Pharmacological Activities of Components Contained in Camellia Oil and Camellia Oil Cake and their Applications in Various Industries

Page: [86 - 105] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Camellia oil is a common edible oil extracted from Camellia oleifera seeds in China, and it is also a traditional medicine for stomachaches and burns in folk. Camellia oil exhibits a good regulation effect on the human heart and brain blood vessels, digestion, reproduction, neuroendocrine and immune system. Meanwhile, various bioactive components such as unsaturated fatty acids, tea polyphenols, squalene, and carotene isolated from Camellia oil exhibit significant free radical scavenging, antioxidant activity, anti-tumor, antiinflammatory and hypoglycemic effects. The material remaining after oil extraction was named as Camellia oil cake, which also contains numerous bioactive components such as sasanquasaponin (SQS), flavonoid and tannin. Many studies had shown that these components have antibacterial, anti-inflammatory, anti-oxidative, anti-tumor and some other special pharmacological activities. In this review, we summarize the main components and its pharmacological activities of Camellia oil and Camellia oil cake, and their applications in various industries, thus providing a valuable reference for the future development and utilization of Camellia seeds.

Keywords: Camellia oil, Camellia oil cake, bio-active components, pharmacological activities, antitumor, cardiovascular disease, application, sasanquasaponin (SQS).

Graphical Abstract

[1]
Xiao X, He L, Chen Y, Wu L, Wang L, Liu Z. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components. Future Med Chem 2017; 9(17): 2069-79.
[http://dx.doi.org/10.4155/fmc-2017-0109] [PMID: 28793800]
[2]
He L, Zhou GY, Zhang HY, Liu JA. Research progress on the health function of tea oil. J Med Plants Res 2011; 5(4): 485-9.
[3]
Long Z. Chemical constituents of olive oil and from Camellia oleifera seed oil. J Chinese Cereals Oils Assoc 2008; 23(1): 121-3.
[4]
Bumrungpert A, Pavadhgul P, Kalpravidh RW. Camellia oil-enriched diet attenuates oxidative stress and inflammatory markers in hypercholesterolemic subjects. J Med Food 2016; 19(9): 895-8.
[http://dx.doi.org/10.1089/jmf.2016.3659] [PMID: 27627703]
[5]
Xue-Hui WU, Yong-Fang H, Zhi-Fang X. Health functions and prospective of Camellia oil. Food Sci Technol (Campinas) 2005; 8(1): 94-6.
[6]
Jin X, Ning Y. Antioxidant and antitumor activities of the polysaccharide from seed cake of Camellia oleifera Abel. Int J Biol Macromol 2012; 51(4): 364-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.05.033] [PMID: 22683896]
[7]
Shen J. Polysaccharides from fruit shell of Camellia oleifera Abel: Extraction and antioxidation activity. J Chinese CerealsOils Assoc 2010; 8(1): 51-4.
[8]
Jian HL, Liao XX, Zhu LW, Zhang WM, Jiang JX. Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants. J Colloid Interface Sci 2011; 359(2): 487-92.
[http://dx.doi.org/10.1016/j.jcis.2011.04.038] [PMID: 21543081]
[9]
Lee CP, Yen GC. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J Agric Food Chem 2006; 54(3): 779-84.
[http://dx.doi.org/10.1021/jf052325a] [PMID: 16448182]
[10]
Li YF, Hu L, Wang LH. Current status and prospect of researches and utilizations on Camellia oleifera resources. Guangxi Agric Sci 2009; 8(3): 102-9.
[11]
Ma L. Summary of comprehensive utilization of Camellia oleifera seed. Nongye Gongcheng Jishu 2008.
[12]
Sun Y, Liu GQ, Yan NJ. Study on improvement of antioxidative of Camellia seed cake peptides by ultrasonic pretreatment. Sci Technol Food Ind 2012; 33(5): 52-5.
[13]
Tai Y, Wei C, Yang H, et al. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). BMC Plant Biol 2015; 15(1): 190.
[14]
Ganesan K, Sukalingam K, Xu BJ. Impact of consumption and cooking manner of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci Technol 2018; 71(1): 132-54.
[http://dx.doi.org/10.1016/j.tifs.2017.11.003]
[15]
Ye Y, Guo Y, Luo YT, Wang YF. Isolation and free radical scavenging activities of a novel biflavonoid from the shells of Camellia oleifera Abel. Fitoterapia 2012; 83(8): 1585-9.
[http://dx.doi.org/10.1016/j.fitote.2012.09.006] [PMID: 22982330]
[16]
Li T, Hui Z, Wu CE. Screening of antioxidant and antitumor activities of major ingredients from defatted Camellia oleifera seeds. Food Sci Biotechnol 2014; 23(3): 873-80.
[http://dx.doi.org/10.1007/s10068-014-0117-1]
[17]
Zhang S, Li XZ. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel. Carbohydr Polym 2015; 115(1): 38-43.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.059] [PMID: 25439865]
[18]
Lee CP, Shih PH, Hsu CL, Yen GC. Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food Chem Toxicol 2007; 45(6): 888-95.
[http://dx.doi.org/10.1016/j.fct.2006.11.007] [PMID: 17188414]
[19]
Chen L, Chen J, Xu H. Sasanquasaponin from Camellia oleifera Abel. induces cell cycle arrest and apoptosis in human breast cancer MCF-7 cells. Fitoterapia 2013; 84(1): 123-9.
[http://dx.doi.org/10.1016/j.fitote.2012.11.009] [PMID: 23164604]
[20]
Hammad S, Pu S, Jones PJ. Current evidence supporting the link between dietary fatty acids and cardiovascular disease. Lipids 2016; 51(5): 507-17.
[http://dx.doi.org/10.1007/s11745-015-4113-x] [PMID: 26719191]
[21]
Mayneris PJ, Guerendiain M, Castellote AI, et al. for PREDIMED study investigators. Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease. Clin Nutr 2014; 33(1): 90-7.
[http://dx.doi.org/10.1016/j.clnu.2013.03.001] [PMID: 23591154]
[22]
Venturini D, Simão ANC, Urbano MR, Dichi I. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome. Nutrition 2015; 31(6): 834-40.
[http://dx.doi.org/10.1016/j.nut.2014.12.016] [PMID: 25933490]
[23]
Gillingham LG, Harris-Janz S, Jones PJH. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 2011; 46(3): 209-28.
[http://dx.doi.org/10.1007/s11745-010-3524-y] [PMID: 21308420]
[24]
Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: Synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients 2012; 4(12): 1989-2007.
[http://dx.doi.org/10.3390/nu4121989] [PMID: 23363996]
[25]
Schwingshackl L, Strasser B, Hoffmann G. Effects of monounsaturated fatty acids on cardiovascular risk factors: A systematic review and meta-analysis. Ann Nutr Metab 2011; 59(2-4): 176-86.
[http://dx.doi.org/10.1159/000334071] [PMID: 22142965]
[26]
Harris WS, Mozaffarian D, Rimm E, et al. Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the american heart association nutrition subcommittee of the council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidemiology and prevention. Circulation 2009; 119(6): 902-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.191627] [PMID: 19171857]
[27]
Gerhart HZ, Dominy JE Jr, Blättler SM, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD (+). Mol Cell 2011; 44(6): 851-63.
[http://dx.doi.org/10.1016/j.molcel.2011.12.005] [PMID: 22195961]
[28]
Krishnan S, Cooper JA. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr 2014; 53(3): 691-710.
[http://dx.doi.org/10.1007/s00394-013-0638-z] [PMID: 24363161]
[29]
Oudart H, Groscolas R, Calgari C, et al. Brown fat thermogenesis in rats fed high-fat diets enriched with n-3 polyunsaturated fatty acids. Int J Obes Relat Metab Disord 1997; 21(11): 955-62.
[http://dx.doi.org/10.1038/sj.ijo.0800500] [PMID: 9368817]
[30]
Assy N, Nassar F, Nasser G, Grosovski M. Olive oil consumption and non-alcoholic fatty liver disease. World J Gastroenterol 2009; 15(15): 1809-15.
[http://dx.doi.org/10.3748/wjg.15.1809] [PMID: 19370776]
[31]
He X, Liu W, Shi M, Yang Z, Zhang X, Gong P. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Res Vet Sci 2017; 112(1): 7-12.
[http://dx.doi.org/10.1016/j.rvsc.2016.12.011] [PMID: 28095338]
[32]
López S, Bermúdez B, Pacheco YM, Villar J, Abia R, Muriana FJ. Distinctive postprandial modulation of beta cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids. Am J Clin Nutr 2008; 88(3): 638-44.
[http://dx.doi.org/10.1093/ajcn/88.3.638] [PMID: 18779278]
[33]
Shah M, Adams-Huet B, Garg A. Effect of high-carbohydrate or high-cis-monounsaturated fat diets on blood pressure: A meta-analysis of intervention trials. Am J Clin Nutr 2007; 85(5): 1251-6.
[http://dx.doi.org/10.1093/ajcn/85.5.1251] [PMID: 17490960]
[34]
Muzio F, Mondazzi L, Harris WS, Sommariva D, Branchi A. Effects of moderate variations in the macronutrient content of the diet on cardiovascular disease risk factors in obese patients with the metabolic syndrome. Am J Clin Nutr 2007; 86(4): 946-51.
[http://dx.doi.org/10.1093/ajcn/86.4.946] [PMID: 17921369]
[35]
Ferrara LA, Raimondi AS, d’Episcopo L, Guida L, Dello Russo A, Marotta T. Olive oil and reduced need for antihypertensive medications. Arch Intern Med 2000; 160(6): 837-42.
[http://dx.doi.org/10.1001/archinte.160.6.837] [PMID: 10737284]
[36]
Colquhoun A. Gamma-linolenic acid alters the composition of mitochondrial membrane subfractions, decreases outer mitochondrial membrane binding of hexokinase and alters carnitine palmitoyltransferase I properties in the Walker 256 rat tumour.BBA - Mol Cell Biol Lipids 2002; 1583(1): 74-84.
[http://dx.doi.org/10.1016/S1388-1981(02)00162-2]
[37]
Chaikul P, Sripisut T, Chanpirom S, Sathirachawan K, Ditthawuthikul N. Melanogenesis inhibitory and antioxidant effects of Camellia oleifera Seed Oil. Adv Pharm Bull 2017; 7(3): 473-7.
[http://dx.doi.org/10.15171/apb.2017.057] [PMID: 29071231]
[38]
Wang X, Zeng Q, Del Mar Contreras M, Wang L. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Res Int 2017; 102(1): 184-94.
[http://dx.doi.org/10.1016/j.foodres.2017.09.089] [PMID: 29195939]
[39]
Song LL, Liang R, Li DD, et al. β-carotene radical cation addition to green tea polyphenols. Mechanism of antioxidant antagonism in peroxidizing liposomes. J Agric Food Chem 2011; 59(23): 12643-51.
[http://dx.doi.org/10.1021/jf2030456] [PMID: 22023371]
[40]
Cutler RG, Plummer J, Chowdhury K, Heward C. Oxidative stress profiling: part I. Its potential importance in the optimization of human health. Ann N Y Acad Sci 2005; 1055(1): 93-135.
[http://dx.doi.org/10.1196/annals.1323.027] [PMID: 16387721]
[41]
Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009; 30(1): 2-10.
[http://dx.doi.org/10.1093/carcin/bgn250] [PMID: 18978338]
[42]
Cia D, Vergnaud GJ, Jacquemot N, Doly M. Epigallocatechin gallate (EGCG) prevents H2O2-induced oxidative stress in primary rat retinal pigment epithelial cells. Curr Eye Res 2014; 39(9): 944-52.
[http://dx.doi.org/10.3109/02713683.2014.885532] [PMID: 24559018]
[43]
Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med 2016; 16(1): 334.
[http://dx.doi.org/10.1186/s12906-016-1325-4] [PMID: 27581210]
[44]
Mantena SK, Meeran SM, Elmets CA, Katiyar SK. Orally administered green tea polyphenols prevent ultraviolet radiation-induced skin cancer in mice through activation of cytotoxic T cells and inhibition of angiogenesis in tumors. J Nutr 2005; 135(12): 2871-7.
[http://dx.doi.org/10.1093/jn/135.12.2871] [PMID: 16317135]
[45]
Luo H, Tang L, Tang M, et al. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: Modulation of urinary excretion of green tea polyphenols and 8-hydroxy-deoxyguanosine. Carcinogenesis 2006; 27(2): 262-8.
[http://dx.doi.org/10.1093/carcin/bgi147] [PMID: 15930028]
[46]
Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett 2007; 245(1-2): 232-41.
[http://dx.doi.org/10.1016/j.canlet.2006.01.027] [PMID: 16519995]
[47]
Ramos S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol Nutr Food Res 2008; 52(5): 507-26.
[http://dx.doi.org/10.1002/mnfr.200700326] [PMID: 18435439]
[48]
Nihal M, Ahmad N, Mukhtar H, Wood GS. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: Possible implications for the chemoprevention of melanoma. Int J Cancer 2005; 114(4): 513-21.
[http://dx.doi.org/10.1002/ijc.20785] [PMID: 15609335]
[49]
Pezzato E, Sartor L, Dell’Aica I, et al. Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (-)epigallocatechin-3-gallate. Int J Cancer 2004; 112(5): 787-92.
[http://dx.doi.org/10.1002/ijc.20460] [PMID: 15386386]
[50]
Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 2010; 302(2): 71-83.
[http://dx.doi.org/10.1007/s00403-009-1001-3] [PMID: 19898857]
[51]
Ohmori R, Iwamoto T, Tago M, et al. Antioxidant activity of various teas against free radicals and LDL oxidation. Lipids 2005; 40(8): 849-53.
[http://dx.doi.org/10.1007/s11745-005-1447-4] [PMID: 16296404]
[52]
Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2010; 375(9710): 181-3.
[http://dx.doi.org/10.1016/S0140-6736(09)61794-3] [PMID: 20109902]
[53]
Shepherd J, Betteridge J, Van Gaal L. European consensus panel. Nicotinic acid in the management of dyslipidaemia associated with diabetes and metabolic syndrome: A position paper developed by a European Consensus Panel. Curr Med Res Opin 2005; 21(5): 665-82.
[http://dx.doi.org/10.1185/030079905X43677] [PMID: 15969866]
[54]
Toyoda-Ono Y, Yoshimura M, Nakai M, et al. Suppression of postprandial hypertriglyceridemia in rats and mice by oolong tea polymerized polyphenols. Biosci Biotechnol Biochem 2007; 71(4): 971-6.
[http://dx.doi.org/10.1271/bbb.60635] [PMID: 17420597]
[55]
Chai Y, Wang M, Zhang G. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. J Agric Food Chem 2013; 61(36): 8608-15.
[http://dx.doi.org/10.1021/jf402821r] [PMID: 23964645]
[56]
Shapiro H, Lev S, Cohen J, Singer P. Polyphenols in the prevention and treatment of sepsis syndromes: Rationale and pre-clinical evidence. Nutrition 2009; 25(10): 981-97.
[http://dx.doi.org/10.1016/j.nut.2009.02.010] [PMID: 19502006]
[57]
Liu L, Wu X, Zhang B, et al. Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage. Food Nutr Res 2017; 61(1): 1333-90.
[http://dx.doi.org/10.1080/16546628.2017.1333390] [PMID: 28659745]
[58]
Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr 2007; 62(3): 85-91.
[http://dx.doi.org/10.1007/s11130-007-0046-8] [PMID: 17594521]
[59]
Dong-Mei LI, Wang J, Liang-Wu BI, Zhao ZD. Influence of extraction method on content of bioactive component squalene in seed oil of Camellia oleifera Abel. Biomass Chem Eng 2006; 40(3): 9-12.
[60]
Ryszard A. Squalene: A natural antioxidant? Eur J Lipid Sci Technol 2009; 111(5): 411-2.
[http://dx.doi.org/10.1002/ejlt.200900102]
[61]
Auffray B. Protection against singlet oxygen, the main actor of sebum squalene peroxidation during sun exposure, using Commiphora myrrha essential oil. Int J Cosmet Sci 2007; 29(1): 23-9.
[http://dx.doi.org/10.1111/j.1467-2494.2007.00360.x] [PMID: 18489308]
[62]
Warleta F, Campos M, Allouche Y, et al. Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food Chem Toxicol 2010; 48(4): 1092-100.
[http://dx.doi.org/10.1016/j.fct.2010.01.031] [PMID: 20138105]
[63]
Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 2009; 14(1): 540-54.
[http://dx.doi.org/10.3390/molecules14010540] [PMID: 19169201]
[64]
Owen RW, Haubner R, Würtele G, Hull E, Spiegelhalder B, Bartsch H. Olives and olive oil in cancer prevention. Eur J Cancer Prev 2004; 13(4): 319-26.
[http://dx.doi.org/10.1097/01.cej.0000130221.19480.7e] [PMID: 15554560]
[65]
Senthilkumar S, Devaki T, Manohar BM, Babu MS. Effect of squalene on cyclophosphamide-induced toxicity. Clin Chim Acta 2006; 364(1-2): 335-42.
[http://dx.doi.org/10.1016/j.cca.2005.07.032] [PMID: 16150433]
[66]
Charlton-Menys V, Durrington PN. Squalene synthase inhibitors: Clinical pharmacology and cholesterol-lowering potential. Drugs 2007; 67(1): 11-6.
[http://dx.doi.org/10.2165/00003495-200767010-00002] [PMID: 17209661]
[67]
Newmark HL. Squalene, olive oil, and cancer risk. Review and hypothesis. Ann N Y Acad Sci 1999; 889(1): 193-203.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb08735.x] [PMID: 10668494]
[68]
Nakagawa M, Yamaguchi T, Fukawa H, et al. Potentiation by squalene of the cytotoxicity of anticancer agents against cultured mammalian cells and murine tumor. Jpn J Cancer Res 1985; 76(4): 315-20.
[PMID: 2408954]
[69]
Das B, Yeger H, Baruchel H, Freedman MH, Koren G, Baruchel S. In vitro cytoprotective activity of squalene on a bone marrow versus neuroblastoma model of cisplatin-induced toxicity. Implications in cancer chemotherapy. Eur J Cancer 2003; 39(17): 2556-65.
[http://dx.doi.org/10.1016/j.ejca.2003.07.002] [PMID: 14602142]
[70]
Senthilkumar S, Yogeeta SK, Subashini R, Devaki T. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chem Biol Interact 2006; 160(3): 252-60.
[http://dx.doi.org/10.1016/j.cbi.2006.02.004] [PMID: 16554041]
[71]
Das B, Antoon R, Tsuchida R, Lotfi S, Morozova O, Farhat W, et al. Squalene selectively protects mouse bone marrow progenitors against cisplatin and carboplatin- induced cytotoxicity in vivo without protecting tumor growth. Neoplasia 2008; 10(10) :105, IN4- 19, IN4.
[http://dx.doi.org/10.1593/neo.08466]
[72]
Owen RW, Giacosa A, Hull WE, et al. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol 2000; 1(2): 107-12.
[http://dx.doi.org/10.1016/S1470-2045(00)00015-2] [PMID: 11905662]
[73]
Lei XX, Zhao SL, Chen WJ, Song F. Comparative study on anti-aging effect of squalene and vitamin E to skin. Sci Technol Food Ind 2013; 13(3): 168-76.
[74]
Kostyuk V, Potapovich A, Stancato A, et al. Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes. PLoS One 2012; 7(8)e44472
[http://dx.doi.org/10.1371/journal.pone.0044472] [PMID: 22952984]
[75]
Farvin KH, Anandan R, Kumar SH, et al. Cardioprotective effect of squalene on lipid profile in isoprenaline-induced myocardial infarction in rats. J Med Food 2006; 9(4): 531-6.
[http://dx.doi.org/10.1089/jmf.2006.9.531] [PMID: 17201641]
[76]
Liang-Wu BI, Zhao ZD, Han LL, Da-Wei LI. Review on some potential plant squalene resources. Linchan Huaxue Yu Gongye 2011; 31(4): 102-8.
[77]
Hashim YZHY, Eng M, Gill CIR, McGlynn H, Rowland IR. Components of olive oil and chemoprevention of colorectal cancer. Nutr Rev 2005; 63(11): 374-86.
[http://dx.doi.org/10.1111/j.1753-4887.2005.tb00374.x] [PMID: 16370222]
[78]
Ostlund RE Jr. Phytosterols and cholesterol metabolism. Curr Opin Lipidol 2004; 15(1): 37-41.
[http://dx.doi.org/10.1097/00041433-200402000-00008] [PMID: 15166807]
[79]
Lee JH, Ozcelik B, Min DB. Electron donation mechanisms of β‐carotene as a free radical scavenger. J Food Sci 2010; 68(3): 861-5.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb08256.x]
[80]
Xu D, Yuan F, Gao Y, McClements DJ, Decker EA. Influence of pH, metal chelator, free radical scavenger and interfacial characteristics on the oxidative stability of β-carotene in conjugated whey protein-pectin stabilised emulsion. Food Chem 2013; 139(1-4): 1098-104.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.027] [PMID: 23561214]
[81]
Minami Y, Kawabata K, Kubo Y, et al. Peroxidized cholesterol-induced matrix metalloproteinase-9 activation and its suppression by dietary β-carotene in photoaging of hairless mouse skin. J Nutr Biochem 2009; 20(5): 389-98.
[http://dx.doi.org/10.1016/j.jnutbio.2008.04.010] [PMID: 18656335]
[82]
Bando N, Hayashi H, Wakamatsu S, et al. Participation of singlet oxygen in ultraviolet-a-induced lipid peroxidation in mouse skin and its inhibition by dietary beta-carotene: An ex vivo study. Free Radic Biol Med 2004; 37(11): 1854-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.09.004] [PMID: 15528044]
[83]
Wang LJ, Zhang H, Zhang LD, et al. The progress and application of β-carotene. China Food Additives 2013; 10(4): 643-53.
[84]
Sharma R, Vinayak M. α-Tocopherol attenuates NF-κB activation and pro-inflammatory cytokine IL-6 secretion in cancer-bearing mice. Biosci Rep 2011; 31(5): 421-8.
[http://dx.doi.org/10.1042/BSR20100137] [PMID: 21320073]
[85]
Sharma R, Vinayak M. Antioxidant α-tocopherol checks lymphoma promotion via regulation of expression of protein kinase C-α and c-Myc genes and glycolytic metabolism. Leuk Lymphoma 2012; 53(6): 1203-10.
[http://dx.doi.org/10.3109/10428194.2011.637213] [PMID: 22132835]
[86]
Sharma R, Vinayak M. α-Tocopherol prevents lymphoma by improving antioxidant defence system of mice. Mol Biol Rep 2013; 40(2): 839-49.
[http://dx.doi.org/10.1007/s11033-012-2123-9] [PMID: 23065278]
[87]
Sirato-Yasumoto S, Katsuta M, Okuyama Y, Takahashi Y, Ide T. Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agric Food Chem 2001; 49(5): 2647-51.
[http://dx.doi.org/10.1021/jf001362t] [PMID: 11368649]
[88]
Liang YT, Chen J, Jiao R, et al. Cholesterol-lowering activity of sesamin is associated with down-regulation on genes of sterol transporters involved in cholesterol absorption. J Agric Food Chem 2015; 63(11): 2963-9.
[http://dx.doi.org/10.1021/jf5063606] [PMID: 25745846]
[89]
Kiso Y. Antioxidative roles of sesamin, a functional lignan in sesame seed, and its effect on lipid- and alcohol-metabolism in the liver: A DNA microarray study. Biofactors 2004; 21(1-4): 191-6.
[http://dx.doi.org/10.1002/biof.552210139] [PMID: 15630196]
[90]
Wang JY, Liu HY, Zhang YY. Study on the function of anti-tumor and immunity of the hongshuanjun crude polysaccharide in bearing-tumor mice. J Community Med 2006; 11(1): 2.
[91]
Govindan S, Johnson EE, Christopher J, Shanmugam J, Thirumalairaj V, Gopalan J. Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2. Exp Toxicol Pathol 2016; 68(6): 329-34.
[http://dx.doi.org/10.1016/j.etp.2016.04.001] [PMID: 27174669]
[92]
Gong F, Li F, Zhang L, Li J, Zhang Z, Wang G. Hypoglycemic effects of crude polysaccharide from Purslane. Int J Mol Sci 2009; 10(3): 880-8.
[http://dx.doi.org/10.3390/ijms10030880] [PMID: 19399226]
[93]
Lai ZF, Shao Z, Chen YZ, He M, Huang Q, Nishi K. Effects of sasanquasaponin on ischemia and reperfusion injury in mouse hearts. J Pharmacol Sci 2004; 94(3): 313-24.
[http://dx.doi.org/10.1254/jphs.94.313] [PMID: 15037817]
[94]
Chen HP, He M, Huang QR, Liu D, Huang M. Sasanquasaponin protects rat cardiomyocytes against oxidative stress induced by anoxia-reoxygenation injury. Eur J Pharmacol 2007; 575(1-3): 21-7.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.043] [PMID: 17761161]
[95]
Huang QR, Ming HE, Li P, Peng WJ, Cao SY. Anti-oxygen free radicals and anti-lipoperoxidation of sasanquasaponin(SQS) to myocardial ischemic rat. Zhongguo Yaolixue Tongbao 2003; 19(9): 1034-6.
[96]
El-Domiaty MM, Wink M, Abdel Aal MM, Abou-Hashem MM, Abd-Alla RH. Antihepatotoxic activity and chemical constituents of Buddleja asiatica Lour. Z Natforsch C J Biosci 2009; 64(1-2): 11-9.
[http://dx.doi.org/10.1515/znc-2009-1-203] [PMID: 19323260]
[97]
Kuo PC, Lin TC, Yang CW, Lin CL, Chen GF, Huang JW. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J Agric Food Chem 2010; 58(15): 8618-22.
[http://dx.doi.org/10.1021/jf1017115] [PMID: 20681650]
[98]
Hu J, Nie S, Huang D, Li C, Xie M. Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity. Int J Food Sci Technol 2012; 47(8): 1676-87.
[http://dx.doi.org/10.1111/j.1365-2621.2012.03020.x]
[99]
Tsukamoto S, Kanegae T, Nagoya T, et al. Effects of seed saponins of Thea sinensis L. (Ryokucha saponin) on alcohol absorption and metabolism. Alcohol Alcohol 1993; 28(6): 687-92.
[PMID: 8147976]
[100]
Wang YQ, Xiao-Juan WU, Hong-Bing LI, Pang Y, Tang L, Feng B. Research of Camellia Linn. on the used to drugs. J Dalian University 2006; 4(1): 1-2.
[101]
Xu W, Huang R, Huang C, Wang B, Song H. Study on Properties of Tea Saponin,a kind of Natural Non-ionic Surfactant. China Cleaning Industry 2017.
[102]
Hu T, Liu D, Chen Y, Wu J, Wang S. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int J Biol Macromol 2010; 46(2): 193-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.12.004] [PMID: 20025899]
[103]
Li SP, Zhang GH, Zeng Q, et al. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 2006; 13(6): 428-33.
[http://dx.doi.org/10.1016/j.phymed.2005.02.002] [PMID: 16716913]
[104]
Mizuno M, Minato K, Ito H, Kawade M, Terai H, Tsuchida H. Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem Mol Biol Int 1999; 47(4): 707-14.
[http://dx.doi.org/10.1080/15216549900201773] [PMID: 10319424]
[105]
Ruijun W, Shi W, Yijun X, Mengwuliji T, Lijuan Z, Yumin W. Antitumor effects and immune regulation activities of a purified polysaccharide extracted from Juglan regia. Int J Biol Macromol 2015; 72(1): 771-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.026] [PMID: 25265339]
[106]
Wang Y, Mao F, Wei X. Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea. Carbohydr Polym 2012; 88(1): 146-53.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.083] [PMID: 24750616]
[107]
Wang Y, Yang Z, Wei X. Antioxidant activities potential of tea polysaccharide fractions obtained by ultra-filtration. Int J Biol Macromol 2012; 50(3): 558-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.12.028] [PMID: 22230610]
[108]
Wei X, Chen M, Xiao J, et al. Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr Polym 2010; 79(2): 418-22.
[http://dx.doi.org/10.1016/j.carbpol.2009.08.030]
[109]
Xiao J, Huo J, Jiang H, Yang F. Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. Int J Biol Macromol 2011; 49(5): 1143-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.09.013] [PMID: 21946077]
[110]
Wang Y, Yu L, Wei X. Monosaccharide composition and bioactivity of tea flower polysaccharides obtained by ethanol fractional precipitation and stepwise precipitation. CYTA J Food 2012; 10(1): 1-4.
[http://dx.doi.org/10.1080/19476337.2010.523901]
[111]
Yoshikawa M, Morikawa T, Yamamoto K, Kato Y, Nagatomo A, Matsuda H. Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). J Nat Prod 2005; 68(9): 1360-5.
[http://dx.doi.org/10.1021/np0580614] [PMID: 16180814]
[112]
Zhang J, Fan S, Mao Y, et al. Cardiovascular protective effect of polysaccharide from Ophiopogon japonicus in diabetic rats. Int J Biol Macromol 2016; 82(1): 505-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.069] [PMID: 26434529]
[113]
Hassan AI, Ghoneim MAM, Mahmoud MG, Asker MMS, Mohamed SS. Efficacy of polysaccharide from Alcaligenes xylosoxidans MSA3 administration as protection against γ-radiation in female rats. J Radiat Res (Tokyo) 2016; 57(2): 189-200.
[http://dx.doi.org/10.1093/jrr/rrv075] [PMID: 26712796]
[114]
Korotkova EI, Voronova OA, Dorozhko EV. Study of antioxidant properties of flavonoids by voltammetry. J Solid State Electrochem 2012; 16(7): 2435-40.
[http://dx.doi.org/10.1007/s10008-012-1707-6]
[115]
Mascaraque C, López-Posadas R, Monte MJ, et al. The small intestinal mucosa acts as a rutin reservoir to extend flavonoid anti-inflammatory activity in experimental ileitis and colitis. J Funct Foods 2015; 13(1): 117-25.
[http://dx.doi.org/10.1016/j.jff.2014.12.041]
[116]
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002; 13(10): 572-84.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[117]
Zhou Y, Lu N, Zhang H, et al. HQS-3, a newly synthesized flavonoid, possesses potent anti-tumor effect in vivo and in vitro. Eur J Pharm Sci 2013; 49(4): 649-58.
[http://dx.doi.org/10.1016/j.ejps.2013.04.016] [PMID: 23619285]
[118]
Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am J Clin Nutr 2008; 88(1): 38-50.
[http://dx.doi.org/10.1093/ajcn/88.1.38] [PMID: 18614722]
[119]
Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[120]
Buer CS, Imin N, Djordjevic MA. Flavonoids: New roles for old molecules. J Integr Plant Biol 2010; 52(1): 98-111.
[http://dx.doi.org/10.1111/j.1744-7909.2010.00905.x] [PMID: 20074144]
[121]
Kazimierczak R, Hallmann E. Polyphenols, tannins and caffeine content and antioxidant activity of green teas coming from organic and non-organic production. Renew Agric Food Syst 2015; 30(3): 263-9.
[http://dx.doi.org/10.1017/S1742170513000513]
[122]
Ishida K, de Mello JC, Cortez DA, Filho BP, Ueda-Nakamura T, Nakamura CV. Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. J Antimicrob Chemother 2006; 58(5): 942-9.
[http://dx.doi.org/10.1093/jac/dkl377] [PMID: 16973655]
[123]
Zhou TJ. Study on the antifungal activity of tannin extracts from Terminalia chebula retz. against candida albicans. Anhui Nongye Kexue 2012.
[124]
Govindasamy C, Kannan R. Pharmacognosy of mangrove plants in the system of unani medicine. Asian Pac J Trop Dis 2012; 2(12): S38-41.
[http://dx.doi.org/10.1016/S2222-1808(12)60120-0]
[125]
Arendash GW, Schleif W, Rezai-Zadeh K, et al. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience 2006; 142(4): 941-52.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.021] [PMID: 16938404]
[126]
Hartley TR, Lovallo WR, Whitsett TL. Cardiovascular effects of caffeine in men and women. Am J Cardiol 2004; 93(8): 1022-6.
[http://dx.doi.org/10.1016/j.amjcard.2003.12.057] [PMID: 15081447]
[127]
Rubach M, Lang R, Hofmann T, Somoza V. Time-dependent component-specific regulation of gastric acid secretion-related proteins by roasted coffee constituents. Ann N Y Acad Sci 2008; 1126(1): 310-4.
[http://dx.doi.org/10.1196/annals.1433.061] [PMID: 18448837]
[128]
Goldstein J, Silberstein SD, Saper JR, et al. Acetaminophen, aspirin, and caffeine versus sumatriptan succinate in the early treatment of migraine: Results from the ASSET trial. Headache 2005; 45(8): 973-82.
[http://dx.doi.org/10.1111/j.1526-4610.2005.05177.x] [PMID: 16109110]
[129]
Mastiholimath VS, Dandagi PM, Jain SS, Gadad AP, Kulkarni AR. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int J Pharm 2007; 328(1): 49-56.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.045] [PMID: 16942847]
[130]
Louvet A, Mathurin P. Alcoholic liver disease: Mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12(4): 231-42.
[http://dx.doi.org/10.1038/nrgastro.2015.35] [PMID: 25782093]
[131]
Saleh TSF, Calixto JB, Medeiros YS. Anti-inflammatory effects of theophylline, cromolyn and salbutamol in a murine model of pleurisy. Br J Pharmacol 1996; 118(3): 811-9.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15472.x] [PMID: 8762112]
[132]
Cosio BG, Iglesias A, Rios A, et al. Low-dose theophylline enhances the anti-inflammatory effects of steroids during exacerbations of COPD. Thorax 2009; 64(5): 424-9.
[http://dx.doi.org/10.1136/thx.2008.103432] [PMID: 19158122]
[133]
Toyoshima K, Doi S, Murayama N. Effect of long-term administration of theophylline on serum immunoglobulin E level in asthmatic children-preliminary study. Clin Exp Allergy 1996; 26(Suppl. 2): 28-31.
[http://dx.doi.org/10.1111/j.1365-2222.1996.tb01140.x] [PMID: 8963874]
[134]
Wang SN, Sui XN, Wang ZJ, et al. Improvement in thermal stability of soybean oil by blending with Camellia oil during deep fat frying. Eur J Lipid Sci Technol 2016; 118(4): 524-31.
[http://dx.doi.org/10.1002/ejlt.201500085]
[135]
Yang Y, Chen Y, Zhang ZF, Nie SP, Xie MY. Changes in fatty acid composition and quality of three kinds of vegetable oils during frying. Shipin Kexue 2012; 33(23): 36-41.
[136]
Xia RXMZ, Xiong H, Wang SQ, Bai CQ, Zhao Q. Characterisation of zero-trans margarine fats produced from Camellia seed oil, palm stearin and coconut oil using enzymatic interesterification strategy. Int J Food Sci Technol 2013; 49(1): 91-7.
[137]
Xue L, Tan Y, Ma G, Bai X, Cao J. Advance in research and application of Camellia oil. J Chinese Cereals Oils Association 2017; 32(11): 191-6.
[138]
Chang M, Lian J, Liu RJ, Jin QZ, Wang XG. Production of yellow wine from Camellia oleifera meal pretreated by mixed cultured solid-state fermentation. Int J Food Sci Technol 2014; 49(7): 1715-21.
[http://dx.doi.org/10.1111/ijfs.12480]
[139]
Robert M. Importance of polysaccharides for the cycling of minerals and trace elements in the Ocean. Asian J Pharm Clin Res 2010; 181(1): 271.
[140]
Xiao YN, Han M, Zhao CY. Influence of mannitol, polysaccharide and mineral elements on Cordyceps militaris cultivated in different media. Shenyang Nongye Daxue Xuebao 2009; 40(2): 227-9.
[141]
Cheng YT, Wu SL, Ho CY, Huang SM, Cheng CL, Yen GC. Beneficial effects of Camellia oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF. J Agric Food Chem 2014; 62(3): 642-50.
[http://dx.doi.org/10.1021/jf404614k] [PMID: 24377395]
[142]
Cheng YT, Lu CC, Yen GC. Beneficial effects of Camellia oil (Camellia oleifera Abel.) on hepatoprotective and gastroprotective activities. J Nutr Sci Vitaminol 2015; 61(1): S100.
[143]
Zhao S, Zhang Y, Xue Z, Yang C, Liu G. Preparation of Peptides from Camellia Oleifera Seed Meal By Enzymatic Hydrolysis. Zhongguo Youzhi 2011.
[144]
Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3(9): 710-20.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[145]
Lengyel AM. Novel mechanisms of growth hormone regulation: Growth hormone-releasing peptides and ghrelin. Braz J Med Biol Res 2006; 39(8): 1003-11.
[http://dx.doi.org/10.1590/S0100-879X2006000800002] [PMID: 16906274]
[146]
Hatanaka T, Uraji M, Fujita A, Kawakami K. Anti-oxidation activities of rice-derived peptides and their inhibitory effects on dipeptidylpeptidase-IV. Int J Pept Res Ther 2015; 21(4): 479-85.
[http://dx.doi.org/10.1007/s10989-015-9478-4]
[147]
Jun LI, Zhang AY, Yong-Jie QI, Meng XC, Zhang ZQ. Research Progress in Tea Saponin from Oil Residue of Camellia semiserrata. Shipin Kexue 2012.
[148]
Pal D, Sannigrahi S, Mazumder UK. Analgesic and anticonvulsant effects of saponin isolated from the leaves of Clerodendrum infortunatum Linn. in mice. Indian J Exp Biol 2009; 47(9): 743-7.
[PMID: 19957887]
[149]
Feng Y, Ji L, Liu HQ, Jiang JX. Enhanced hydrolysis of furfural residues by trichoderma cellulases with addition of natural surfactant tea saponin. Adv Mat Res 2012; 424-425: 871-5.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.424-425.871]
[150]
Li H, Wang QJ, Zhu DN, Yang Y. Reinioside C, a triterpene saponin of Polygala aureocauda Dunn, exerts hypolipidemic effect on hyperlipidemic mice. Phytother Res 2008; 22(2): 159-64.
[http://dx.doi.org/10.1002/ptr.2262] [PMID: 18167051]
[151]
Yang X, Xiong X, Wang H, Wang J. Protective Effects of panax notoginseng saponins on cardiovascular diseases: A comprehensive overview of experimental studies. Evid Based Complement Alternat Med 2014; 2014(12): 1-13.
[http://dx.doi.org/10.1155/2014/204840]
[152]
Ma JJ, Ma LY, Zhang ZQ, Wang YQ, Zhang H. Preparation of skin care lotion with the substrate of insect wax and Camellia oil. Adv Mat Res 2015; 1094(1): 23-30.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.1094.23]
[153]
Jung E, Lee J, Baek J, et al. Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J Ethnopharmacol 2007; 112(1): 127-31.
[http://dx.doi.org/10.1016/j.jep.2007.02.012] [PMID: 17386986]
[154]
Higaki Y, Kawamoto K, Kamo T, Horikawa N, Kawashima M, Chren MM. The Japanese version of Skindex-16: A brief quality-of-life measure for patients with skin diseases. J Dermatol 2002; 29(11): 693-8.
[http://dx.doi.org/10.1111/j.1346-8138.2002.tb00205.x] [PMID: 12484430]
[155]
Han SH, Hur MS, Kim MJ, et al. In Vitro Anti-Malassezia activity of Castanea crenata shell and oil-soluble Glycyrrhiza extracts. Ann Dermatol 2017; 29(3): 321-6.
[http://dx.doi.org/10.5021/ad.2017.29.3.321] [PMID: 28566909]
[156]
Wei YY, Cai HY, Wang LS, Xia T, Xian-Feng DU. Production of Multi-Enzyme Enriched Bio-Feed from Camellia Oleifera Seed Cake In Solid State Fermentation by Aspergillus Niger. Anhui Nongye Daxue Xuebao 2012.
[157]
Zhang H, Fang L. The Biological Function Of Saccharicterpenin And Its Application In Aquaculture. China Feed 2009; 20(1): 1-2.
[158]
Chu XH, Jin-Ping HU, Ru-Hai X, Fu-Zeng LU, Dai LH, Jiang HJ. Effect of saccharicterpenin on the quality of boar sperm in high temperature seasonActa Agriculturae Zhejiangensis 2012; 24(6): 0-982.
[159]
Min YH. Influence of saccharicterpenin on immunoglobulins content in serum of weaned pups. J Northeast Agric Univ 2011; 42(6): 119-22.
[160]
Meng-Dan LI, Yang YL, Chen LL, Guo H. Study on the Comprehensive Utilization of Tea Seed Meal. Cereals & Oils 2016.