aac.44.1.150-155.2000] [PMID: 10602737]
[27]
(a) Kim, J.; Tang, J.Y.; Gong, R.; Kim, J.; Lee, J.J.; Clemons, K.V.; Chong, C.R.; Chang, K.S.; Fereshteh, M.; Gardner, D.; Reya, T.; Liu, J.O.; Epstein, E.H.; Stevens, D.A.; Beachy, P.A. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell, 2010, 17(4), 388-399.
[http://dx.doi.org/10.1016/j.ccr.2010.02.027] [PMID: 20385363]
(b) Kim, J.; Aftab, B.T.; Tang, J.Y.; Kim, D.; Lee, A.H.; Rezaee, M.; Kim, J.; Chen, B.; King, E.M.; Borodovsky, A.; Riggins, G.J.; Epstein, E.H., Jr; Beachy, P.A.; Rudin, C.M. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell, 2013, 23(1), 23-34.
[http://dx.doi.org/10.1016/j.ccr.2012.11.017] [PMID: 23291299]
[28]
(a) Chong, C.R.; Xu, J.; Lu, J.; Bhat, S.; Sullivan, D.J.; Liu, J.O. Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem. Biol., 2007, 2, 263-270.
[http://dx.doi.org/10.1021/cb600362d]
(b) Aftab, B.T.; Dobromilskaya, I.; Liu, J.O.; Rudin, C.M. Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res., 2011, 71, 6764-6772.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0691]
[29]
Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.W.; Kern, W.V.; Marr, K.A.; Ribaud, P.; Lortholary, O.; Sylvester, R.; Rubin, R.H.; Wingard, J.R.; Stark, P.; Durand, C.; Caillot, D.; Thiel, E.; Chandrasekar, P.H.; Hodges, M.R.; Schlamm, H.T.; Troke, P.F.; de Pauw, B. Invasive Fungal infections group of the European organisation for research and treatment of cancer and the global Aspergillus Study Group. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med., 2002, 347(6), 408-415.
[http://dx.doi.org/10.1056/NEJMoa020191] [PMID: 12167683]
[30]
Yamazumi, T.; Pfaller, M.A.; Messer, S.A.; Houston, A.; Hollis, R.J.; Jones, R.N. In vitro activities of ravuconazole (BMS-207147) against 541 clinical isolates of Cryptococcus neoformans. Antimicrob. Agents Chemother., 2000, 44(10), 2883-2886.
[http://dx.doi.org/10.1128/AAC.44.10.2883-2886.2000] [PMID: 10991880]
[31]
Carrillo-Muñoz, A.J.; Giusiano, G.; Ezkurra, P.A.; Quindós, G. Antifungal agents: Mode of action in yeast cells. Rev. Esp. Quimioter., 2006, 19(2), 130-139.
[PMID: 16964330]
[32]
(a) Groll, A.H.; Lumb, J. New developments in invasive fungal disease. Future Microbiol., 2012, 7(2), 179-184.
[http://dx.doi.org/10.2217/fmb.11.154] [PMID: 22324986]
(b) Türel, O. Newer antifungal agents. Expert Rev. Anti Infect. Ther., 2011, 9(3), 325-338.
[http://dx.doi.org/10.1586/eri.10.163] [PMID: 21417872]
[33]
Donnelley, M.A.; Zhu, E.S.; Thompson, G.R., III Isavuconazole in the treatment of invasive aspergillosis and mucormycosis infections. Infect. Drug Resist., 2016, 9, 79-86.
[PMID: 27330318]
[34]
Ohwada, J.; Tsukazaki, M.; Hayase, T.; Oikawa, N.; Isshiki, Y.; Fukuda, H.; Mizuguchi, E.; Sakaitani, M.; Shiratori, Y.; Yamazaki, T.; Ichihara, S.; Umeda, I.; Shimma, N. Design, synthesis and antifungal activity of a novel water soluble prodrug of antifungal triazole. Bioorg. Med. Chem. Lett., 2003, 13(2), 191-196.
[http://dx.doi.org/10.1016/S0960-894X(02)00892-2] [PMID: 12482421]
[35]
(a) Simpson, E.R. Sources of estrogen and their importance. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 225-230.
[http://dx.doi.org/10.1016/S0960-0760(03)00360-1] [PMID: 14623515]
(b) Howell, A.; Cuzick, J.; Baum, M.; Buzdar, A.; Dowsett, M.; Forbes, J.F.; Hoctin-Boes, G.; Houghton, J.; Locker, G.Y.; Tobias, J.S. ATAC Trialists’ Group. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 2005, 365(9453), 60-62.
[http://dx.doi.org/10.1016/S0140-6736(04)17666-6] [PMID: 15639680]
[36]
Wellington, K.; Plosker, G.L. Rizatriptan: An update of its use in the management of migraine. Drugs, 2002, 62(10), 1539-1574.
[http://dx.doi.org/10.2165/00003495-200262100-00007] [PMID: 12093318]
[37]
Graci, J.D.; Cameron, C.E. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol., 2006, 16(1), 37-48.
[http://dx.doi.org/10.1002/rmv.483] [PMID: 16287208]
[38]
(a) Hruska, J.F.; Morrow, P.E.; Suffin, S.C.; Douglas, R.G., Jr In vivo inhibition of respiratory syncytial virus by ribavirin. Antimicrob. Agents Chemother., 1982, 21(1), 125-130.
[http://dx.doi.org/10.1128/AAC.21.1.125] [PMID: 7044296]
(b) Hall, C.B.; McBride, J.T.; Walsh, E.E.; Bell, D.M. Aerosolized virazole treatment of infants with a respiratory syncytial viral infection. N. Engl. J. Med., 1983, 308, 1443-1447.
[http://dx.doi.org/10.1056/NEJM198306163082403] [PMID: 6343860]
[39]
(a) Sunter, J.P.; Bal, T.S.; Cowan, W.K. Three cases of fatal triazolam poisoning. BMJ, 1988, 297(6650), 719.
[http://dx.doi.org/10.1136/bmj.297.6650.719] [PMID: 3147739]
(b) Olson, K.R.; Yin, L.; Osterloh, J.; Tani, A. Coma caused by trivial triazolam overdose. Am. J. Emerg. Med., 1985, 3(3), 210-211.
[http://dx.doi.org/10.1016/0735-6757(85)90092-0] [PMID: 2859867]
[40]
Rotzinger, S.; Fang, J.; Baker, G.B. Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources. Drug Metab. Dispos., 1998, 26(6), 572-575.
[PMID: 9616194]
[41]
Spina, E.; Santoro, V.; D’Arrigo, C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: An update. Clin. Ther., 2008, 30(7), 1206-1227.
[http://dx.doi.org/10.1016/S0149-2918(08)80047-1] [PMID: 18691982]
[42]
(a) Büyükafşar, K.; Yazar, A.; Düşmez, D.; Öztürk, H.; Polat, G.; Levent, A. Effect of trapidil, an antiplatelet and vasodilator agent on gentamicin-induced nephrotoxicity in rats. Pharmacol. Res., 2001, 44, 321-328.
[http://dx.doi.org/10.1006/phrs.2001.0864]
(b) Liu, M.; Sun, Q.; Wang, Q.; Wang, X.; Lin, P.; Yang, M.; Yan, Y. Effect of trapidil in myocardial ischemia-reperfusion injury in rabbit. Indian J. Pharmacol., 2014, 46, 207-210.
[http://dx.doi.org/ 10.4103/0253-7613.129320]
[43]
Yamamoto, K.; Hirose, K.; Matsushita, A.; Yoshimura, K.; Sawada, T.; Eigyo, M.; Jyoyama, H.; Fujita, A.; Matsubara, K.; Tsukinoki, Y. [Pharmacological studies of a new sleep-inducer, 1H-1,2,4-triazolyl benzophenone derivatives (450191-S) (I). Behavioral analysis Nippon Yakurigaku Zasshi, 1984, 84(1), 109-154.
[http://dx.doi.org/10.1254/fpj.84.109] [PMID: 6149174]
[44]
Soltis, M.J.; Yeh, H.J.; Cole, K.A.; Whittaker, N.; Wersto, R.P.; Kohn, E.C. Identification and characterization of human metabolites of CAI [5-amino-1-1(4′-chlorobenzoyl-3,5-dichlorobenzyl)-1,2,3-triazole- 4-carboxamide). Drug Metab. Dispos., 1996, 24(7), 799-806.
[PMID: 8818579]
[45]
(a) Sheng, C.; Zhang, W. New lead structures in antifungal drug discovery. Curr. Med. Chem., 2011, 18(5), 733-766.
[http://dx.doi.org/10.2174/092986711794480113] [PMID: 21182484]
(b) Balzarini, J.; Pérez-Pérez, M.J.; San-Félix, A.; Schols, D.; Perno, C.F.; Vandamme, A.M.; Camarasa, M.J.; De Clercq, E. 2′,5′-Bis-O-(tert-butyldimethylsilyl)-3′-spiro-5′'-(4′'-amino-1′',2′'- oxathiole-2′',2′-dioxide) pyrimidine (TSAO) nucleoside analogues: Highlyselective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4392-4396.
[http://dx.doi.org/10.1073/pnas.89.10.4392] [PMID: 1374900]
[46]
Fray, M.J.; Bull, D.J.; Carr, C.L.; Gautier, E.C.; Mowbray, C.E.; Stobie, A. Structure-activity relationships of 1,4-dihydro-(1H,4H)-quinoxaline-2,3-diones as N-methyl-D-aspartate (glycine site) receptor antagonists. 1. Heterocyclic substituted 5-alkyl derivatives. J. Med. Chem., 2001, 44(12), 1951-1962.
[http://dx.doi.org/10.1021/jm001124p] [PMID: 11384240]
[47]
Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D.; Shiradkar, M. Clubbed [1,2,3] triazoles by fluorine benzimidazole: A novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6244-6247.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.096] [PMID: 18930654]
[48]
Rodriguez, C.A.; Agudelo, M.; Zuluaga, A.F.; Vesga, O. In vivo pharmacodynamics of piperacillin/tazobactam: Implications for antimicrobial efficacy and resistance suppression with innovator and generic products. Int. J. Antimicrob. Agents, 2017, 49(2), 189-197.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.10.011] [PMID: 27988068]
[49]
(a) Choi, H.G.; Jun, H.W.; Kim, D.D.; Sah, H.; Yoo, B.K.; Yong, C.S. Simultaneous determination of cefatrizine and clavulanic acid in dog plasma by HPLC. J. Pharm. Biomed. Anal., 2004, 35(1), 221-231.
[http://dx.doi.org/10.1016/j.jpba.2004.01.010] [PMID: 15030898]
(b) Dunn, G.L.; Hoover, J.R.; Berges, D.A.; Taggart, J.J.; Davis, L.D.; Dietz, E.M.; Jakas, D.R.; Yim, N.; Actor, P.; Uri, J.V.; Weisbach, J.A. Orally active 7-phenylglycyl cephalosporins. Structure-activity studies related to cefatrizine (SK&F 60771). J. Antibiot. (Tokyo), 1976, 29(1), 65-80.
[http://dx.doi.org/10.7164/antibiotics.29.65] [PMID: 776915]
[50]
Kothare, S.; Kluger, G.; Sachdeo, R.; Williams, B.; Olhaye, O.; Perdomo, C.; Bibbiani, F. Dosing considerations for rufinamide in patients with Lennox-Gastaut syndrome: Phase III trial results and real-world clinical data. Seizure, 2017, 47, 25-33.
[http://dx.doi.org/10.1016/j.seizure.2017.02.008] [PMID: 28284045]
[51]
Kalyoncuoğlu, N.; Rollas, S.; Sür-Altiner, D.; Yeğenoğlu, Y.; Anğ, O. 1-[p-(Benzoylamino)benzoyl]-4-substituted thiosemicarbazides: synthesis and antibacterial and antifungal activities. Pharmazie, 1992, 47(10), 796-797.
[PMID: 1480660]
[52]
Hüisgen, R.; Szeimies, G.; Mobius, L.; Guenter, S.; Leander, M. 1.3-Dipolare cycloadditionen, XXXII. kinetik der additionen organischer Azide an CC-Mehrfachbindungen. Chem. Ber., 1967, 100, 2494-2507.
[http://dx.doi.org/10.1002/cber.19671000806]
[53]
Hüisgen, R. 1,3,-Dipolar cycloaddition. Introduction, Survey and Mechanism. In: Padwa, A, Ed. 1,3,-Dipolar cycloaddition Chemistry., Wiley- Interscience: New York, Vol 1. 1984.
[PMID: 28284045]
[54]
Michael, A. Ueber die einwirkung von diazobenzolimid auf acetylendicarbonsäuremethylester. J. Prakt. Chem., 1893, 48, 94-95.
[http://dx.doi.org/10.1002/prac.18930480114]
[55]
Huisgen, R. Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure Appl. Chem., 1989, 61, 613-628.
[http://dx.doi.org/10.1351/pac198961040613]
[56]
Lwowski, W. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, Vol. 1, pp. 559-651.
[57]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[58]
Tornøe, C.W.; Meldal, M. Peptidotriazoles: Copper(I)-catalyzed 1,3-dipolar cycloadditions on solid-phase. In: Lebl, M., Houghten, R. A. (Eds.), American Peptide Society and Kluwer Academic Publishers, San Diego. 2001, pp. 263-264.
[59]
Rostovtsev, V.V. Green, L. G.; Fokin, V. V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
[60]
Hou, J.; Liu, X.; Shen, J.; Zhao, G.; Wang, P.G. The impact of click chemistry in medicinal chemistry. Expert Opin. Drug Discov., 2012, 7(6), 489-501.
[http://dx.doi.org/10.1517/17460441.2012.682725] [PMID: 22607210]
[61]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[62]
Barone, G.; Terenzi, A.; Lauria, A.; Almerico, A.M.; Leal, J.M.; Busto, N.; Garcia, B. DNA-binding of nickel (II), copper (II) and zinc (II) complexes: Structure-affinity relationships. Coord. Chem. Rev., 2013, 257, 2848-2862.
[http://dx.doi.org/10.1016/j.ccr.2013.02.023]
[63]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[64]
(a) Dörner, S.; Westermann, B. A short route for the synthesis of “sweet” macrocycles via a click-dimerization-ring-closing metathesis approach. Chem. Commun. (Camb.), 2005, (22), 2852-2854.
[http://dx.doi.org/10.1039/b502682b] [PMID: 15928780]
(b) Westermann, B.; Dörner, S.; Brauch, S.; Schaks, A.; Heinke, R.; Stark, S.; van Delft, F.L.; van Berkel, S.S. CuAAC-mediated diversification of aminoglycoside-arginine conjugate mimics by non-reducing di- and trisaccharides. Carbohydr. Res., 2013, 371, 61-67.
[http://dx.doi.org/10.1016/j.carres.2013.02.003] [PMID: 23507494]
[65]
Golas, P.L.; Tsarevsky, N.V.; Sumerlin, B.S.; Matyjaszewski, K. Catalyst performance in “click” coupling reactions of polymers prepared by ATRP: ligand and metal effects. Macromolecules, 2006, 39, 6451-6457.
[http://dx.doi.org/10.1021/ma061592u]
[66]
(a) Konwar, M.; Ali, A.A.; Chetia, M.; Saikia, P.J.; and Sarma, D. Fehling solution/DIPEA/hydrazine: An alternative catalytic medium for regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles using azide–alkyne cycloaddition reaction. Tetrahedron Lett., 2016, 57, 4473.
(b) Jayaramulu, K.; Suresh, V.M.; Maji, T.K. Stabilization of Cu2O nanoparticles on a 2D metal-organic framework for catalytic Huisgen 1,3-dipolar cycloaddition reaction. Dalton Trans., 2015, 44, 83-86.
[67]
Peng, W.A.; Feldman, K.; Nugent, A.K.; Hawker, C.J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J.M.J.; Barry, K.; Sharpless, K.B.; Fokin, V.V. Efficiency and fidelity in a click‐chemistry route to triazole dendrimers by the copper(I) catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed., 2004, 43, 3928-3932.
[http://dx.doi.org/10.1002/anie.200454078]
[68]
Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C.J.; Russell, T.P.; Wu, P.; Fokin, V.V. Structurally diverse dendritic libraries: A highly efficient functionalization approach using click chemistry. Macromolecules, 2005, 38, 3663-3678.
[http://dx.doi.org/10.1021/ma047657f]
[69]
Horne, W.S.; Stout, C.D.; Ghadiri, M.R. A heterocyclic peptide nanotube. J. Am. Chem. Soc., 2003, 125(31), 9372-9376.
[http://dx.doi.org/10.1021/ja034358h] [PMID: 12889966]
[70]
(a) Mocharla, V.P.; Colasson, B.; Lee, L.V.; Röper, S.; Sharpless, K.B.; Wong, C.H.; Kolb, H.C. In situ click chemistry: Enzyme-generated inhibitors of carbonic anhydrase II. Angew. Chem. Int. Ed. Engl., 2004, 44(1), 116-120.
[http://dx.doi.org/10.1002/anie.200461580] [PMID: 15599912]
(b) Dondoni, A.; Giovannini, P.P.; Massi, A. Assembling heterocycle-tethered C-glycosyl and α-amino acid residues via 1,3-dipolar cycloaddition reactions. Org. Lett., 2004, 6(17), 2929-2932.
[http://dx.doi.org/10.1021/ol048963g] [PMID: 15330650]
(c) Wróblewski, A.E.; Głowacka, I.E. Synthesis of (1R, 2S)-and (1S, 2S)-3-(4-carbamoyl-1, 2, 3-triazol-1-yl)-1,2-dihydroxypropylphosphonates. Tetrahedron Asymmetry, 2004, 15, 1457-1464.
[http://dx.doi.org/10.1016/j.tetasy.2004.03.025]
(d) Liu, J.; Numa, M.M.; Liu, H.; Huang, S.J.; Sears, P.; Shikhman, A.R.; Wong, C.H. Synthesis and high-throughput screening of N-acetyl-β-hexosaminidase inhibitor libraries targeting osteoarthritis. J. Org. Chem., 2004, 69(19), 6273-6283.
[http://dx.doi.org/10.1021/jo049355h] [PMID: 15357586]
[71]
(a) Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
(b) Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org. Lett., 2007, 9(26), 5337-5339.
[http://dx.doi.org/10.1021/ol701912s] [PMID: 18052070]
(c) Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: Scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.
[http://dx.doi.org/10.1021/ja0749993] [PMID: 18570425]
(d) Ding, S.; Jia, G.; Sun, J. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1877-1880.
[http://dx.doi.org/10.1002/anie.201309855] [PMID: 24474668]
(e) Ding, S.; Jia, G.; Sun, J. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1877-1880.
[http://dx.doi.org/10.1002/anie.201309855] [PMID: 24474668]
[72]
(a) Ramachary, D.B.; Shashank, A.B.; and Karthik, S. An Organocatalytic Azide-Aldehyde [3+ 2] Cycloaddition: High-Yielding Regioselective Synthesis of 1, 4-Disubstituted 1, 2, 3-Triazoles. Angew. Chem. Int. Ed. Engl., 2014, 53, 10420-10424.
(b) Shashank, A.B.; Karthik, S.; Madhavachary, R.; and Ramachary, D.B. An enolate-mediated organocatalytic azide–ketone [3+2]-cycloaddition reaction: regioselective high-yielding synthesis of fully decorated 1, 2, 3-triazoles. Chemistry–A European Journal,, 2014, 20, 16877-16881.
[73]
Majireck, M.M.; Weinreb, S.M. A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes. J. Org. Chem., 2006, 71(22), 8680-8683.
[http://dx.doi.org/10.1021/jo061688m] [PMID: 17064059]
[74]
(a) Johansson, J.R.; Lincoln, P.; Nordén, B.; Kann, N. Sequential one-pot ruthenium-catalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide. J. Org. Chem., 2011, 76(7), 2355-2359.
[http://dx.doi.org/10.1021/jo200134a] [PMID: 21388208]
(b) Johansson, J.R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications. Chem. Rev., 2016, 116(23), 14726-14768.
[http://dx.doi.org/10.1021/acs.chemrev.6b00466] [PMID: 27960271]
[75]
(a) Mariappan, K.; Alaparthi, M.; Caple, G.; Balasubramanian, V.; Hoffman, M.M.; Hudspeth, M.; Sykes, A.G. Selective fluorescence sensing of copper(II) and water via competing imine hydrolysis and alcohol oxidation pathways sensitive to water content in aqueous acetonitrile mixtures. Inorg. Chem., 2014, 53(6), 2953-2962.
[http://dx.doi.org/10.1021/ic402723c] [PMID: 24601554]
(b) Chou, C.Y.; Liu, S.R.; Wu, S.P. A highly selective turn-on fluorescent sensor for Cu(II) based on an NSe2 chelating moiety and its application in living cell imaging. Analyst (Lond.), 2013, 138(11), 3264-3270.
[http://dx.doi.org/10.1039/c3an00286a] [PMID: 23612188]
[76]
(a) Saxon, E.; Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science, 2000, 287, 2007-2010.
[http://dx.doi.org/10.1126/science.287.5460.2007]
(b) Kiick, K.L.; Saxon, E.; Tirrell, D.A.; Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA, 2002, 99, 19-24.
[http://dx.doi.org/10.1073/pnas.012583299]
[77]
(a) Agard, N.J.; Prescher, J.A.; Bertozzi, C.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc., 2004, 126(46), 15046-15047.
[http://dx.doi.org/10.1021/ja044996f] [PMID: 15547999]
(b) Codelli, J.A.; Baskin, J.M.; Agard, N.J.; Bertozzi, C.R. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J. Am. Chem. Soc., 2008, 130(34), 11486-11493.
[http://dx.doi.org/10.1021/ja803086r] [PMID: 18680289]
(c) Baskin, J.M.; Prescher, J.M.; Laughlin, J.A.; Laughlin, S.T.; Agard, N.J.; Chang, P.V.; Lo Miller, I.A. Lo. A.; Codelli, J.A.; and Bertozzi, C.R. Proc. Natl. Acad. Sci. USA, 2007, 104, 1679-1684.
(d) Laughlin, S.T.; Baskin, J.M.; Amacher, S.L.; Bertozzi, C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008, 320(5876), 664-667.
[http://dx.doi.org/10.1126/science.1155106] [PMID: 18451302]
(e) Sletten, E.M.; Bertozzi, C.R. A hydrophilic azacyclooctyne for Cu-free click chemistry. Org. Lett., 2008, 10(14), 3097-3099.
[http://dx.doi.org/10.1021/ol801141k] [PMID: 18549231]
[78]
(a) Huisgen, R. 1, 3-dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl., 1963, 2(10), 565-598.
[http://dx.doi.org/10.1002/ange.19630751304]
(b) Fdidwsi, A. Metal-assisted cycloaddition reactions in organotransition metal chemistry. Angew. Chem. Int. Ed. Engl., 1976, 15, 123-180.
(c) Bianchi, G.; DeMicheli, C.; Gandolfi, R. 1,3‐Dipolar Cycloreversions. Angew. Chem. Int. Ed. Engl., 1979, 18, 721-738.
[http://dx.doi.org/10.1002/anie.197907211]
[79]
Zhang, Y.; Li, X.; Li, J.; Chen, J.; Meng, X.; Zhao, M.; Chen, B. CuO-promoted construction of N-2-aryl-substituted-1,2,3-triazoles via azide-chalcone oxidative cycloaddition and post-triazole arylation. Org. Lett., 2012, 14(1), 26-29.
[http://dx.doi.org/10.1021/ol202718d] [PMID: 22133007]
[80]
Paplal, B.; Nagaraju, S.; Sridhar, B.; Kashinath, D. Regioselective synthesis of functionalized 1,2,3-triazoles via oxidative [3+2]-cycloaddition using Zn(OAc)2-tBuOOH or ZnO nanoparticle as catalyst system in aqueous medium. Catal. Commun., 2017, 99, 115-120.
[http://dx.doi.org/10.1016/j.catcom.2017.05.006]
[81]
Wang, Y.C.; Xie, Y.Y.; Qu, H.E.; Wang, H.S.; Pan, Y.M.; Huang, F.P. Ce(OTf)3-catalyzed [3 + 2] cycloaddition of azides with nitroolefins: regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. J. Org. Chem., 2014, 79(10), 4463-4469.
[http://dx.doi.org/10.1021/jo5004339] [PMID: 24742349]
[82]
Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. Synthesis of 4-aryl-1H-1,2,3-triazoles through TBAF-catalyzed [3 + 2] cycloaddition of 2-aryl-1-nitroethenes with TMSN3 under solvent-free conditions. J. Org. Chem., 2005, 70(16), 6526-6529.
[http://dx.doi.org/10.1021/jo0507845] [PMID: 16050724]
[83]
Janreddy, D.J.V.; Kuo, C.W.; Chen, W.C.; Ramesh, C.; Kotipalli, T.; Kuo, T-S. Chen Mei-L.; He, C.C.; and Yao, C.F.; Copper (I)-catalyzed aerobic oxidative azide–alkene cycloaddition: An efficient synthesis of substituted 1,2,3-triazoles. Adv. Synth. Catal., 2013, 355, 2918-2927.
[http://dx.doi.org/10.1002/adsc.201300344]
[84]
Belkheira, M.; El Abed, D.; Pons, J.M.; Bressy, C. Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and arylazides. Chemistry, 2011, 17(46), 12917-12921.
[http://dx.doi.org/10.1002/chem.201102046] [PMID: 21984230]
[85]
(a) Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.
[http://dx.doi.org/10.1002/chem.200801325] [PMID: 18767077]
(b) Ramachary, D.B.; Shashank, A.B. Organocatalytic triazole formation, followed by oxidative aromatization: regioselective metal-free synthesis of benzotriazoles. Chemistry, 2013, 19(39), 13175-13181.
[http://dx.doi.org/10.1002/chem.201301412] [PMID: 24038664]
[86]
(a) Seus, N.; Goncalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; and Paixao, M.W. Synthesis of arylselanyl-1H-1,2,3-triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68, 10456-10463.
[http://dx.doi.org/10.1016/j.tet.2012.10.007]
(b) Seus, N.; Goldani, B.; Lenardao, E.J.; Savegnago, L.; Paixao, M.W.; Alves, D. Organocatalytic synthesis of (Arylselanyl) phenyl-1H-1,2,3-triazole-4-carboxamides by cycloaddition between azidophenyl arylselenides and β-Oxo-amides. Eur. J. Org. Chem., 2014, 2014, 1059-1065.
[http://dx.doi.org/10.1002/ejoc.201301547]
[87]
(a) Savegnago, L.; Sacramento, M.D.; Brod, L.M.P.; Fronza, M.G.; Seus, N. Lenard ̃ao E.J., Paix ̃ao, M.W.; Alves, D. Phenylselanyl-1H-1,2,3-triazole-4-carbonitriles: Synthesis, antioxidant properties and use asprecursors to highly functionalized tetrazoles. RSC Advances, 2016, 6, 8021-8031.
[http://dx.doi.org/10.1039/C5RA22445D]
(b) Lima, C.G.S.; Ali, A.; van Berkel, S.S.; Westermann, B.; and Paixa˜o, M.W. Emerging approaches for the synthesis of triazoles: Beyond metal-catalyzed and strain-promoted azide–alkyne cycloaddition. Chem. Commun. (Camb.), 2015, 51, 10784-10796.
[http://dx.doi.org/10.1039/c5cc04114g] [PMID: 26066359]
[88]
(a) Danence, L.J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Organocatalytic enamide–azide cycloaddition reactions: Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. Chem. A. Eur. J., 2011, 17, 3584-3587.
[http://dx.doi.org/10.1002/chem.201002775]
(b) Wang, L.; Peng, S.; Danence, L.J.T.; Gao, Y.; and Wang, J. Amine-Catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. Chemistry, Eur. J, 2012, 18, 6088-6093.
[http://dx.doi.org/10.1002/chem.201103393]
[89]
Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. Synthesis of triazoles from nonactivated terminal alkynes via the three-component coupling reaction using a Pd (0)−Cu (I). Bimetallic Catalyst. J. Am. Chem. Soc., 2003, 125, 7786-7787.
[http://dx.doi.org/10.1021/ja034191s] [PMID: 12822981]
[90]
(a) Chen, Y.; Liu, Y.; Petersen, J.L.; Shi, X. Conformational control in the regioselective synthesis of N-2-substituted-1,2,3-triazoles. Chem. Commun. (Camb.), 2008, (28), 3254-3256.
[http://dx.doi.org/10.1039/b805328f] [PMID: 18622435]
(b) Kalisiak, J.; Sharpless, K.B.; Fokin, V.V. Efficient synthesis of 2-substituted-1,2,3-triazoles. Org. Lett., 2008, 10(15), 3171-3174.
[http://dx.doi.org/10.1021/ol8006748] [PMID: 18597477]
[91]
Tang, W.J.; Hu, Y.Z. Simple and Efficient one-pot synthesis of 2,4-diaryl-1,2,3-triazoles. Synth. Commun., 2006, 36, 2461-2468.
[http://dx.doi.org/10.1080/00397910600781216]
[92]
Li, J.; Zhang, Y.; Wang, D.; Wang, W.; Gao, T.; Wang, L.; Li, J.; Huang, G.; Chen, B.; Chen, B. Metal-and base-free three-component reaction of ynones, sodium azide, and alkyl halides: Highly regioselective synthesis of 2, 4, 5-trisubstituted 1, 2, 3-NH-triazoles. Synlett, 2010, 2010, 1617-1622.
[http://dx.doi.org/10.1055/s-0030-1258086]
[93]
(a) Huisgen, R.; Knorr, R.; Möbius, L.; and Szeimies, G. 1,3-Dipolar Cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an C-C-Dreifachbindungen. Chem. Ber., 1965, 98, 4014-4021.
[http://dx.doi.org/10.1002/cber.19650981228]
(b) Tanaka, Y.; and Miller, S.I. 2H-1, 2, 3-Triazoles from the ethyl nitrocinnamates. J. Org. Chem., 1972, 37, 3370-3372.
[http://dx.doi.org/10.1021/jo00986a048]
(c) Adamo, I.; Benedetti, F.; Berti, F.; Nardin, G.; and Norbedo, S. Unexpected 1, 2, 3-triazole formation in the reaction of diethylaluminum azide with α′-amino-α, β-unsaturated ketones. Tetrahedron Lett., 2003, 44, 9095-9097.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.051]
(d) Kamalraj, V.R.; Senthil, S.; and Kannan, P. One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers. J. Mol. Struct., 2008, 892, 210-215.
[http://dx.doi.org/10.1016/j.molstruc.2008.05.028]
(e) Donohoe, T.J.; Bower, J.F.; Baker, D.B.; Basutto, J.A.; Chan, L.K.; Gallagher, P. Synthesis of 2, 4, 6-trisubstituted pyridines via an olefin cross-metathesis/Heck–cyclisation–elimination sequence. Chem. Commun. (Camb.), 2011, 47, 10611-10613.
[http://dx.doi.org/10.1039/c1cc14257g] [PMID: 21870019]
[94]
(a) Singh, M.S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72, 5257-5283.
[http://dx.doi.org/10.1016/j.tet.2016.07.044]
(b) Maddila, S.; Pagadala, R.; Jonnalagadda, B.S. 1, 2, 4-Triazoles: A review of synthetic approaches and the biological activity. Lett. Org. Chem., 2013, 10, 693-714.
[http://dx.doi.org/10.2174/157017861010131126115448]
(c) Shneine, J.K.; Alaraji, Y.H. Chemistry of 1, 2, 4-triazole: A review article. Int. J. Sci. Res. (Ahmedabad), 2016, 9, 9c.
[95]
Sokolova, N.V.; Nenajdenko, V.G. Recent advances in the Cu (I)-catalyzed azide-alkyne cycloaddition: Focus on functionally substituted azides and alkynes. RSC Advances, 2013, 3, 16212-16242.
[http://dx.doi.org/10.1039/c3ra42482k]
[96]
Kappe, C.O.; Van der Eycken, E. Click Chemistry under non-classical reaction conditions. Chem. Soc. Rev., 2010, 39, 1280-1290.
[http://dx.doi.org/10.1039/B901973C]
[97]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1, 2, 3-Triazole in heterocyclic compounds, endowed with biological activity, through 1, 3-dipolar cycloadditions. Eur. J. Org. Chem., 2014, 2014, 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[98]
(a) Xia, Y.; Qu, F.; Peng, L. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity. Mini Rev. Med. Chem., 2010, 10, 806-821.
[http://dx.doi.org/10.2174/138955710791608316]
(b) Dawood, K.M.; Abdel-Wahab, B.F.; and Raslan, M.A. Synthesis and applications of bi-and bis-triazole systems (18-10522LR). ARKIVOC, 2018, 179-215.
[http://dx.doi.org/10.24820/ark.5550190.p010.522]
[99]
Amblard, F.; Cho, J.H.; Schinazi, R.F. Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev., 2009, 109(9), 4207-4220.
[http://dx.doi.org/10.1021/cr9001462] [PMID: 19737023]
[100]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[101]
Binder, W.H.; Sachsenhofer, R.; Wolfgang, H. Binder talks with ScienceWatch. com and answers a few questions about this month’s New Hot Paper in the field of Chemistry. The author has also sent along images of their work. Macromol. Rapid Commun., 2007, 28, 15-54.
[http://dx.doi.org/10.1002/marc.200600625]
[102]
Lutz, J.F. Nanotechnology for Life Science Research Group. 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew. Chem. Int. Ed. Engl., 2007, 46(7), 1018-1025.
[http://dx.doi.org/10.1002/anie.200604050] [PMID: 17211903]
[103]
Bock, V.D.; Hiemstra, H.; Van Maarseveen, J.H. CuI-catalyzed alkyne-azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem., 2006, 51-68.
[http://dx.doi.org/10.1002/ejoc.200500483]
[104]
Gil, M.V.; Are’valo, M.J. Lo’pez, O. Click chemistry - What’s in a name? triazole synthesis and beyond. Synthesis, 2007, 11, 1589-1620.
[http://dx.doi.org/10.1055/s-2007-966071]
[105]
Li, Y.; Ju, Y.; Zhao, Y.F. Application of azoles synthesis in bioconjugate chemistry. Chin. J. Org. Chem.,, 2006, 26, 1640-1646.
[106]
Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36(8), 1249-1262.
[http://dx.doi.org/10.1039/B613014N] [PMID: 17619685]
[107]
Wu, P.; Fokin, V.V. Catalytic azide-alkyne cycloaddition: Reactivity and applications. Aldrichim Acta, 2007, 40, 7-17.
[108]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[109]
(a) Goodall, G.W.; Hayes, W. Advances in cycloaddition polymerizations. Chem. Soc. Rev., 2006, 35(3), 280-312.
[http://dx.doi.org/10.1039/B507209N] [PMID: 16505921]
(b) Evans, R.A. The rise of azide–alkyne 1, 3-dipolar ‘click’cycloaddition and its application to polymer science and surface modification. Aust. J. Chem., 2007, 60, 384-395.
[http://dx.doi.org/10.1071/CH06457]
[110]
Chen, L.; Li, C.J. Catalyzed reactions of alkynes in water. Adv. Synth. Catal., 2006, 348, 1459-1484.
[http://dx.doi.org/10.1002/adsc.200606090]
[111]
(a) Kaiser, J.; Kinderman, S.S.; van Esseveldt, B.C.; van Delft, F.L.; Schoemaker, H.E.; Blaauw, R.H.; Rutjes, F.P. Synthetic applications of aliphatic unsaturated α-H-α-amino acids. Org. Biomol. Chem., 2005, 3, 3435-3467.
[http://dx.doi.org/10.1039/B507973J]
(b) Angell, Y.L.; and Burgess, K. Peptidomimetics via copper-catalyzed azide–alkyne cycloadditions. Chem. Soc. Rev., 2007, 36, 1674-1689.
[http://dx.doi.org/10.1039/B701444A]
[112]
(a) Breinbauer, R.; Köhn, M. Azide-alkyne coupling: a powerful reaction for bioconjugate chemistry. ChemBioChem, 2003, 4(11), 1147-1149.
[http://dx.doi.org/10.1002/cbic.200300705] [PMID: 14613105]
(b) Dong, W.L.; Zhao, W.G.; Li, Y.X.; Liu, Z.X.; Li, Z.M. Click chemistry and its applications. Youji Huaxue, 2006, 26, 271.
(c) Durek, T.; Becker, C.F.W. Protein semi-synthesis: new proteins for functional and structural studies. Biomol. Eng., 2005, 22(5-6), 153-172.
[http://dx.doi.org/10.1016/j.bioeng.2005.07.004] [PMID: 16188500]
[113]
Jewett, J.C.; Bertozzi, C.R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev., 2010, 39(4), 1272-1279.
[http://dx.doi.org/10.1039/b901970g] [PMID: 20349533]
[114]
Jacob, J.H.; Irshaid, F.I.; Al-Soud, Y.A. Antibacterial activity of some selected 1,2,4-triazole derivatives against standard, environmental, and medical bacterial strains. Advanced Studies in Biology., 2013, 5, 291-301.
[http://dx.doi.org/10.12988/asb.2013.3418]
[115]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[116]
Martin, A.; Martin, R. A review on the antimicrobial activity of 1, 2, 4-triazole derivatives. Int. J. Life Sc. Bt & Pharm. Res., 2014, 3, 321-329.
[117]
(a) Sinha, J.; Kadawla, M. Triazoles as antimicrobial: A review. Int. J. Chem. Studies, 2017, 5, 1-7.
(b) Kaur, P.; Chawla, A. 1,2,4-triazole: a review of pharmacological activities. Int. Res. J. Pharm., 2017, 8, 10-29.
[http://dx.doi.org/10.7897/2230-8407.087112]
[118]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[119]
Genin, M.J.; Allwine, D.A.; Anderson, D.J.; Barbachyn, M.R.; Emmert, D.E.; Garmon, S.A.; Graber, D.R.; Grega, K.C.; Hester, J.B.; Hutchinson, D.K.; Morris, J.; Reischer, R.J.; Ford, C.W.; Zurenko, G.E.; Hamel, J.C.; Schaadt, R.D.; Stapert, D.; Yagi, B.H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem., 2000, 43(5), 953-970.
[http://dx.doi.org/10.1021/jm990373e] [PMID: 10715160]
[120]
Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C.J.; Hales, N.J.; Ramsay, R.R.; Gravestock, M.B. Identification of 4-substituted 1,2,3-triazoles as novel oxazolidinone antibacterial agents with reduced activity against monoamine oxidase A. J. Med. Chem., 2005, 48(2), 499-506.
[http://dx.doi.org/10.1021/jm0400810] [PMID: 15658863]
[121]
Phillips, O.A.; Udo, E.E.; Abdel-Hamid, M.E.; Varghese, R. Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole) methyl oxazolidinones. Eur. J. Med. Chem., 2009, 44(8), 3217-3227.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.024] [PMID: 19376613]
[122]
Zhang, J.; Chiang, F.I.; Wu, L.; Czyryca, P.G.; Li, D.; Chang, C.W.T. Surprising alteration of antibacterial activity of 5”-modified neomycin against resistant bacteria. J. Med. Chem., 2008, 51(23), 7563-7573.
[http://dx.doi.org/10.1021/jm800997s] [PMID: 19012394]
[123]
Pokrovskaya, V.; Belakhov, V.; Hainrichson, M.; Yaron, S.; Baasov, T. Design, synthesis, and evaluation of novel fluoroquinolone-aminoglycoside hybrid antibiotics. J. Med. Chem., 2009, 52(8), 2243-2254.
[http://dx.doi.org/10.1021/jm900028n] [PMID: 19301822]
[124]
Bera, S.; Zhanel, G.G.; Schweizer, F. Evaluation of amphiphilic aminoglycoside-peptide triazole conjugates as antibacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(10), 3031-3035.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.116] [PMID: 20413307]
[125]
Pintér, G.; Batta, G.; Kéki, S.; Mándi, A.; Komáromi, I.; Takács-Novák, K.; Sztaricskai, F.; Röth, E.; Ostorházi, E.; Rozgonyi, F.; Naesens, L.; Herczegh, P. Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study. J. Med. Chem., 2009, 52(19), 6053-6061.
[http://dx.doi.org/10.1021/jm900950d] [PMID: 19791806]
[126]
Bagwell, C.L.; Moloney, M.G.; Yaqoob, M. Oxazolomycins: natural product lead structures for novel antibacterials by click fragment conjugation. Bioorg. Med. Chem. Lett., 2010, 20(7), 2090-2094.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.066] [PMID: 20223659]
[127]
Wang, X.L.; Wan, K.; Zhou, C.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.031] [PMID: 20708826]
[128]
Pereira, D.; Fernandes, P. Synthesis and antibacterial activity of novel 4-aryl-[1,2,3]-triazole containing macrolides. Bioorg. Med. Chem. Lett., 2011, 21(1), 510-513.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.091] [PMID: 21084187]
[129]
Budhathoki-Uprety, J.; Peng, L.; Melander, C.; Novak, B.M. Synthesis of guanidinium functionalized polycarbodiimides and their antibacterial activities. ACS Macro Lett., 2012, 1, 370-374.
[http://dx.doi.org/10.1021/mz200116k]
[130]
Dreier, I.; Kumar, S.; Søndergaard, H.; Rasmussen, M.L.; Hansen, L.H.; List, N.H.; Kongsted, J.; Vester, B.; Nielsen, P. A click chemistry approach to pleuromutilin derivatives, part 2: conjugates with acyclic nucleosides and their ribosomal binding and antibacterial activity. J. Med. Chem., 2012, 55(5), 2067-2077.
[http://dx.doi.org/10.1021/jm201266b] [PMID: 22280300]
[131]
Kumar, K.; Carrere-Kremer, S.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. 1 H-1, 2, 3-triazole-tethered isatin–ferrocene and isatin–ferrocenyl-chalcone conjugates: synthesis and in vitro antitubercular evaluation. Organometallics, 2013, 32, 5713-5719.
[http://dx.doi.org/10.1021/om301157z]
[132]
Garudachari, B.; Isloor, A.M.; Satyanarayana, M.N.; Fun, H.K.; Hegde, G. Click chemistry approach: regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2014, 74, 324-332.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.008] [PMID: 24486415]
[133]
Dong, F.; Zhang, J.; Yu, C.; Li, Q.; Ren, J.; Wang, G.; Gu, G.; Guo, Z. Synthesis of amphiphilic aminated inulin via ‘click chemistry’ and evaluation for its antibacterial activity. Bioorg. Med. Chem. Lett., 2014, 24(18), 4590-4593.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.029] [PMID: 25149508]
[134]
Kushwaha, K.; Kaushik, N.; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett., 2014, 24(7), 1795-1801.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.027] [PMID: 24594353]
[135]
Mandapati, K.; Gorla, S.K.; House, A.L.; McKenney, E.S.; Zhang, M.; Rao, S.N.; Gollapalli, D.R.; Mann, B.J.; Goldberg, J.B.; Cuny, G.D.; Glomski, I.J.; Hedstrom, L. Repurposing cryptosporidium inosine 5′-monophosphate dehydrogenase inhibitors as potential antibacterial agents. ACS Med. Chem. Lett., 2014, 5(8), 846-850.
[http://dx.doi.org/10.1021/ml500203p] [PMID: 25147601]
[136]
El Sayed Aly, M.R.; Saad, H.A.; Mohamed, M.A.M. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2015, 25(14), 2824-2830.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.096] [PMID: 26025874]
[137]
Petrova, K.T.; Potewar, T.M.; Correia-da-Silva, P.; Barros, M.T.; Calhelha, R.C.; Ćiric, A.; Soković, M.; Ferreira, I.C. Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr. Res., 2015, 417, 66-71.
[http://dx.doi.org/10.1016/j.carres.2015.09.003] [PMID: 26432609]
[138]
Khedar, P.; Pericherla, K.; Singh, R.P.; Jha, P.N.; Kumar, A. Click chemistry Inspired synthesis of piperazine-triazole derivatives and evaluation of their antimicrobial activities. Med. Chem. Res., 2015, 24, 3117-3126.
[http://dx.doi.org/10.1007/s00044-015-1361-5]
[139]
Kuntala, N.; Telu, J.R.; Banothu, V.; Nallapati, S.B.; Anireddy, J.S.; Pal, S. Novel benzoxepine-1, 2, 3-triazole hybrids: Synthesis and pharmacological evaluation as potential antibacterial and anticancer agents. MedChemComm, 2015, 6, 1612-1619.
[http://dx.doi.org/10.1039/C5MD00224A]
[140]
Srivastava, A.; Aggarwal, L.; Jain, N. One-pot sequential alkynylation and cycloaddition: regioselective construction and biological evaluation of novel benzoxazole-triazole derivatives. ACS Comb. Sci., 2015, 17(1), 39-48.
[http://dx.doi.org/10.1021/co500135z] [PMID: 25396730]
[141]
Narsimha, S.; Satheesh Kumar, N.; Kumara Swamy, B.; Vasudeva Reddy, N.; Althaf Hussain, S.K.; Srinivasa Rao, M. Indole-2-carboxylic acid derived mono and bis 1,4-disubstituted 1,2,3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg. Med. Chem. Lett., 2016, 26(6), 1639-1644.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.055] [PMID: 26873415]
[142]
Reddy, P.V.B.; Kamala Prasad, V.; Manjunath, G.; Venkata Ramana, P. Synthesis, characterization and evaluation of antibacterial activity of (E)-N′-(substituted benzylidene)-2-(2-fluorobenzyl)-5-ethyl-2H-1,2,3-triazole-4-car-bohydrazides. Ann. Pharm. Fr., 2016, 74(5), 350-357.
[http://dx.doi.org/10.1016/j.pharma.2016.05.002] [PMID: 27363605]
[143]
Kant, R.; Singh, V.; Nath, G.; Awasthi, S.K.; Agarwal, A. Design, synthesis and biological evaluation of ciprofloxacin tethered bis-1,2,3-triazole conjugates as potent antibacterial agents. Eur. J. Med. Chem., 2016, 124, 218-228.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.031] [PMID: 27592391]
[144]
Naresh, K.R.; Jitender, D.G.; Ravikumar, N.; Krishna, S.D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant, J.S.; Gangagni, R.A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl) pyrido[2,3-d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2927-2930.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[145]
Floros, M.C.; Bortolatto, J.F.; Oliveira, O.B., Jr; Salvador, S.L.; Narine, S.S. Antimicrobial activity of amphiphilic triazole-linked polymers derived from renewable sources. ACS Biomater. Sci. Eng., 2016, 2, 336-343.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00412]
[146]
Klich, K.; Pyta, K.; Kubicka, M.M.; Ruszkowski, P.; Celewicz, L.; Gajecka, M.; Przybylski, P. Synthesis, antibacterial, and anticancer evaluation of novel spiramycin-like conjugates containing C(5) triazole arm. J. Med. Chem., 2016, 59(17), 7963-7973.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00764] [PMID: 27501415]
[147]
Mohammed, A.I.; Mansour, N.H.; Mahdi, L.S. Synthesis and antibacterial activity of 1-N-(β-d-glucopyranosyl)-4-((1-substituted-1H-1, 2, 3-triazol-4-yl) ethoxymethyl)-1, 2, 3-triazoles. Arab. J. Chem., 2017, 10, S3508-S3514.
[http://dx.doi.org/10.1016/j.arabjc.2014.02.016]
[148]
Wang, Y.; Cong, C.; Chai, W.C.; Dong, R.; Jia, L.; Song, D.; Zhou, Z.; Ma, S. Synthesis and antibacterial activity of novel 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs. Bioorg. Med. Chem. Lett., 2017, 27(16), 3872-3877.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.044] [PMID: 28655423]
[149]
Thatipamula, K.; Narsimha, R.; Battula, S.; Chary, K.; Mamidala, V.R. Synthesis, anticancer and antibacterial evaluation of novel (isopropylidene) uridine-[1,2,3]triazole hybrids. J. Saudi Chem. Soc., 2017, 21, 795-802.
[http://dx.doi.org/10.1016/j.jscs.2015.12.001]
[150]
Maji, K.; Haldar, D. 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid: activity against Gram-positive and Gram-negative pathogens including Vibrio cholerae. R. Soc. Open Sci., 2017, 4(10)170684
[http://dx.doi.org/10.1098/rsos.170684] [PMID: 29134076]
[151]
Boukhssas, S.; Aouine, Y.; Faraj, H.; Alami, A.; El Hallaoui, A.; Bekkari, H. Synthesis, characterization, and antibacterial activity of diethyl 1-((4-methyl-2-phenyl-4, 5-dihydrooxazol-4-yl) methyl)-1H-1, 2, 3-triazole-4, 5-dicarboxylate. J. Chem., 2017, 2017(1), 1-6.
[http://dx.doi.org/10.1155/2017/4238360]
[152]
Sakly, R.; Edziri, H.; Askri, M.; Knorr, M.; Strohmann, C.; Mastouri, M. One-pot four-component domino strategy for the synthesis of novel spirooxindole-pyrrolidine/pyrrolizidine-linked 1, 2, 3-triazole conjugates via stereo-and regioselective [3+2] cycloaddition reactions: In vitro antibacterial and antifungal studies. C. R. Chim., 2018, 21, 41-53.
[http://dx.doi.org/10.1016/j.crci.2017.11.009]
[153]
Kazemi, S.S.; Keivanloo, A.; Nasr-Isfahani, H.; Amin, A.H. Synthesis and antibacterial evaluation of 1, 2, 3-triazole-based quinazolines using click chemistry in the presence of salophen schiff base ligand. J. Heterocycl. Chem., 2018, 55, 1651-1657.
[http://dx.doi.org/10.1002/jhet.3200]
[154]
Govindaiah, S.; Sreenivasa, S.; Ramakrishna, R.A.; Rao, T.M.C.; Nagabhushana, H. Regioselective synthesis, antibacterial, molecular docking and fingerprint applications of 1-benzhydrylpiperazine derivatized 1, 4-disubstituted 1, 2, 3-triazoles. ChemistrySelect, 2018, 3, 8111-8117.
[http://dx.doi.org/10.1002/slct.201801364]
[155]
Gatadi, S.; Gour, J.; Shukla, M.; Kaul, G.; Das, S.; Dasgupta, A.; Malasala, S.; Borra, R.S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis of 1,2,3-triazole linked 4(3H)-Quinazolinones as potent antibacterial agents against multidrug-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2018, 157, 1056-1067.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.070] [PMID: 30176536]
[156]
López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and antimicrobial activity of 4-substituted 1, 2, 3-triazole-coumarin derivatives. Molecules, 2018, 23(1), 199.
[http://dx.doi.org/10.3390/molecules23010199] [PMID: 29346325]
[157]
Aneja, B.; Azam, M.; Alam, S.; Perwez, A.; Maguire, R.; Yadava, U.; Kavanagh, K.; Daniliuc, C.G.; Rizvi, M.M.A.; Haq, Q.M.R.; Abid, M. Natural product-based 1, 2, 3-triazole/sulfonate analogues as potential chemotherapeutic agents for bacterial infections. ACS Omega, 2018, 3(6), 6912-6930.
[http://dx.doi.org/10.1021/acsomega.8b00582] [PMID: 30023966]
[158]
Paparella, A.S.; Lee, K.J.; Hayes, A.J.; Feng, J.; Feng, Z.; Cini, D.; Deshmukh, S.; Booker, G.W.; Wilce, M.C.J.; Polyak, S.W.; Abell, A.D. Halogenation of biotin protein ligase inhibitors improves whole cell activity against Staphylococcus aureus. ACS Infect. Dis., 2018, 4(2), 175-184.
[http://dx.doi.org/10.1021/acsinfecdis.7b00134] [PMID: 29131575]
[159]
Singh, K.; Sharma, G.; Shukla, M.; Kant, R.; Chopra, S.; Shukla, S.K.; Tripathi, R.P. Metal-and phenol-free synthesis of biaryl ethers: Access to dibenzobistriazolo-1, 4, 7-to and vancomycin-like glyco-macrocycles as antibacterial agents. J. Org. Chem., 2018, 83, 14882-14893.
[http://dx.doi.org/10.1021/acs.joc.8b01631] [PMID: 30457336]
[160]
Głowacka, I.E.; Grzonkowski, P.; Lisiecki, P.; Kalinowski, Ł.; Piotrowska, D.G. Synthesis and antimicrobial activity of novel 1,2,3-triazole-conjugates of quinazolin-4-ones. Arch. Pharm. (Weinheim), 2019, 352(3)e1800302
[http://dx.doi.org/10.1002/ardp.201800302] [PMID: 30698294]
[161]
Xu, Y.; Zhang, K.; Reghu, S.; Lin, Y.; Chan-Park, M.B.; Liu, X-W. Synthesis of antibacterial glycosylated polycaprolactones bearing imidazoliums with reduced hemolytic activity. Biomacromolecules, 2019, 20(2), 949-958.
[http://dx.doi.org/10.1021/acs.biomac.8b01577] [PMID: 30629424]
[162]
Yagnam, S.; Rami Reddy, E.; Trivedi, R.; Krishna, N.V.; Giribabu, L.; Rathod, B. 1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole. Synthesis, characterization, electrochemical and antimicrobial evaluation. Appl. Organomet. Chem., 2019, 43, 45-08.
[http://dx.doi.org/10.1002/aoc.4817]
[163]
Tague, A.J.; Putsathit, P.; Hammer, K.A.; Wales, S.M.; Knight, D.R.; Riley, T.V.; Keller, P.A.; Pyne, S.G. Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles: synthesis, antibacterial evaluation and preliminary mechanism of action studies. Eur. J. Med. Chem., 2019, 168, 386-404.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.013] [PMID: 30831407]
[164]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[165]
Mizushima, N.; Komatsu, M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[166]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[167]
Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell, 2006, 124(4), 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[168]
Even-Ram, S.; Artym, V.; Yamada, K.M.; Discher, D.E. Matrix control of stem cell fate. Cell, 2006, 126(4), 645-647.
[http://dx.doi.org/10.1016/j.cell.2006.08.008] [PMID: 16923382]
[169]
Langer, R.; Vacanti, J.P. Tissue engineering. Science, 1993, 260(5110), 920-926.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[170]
Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov., 2011, 10(10), 767-777.
[http://dx.doi.org/10.1038/nrd3554] [PMID: 21921921]
[171]
Tabar, V.; Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet., 2014, 15(2), 82-92.
[http://dx.doi.org/10.1038/nrg3563] [PMID: 24434846]
[172]
(a) Ding, F.; Fan, Y.; Sun, Y.; Zhang, F. Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deep-tissue molecular imaging. Adv. Healthc. Mater., 2019, 8(14)e1900260
[http://dx.doi.org/10.1002/adhm.201900260] [PMID: 30983165]
(b) Sun, Y.; Ding, F.; Zhou, Z.; Li, C.; Pu, M.; Xu, Y.; Zhan, Y.; Lu, X.; Li, H.; Yang, G.; Sun, Y.; Stang, P.J. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc. Natl. Acad. Sci. USA, 2019, 116(6), 1968-1973.
[http://dx.doi.org/10.1073/pnas.1817021116] [PMID: 30670648]
[173]
(a) Zhang, R.; Xu, Y. Zhang, Yi; Seok, Kim H; Sharma, A; Gao, J; Yang, G; Kim, J S.; and Sun, Y. Rational design of a multifunctional molecular dye for dual-modal NIR-II/photoacoustic imaging and photothermal therapy. Chem. Sci. (Camb.), 2019, 10, 8348-8353.
[http://dx.doi.org/10.1039/C9SC03504D]
(b) Ding, F.; Chen, S.; Zhang, W.; Tu, Y.; Sun, Y. UPAR targeted molecular imaging of cancers with small molecule-based probes. Bioorg. Med. Chem., 2017, 25(20), 5179-5184.
[http://dx.doi.org/10.1016/j.bmc.2017.08.034] [PMID: 28869084]
(c) Xu, Y.; Tian, M.; Zhang, H.; Xiao, Y.; Hong, X.; Sun, Y. Recent development on peptide-based probes for multifunctional biomedical imaging. Chin. Chem. Lett., 2018, 29, 1093.
[http://dx.doi.org/10.1016/j.cclet.2018.03.032]
[174]
Ding, K.; Alemdaroglu, F.E.; Börsch, M.; Berger, R.; Herrmann, A. Engineering the structural properties of DNA block copolymer micelles by molecular recognition. Angew. Chem. Int. Ed. Engl., 2007, 46(7), 1172-1175.
[http://dx.doi.org/10.1002/anie.200603064] [PMID: 17211912]
[175]
Chinen, A.B.; Guan, C.M.; Mirkin, C.A. Spherical nucleic acid nanoparticle conjugates enhance G-quadruplex formation and increase serum protein interactions. Angew. Chem. Int. Ed. Engl., 2015, 54(2), 527-531.
[http://dx.doi.org/10.1002/ange.201409211] [PMID: 25393322]
[176]
Miyata, T.; Asami, N.; Uragami, T. A reversibly antigen-responsive hydrogel. Nature, 1999, 399(6738), 766-769.
[http://dx.doi.org/10.1038/21619] [PMID: 10391240]
[177]
Dirks, A.J.; Nolte, R.J.M.; Cornelissen, J.J.L.M. Protein-polymer hybrid amphiphiles. Adv. Mater., 2008, 20, 3953-3957.
[http://dx.doi.org/10.1002/adma.200801383]
[178]
Cobo, I.; Li, M.; Sumerlin, B.S.; Perrier, S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater., 2015, 14(2), 143-159.
[http://dx.doi.org/10.1038/nmat4106] [PMID: 25401924]
[179]
Lee, H.; Lee, M.Y.; Bhang, S.H.; Kim, B.S.; Kim, Y.S.; Ju, J.H.; Kim, K.S.; Hahn, S.K. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano, 2014, 8(5), 4790-4798.
[http://dx.doi.org/10.1021/nn500685h] [PMID: 24730974]
[180]
(a) Speers, A.E.; Adam, G.C.; Cravatt, B.F. Activity-based protein profiling in vivo using a copper (I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc., 2003, 125, 4686-4687.
[http://dx.doi.org/10.1021/ja034490h]
(b) Beatty, K.E.; Beatty, K.E.; Liu, J.C.; Xie, F.; Dieterich, D.C.; Schuman, E.M.; Wang, Q.; and Tirrell, D.A. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew. Chem. Int. Ed., 2006, 45, 7364-7367.
[http://dx.doi.org/10.1002/anie.200602114]
[181]
Hudak, J.E.; Barfield, R.M.; de Hart, G.W.; Grob, P.; Nogales, E.; Bertozzi, C.R.; Rabuka, D. Synthesis of heterobifunctional protein fusions using copper-free click chemistry and the aldehyde tag. Angew. Chem. Int. Ed. Engl., 2012, 51(17), 4161-4165.
[http://dx.doi.org/10.1002/anie.201108130] [PMID: 22407566]
[182]
Wirges, C.T.; Gramlich, P.M.; Gutsmiedl, K.; Gierlich, J.; Burley, G.A.; Carell, T. Pronounced effect of DNA hybridization on click reaction efficiency. QSAR Comb. Sci., 2007, 26, 1159-1164.
[http://dx.doi.org/10.1002/qsar.200740069]
[183]
Nessen, M.A.; Kramer, G.; Back, J.; Baskin, J.M.; Smeenk, L.E.; de Koning, L.J.; van Maarseveen, J.H.; de Jong, L.; Bertozzi, C.R.; Hiemstra, H.; de Koster, C.G. Selective enrichment of azide-containing peptides from complex mixtures. J. Proteome Res., 2009, 8(7), 3702-3711.
[http://dx.doi.org/10.1021/pr900257z] [PMID: 19402736]
[184]
Geng, J.; Lindqvist, J.; Mantovani, G.; Chen, G.; Sayers, C.T.; Clarkson, G.J.; Haddleton, D.M. Well-defined poly (N-glycosyl 1, 2, 3‐triazole) multivalent ligands: Design, synthesis and lectin binding studies. QSAR Comb. Sci., 2007, 26, 1220-1228.
[http://dx.doi.org/10.1002/qsar.200740089]
[185]
van Berkel, S.S.; Dirks, A.T.J.; Debets, M.F.; van Delft, F.L.; Cornelissen, J.J.; Nolte, R.J.; Rutjes, F.P. Metal-free triazole formation as a tool for bioconjugation. ChemBioChem, 2007, 8(13), 1504-1508.
[http://dx.doi.org/10.1002/cbic.200700278] [PMID: 17631666]
[186]
Gierlich, J.; Gutsmiedl, K.; Gramlich, P.M.; Schmidt, A.; Burley, G.A.; Carell, T. Synthesis of highly modified DNA by a combination of PCR with alkyne-bearing triphosphates and click chemistry. Chemistry, 2007, 13(34), 9486-9494.
[http://dx.doi.org/10.1002/chem.200700502] [PMID: 17868170]
[187]
(a) Krüger, T.; Dierks, T.; Sewald, N. Formylglycine-generating enzymes for site-specific bioconjugation. Protein Eng., 2018, 10-25.
(b) Gutsmiedl, K.; Wirges, C.T.; Ehmke, V.; Carell, T. Copper-free “click” modification of DNA via nitrile oxide-norbornene 1,3-dipolar cycloaddition. Org. Lett., 2009, 11(11), 2405-2408.
[http://dx.doi.org/10.1021/ol9005322] [PMID: 19405510]
[188]
Luchansky, S.J.; Bertozzi, C.R. Azido sialic acids can modulate cell-surface interactions. ChemBioChem, 2004, 5(12), 1706-1709.
[http://dx.doi.org/10.1002/cbic.200400148] [PMID: 15568180]
[189]
Devaraj, N.K.; Upadhyay, R.; Haun, J.B.; Hilderbrand, S.A.; Weissleder, R. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew. Chem. Int. Ed. Engl., 2009, 48(38), 7013-7016.
[http://dx.doi.org/10.1002/anie.200903233] [PMID: 19697389]
[190]
Zou, Y.; Yin, J. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display. Bioorg. Med. Chem. Lett., 2008, 18(20), 5664-5667.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.085] [PMID: 18801656]
[191]
Nwe, K.; Brechbiel, M.W. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother. Radiopharm., 2009, 24(3), 289-302.
[http://dx.doi.org/10.1089/cbr.2008.0626] [PMID: 19538051]
[192]
Blackman, M.L.; Royzen, M.; Fox, J.M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc., 2008, 130(41), 13518-13519.
[http://dx.doi.org/10.1021/ja8053805] [PMID: 18798613]
[193]
(a) Baskin, J.M.; Bertozzi, C.R. Bioorthogonal click chemistry: Covalent labelling in living systems. QSAR Comb. Sci., 2007, 26, 1211-1219.
[http://dx.doi.org/10.1002/qsar.200740086]
(b) Johnson, J.A.; Baskin, J.M.; Bertozzi, C.R.; Koberstein, J.T.; Turro, N.J. Copper-free click chemistry for the in-situ crosslinking of photodegradable star polymers. Chem comm., 2008, 26, 3064-3066.
[http://dx.doi.org/10.1039/b803043j]
[194]
Takayama, Y.; Kusamori, K.; Nishikawa, M. Click chemistry as a tool for cell engineering and drug delivery. Molecules, 2019, 24(1), 172.
[http://dx.doi.org/10.3390/molecules24010172] [PMID: 30621193]
[195]
Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc., 2003, 125(11), 3192-3193.
[http://dx.doi.org/10.1021/ja021381e] [PMID: 12630856]
[196]
Laughlin, S.T.; Agard, N.J.; Baskin, J.M.; Carrico, I.S.; Chang, P.V.; Ganguli, A.S.; Hangauer, M.J.; Lo, A.; Prescher, J.A.; Bertozzi, C.R. Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics. Methods Enzymol., 2006, 415, 230-250.
[http://dx.doi.org/10.1016/S0076-6879(06)15015-6] [PMID: 17116478]
[197]
Fernández-Suárez, M.; Baruah, H.; Martínez-Hernández, L.; Xie, K.T.; Baskin, J.M.; Bertozzi, C.R.; Ting, A.Y. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol., 2007, 25(12), 1483-1487.
[http://dx.doi.org/10.1038/nbt1355] [PMID: 18059260]
[198]
Link, A.J.; Vink, M.K.S.; Agard, N.J.; Prescher, J.A.; Bertozzi, C.R.; Tirrell, D.A. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10180-10185.
[http://dx.doi.org/10.1073/pnas.0601167103] [PMID: 16801548]
[199]
Hsu, T.L.; Hanson, S.R.; Kishikawa, K.; Wang, S.K.; Sawa, M.; Wong, C.H. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc. Natl. Acad. Sci. USA, 2007, 104(8), 2614-2619.
[http://dx.doi.org/10.1073/pnas.0611307104] [PMID: 17296930]
[200]
Baskin, J.M.; Prescher, J.A.; Laughlin, S.T.; Agard, N.J.; Chang, P.V.; Miller, I.A.; Lo, A.; Codelli, J.A.; Bertozzi, C.R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(43), 16793-16797.
[http://dx.doi.org/10.1073/pnas.0707090104] [PMID: 17942682]
[201]
Ning, X.; Guo, J.; Wolfert, M.A.; Boons, G.J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew. Chem. Int. Ed. Engl., 2008, 47(12), 2253-2255.
[http://dx.doi.org/10.1002/anie.200705456] [PMID: 18275058]
[202]
Kimmel, C.B.W.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn., 1995, 203(3), 253-310.
[http://dx.doi.org/10.1002/aja.1002030302] [PMID: 8589427]
[203]
Laughlin, S.T.; Baskin, J.M.; Amacher, S.L.; Bertozzi, C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008, 320(5876), 664-667.
[http://dx.doi.org/10.1126/science.1155106] [PMID: 18451302]
[204]
Chang, P.V.; Chen, X.; Smyrniotis, C.; Xenakis, A.; Hu, T.; Bertozzi, C.R.; Wu, P. Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew. Chem. Int. Ed. Engl., 2009, 48(22), 4030-4033.
[http://dx.doi.org/10.1002/anie.200806319] [PMID: 19388017]
[205]
Neef, A.B.; Schultz, C. Selective fluorescence labeling of lipids in living cells. Angew. Chem. Int. Ed. Engl., 2009, 48(8), 1498-1500.
[http://dx.doi.org/10.1002/anie.200805507] [PMID: 19145623]
[206]
Rangan, K.J.; Yang, Y.Y.; Charron, G.; Hang, H.C. Rapid visualization and large-scale profiling of bacterial lipoproteins with chemical reporters. J. Am. Chem. Soc., 2010, 132(31), 10628-10629.
[http://dx.doi.org/10.1021/ja101387b] [PMID: 20230003]
[207]
Breidenbach, M.A.; Gallagher, J.E.; King, D.S.; Smart, B.P.; Wu, P.; Bertozzi, C.R. Targeted metabolic labeling of yeast N-glycans with unnatural sugars. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 3988-3993.
[http://dx.doi.org/10.1073/pnas.0911247107] [PMID: 20142501]
[208]
Banerjee, P.S.; Ostapchuk, P.; Hearing, P.; Carrico, I. Chemoselective attachment of small molecule effector functionality to human adenoviruses facilitates gene delivery to cancer cells. J. Am. Chem. Soc., 2010, 132(39), 13615-13617.
[http://dx.doi.org/10.1021/ja104547x] [PMID: 20831164]
[209]
Hong, V.; Steinmetz, N.F.; Manchester, M.; Finn, M.G. Labeling live cells by copper-catalyzed alkyne--azide click chemistry. Bioconjug. Chem., 2010, 21(10), 1912-1916.
[http://dx.doi.org/10.1021/bc100272z] [PMID: 20886827]
[210]
Chang, P.V.; Prescher, J.A.; Sletten, E.M.; Baskin, J.M.; Miller, I.A.; Agard, N.J.; Lo, A.; Bertozzi, C.R. Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 1821-1826.
[http://dx.doi.org/10.1073/pnas.0911116107] [PMID: 20080615]
[211]
Agarwal, P.; Beahm, B.J.; Shieh, P.; Bertozzi, C.R. Systemic fluorescence imaging of zebrafish glycans with bioorthogonal chemistry. Angew. Chem. Int. Ed. Engl., 2015, 54(39), 11504-11510.
[http://dx.doi.org/10.1002/anie.201504249] [PMID: 26230529]
[212]
Nagahama, K.; Kimura, Y.; Takemoto, A. Living functional hydrogels generated by bioorthogonal cross-linking reactions of azide-modified cells with alkyne-modified polymers. Nat. Commun., 2018, 9(1), 2195.
[http://dx.doi.org/10.1038/s41467-018-04699-3] [PMID: 29875358]