Current Topics in Medicinal Chemistry

Author(s): Mino R. Caira*

DOI: 10.2174/1568026619666191018101524

Cyclodextrin Inclusion of Medicinal Compounds for Enhancement of their Physicochemical and Biopharmaceutical Properties

Page: [2357 - 2370] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Owing to their wide structural diversity and unique complexing properties, cyclodextrins (CDs) find manifold applications in drug discovery and development. The focus of this mini-review is on their uses as ‘enabling excipients’ both in the context of early drug discovery and in subsequent optimisation of drug performance. Features highlighted here include descriptions of the structures of CDs, synthetic derivatisation to fine-tune their properties, the nature of inclusion complexation of drugs within the CD cavity, methodology for the study of free and complexed hosts in the solid state and in solution, the inherent pharmacological activity of several CDs and its utility, novel CD-based drug delivery systems, and the role of CDs in drug discovery and optimisation. Illustrative examples are generally based on research reported during the last two decades. Application of CDs to the optimisation of the performance of established drugs is commonplace, but there are many opportunities for the intervention of CDs during the early stages of drug discovery, which could guide the selection of suitable candidates for development, thereby contributing to reducing the attrition rate of new molecular entities.

Keywords: Cyclodextrins, Cyclodextrin-based delivery systems, Drug delivery, Drug discovery, Host-guest complexation, Lipophilic drugs.

Graphical Abstract

[1]
Srivastava, A.; Nagai, T.; Srivastava, A.; Miyashita, O.; Tama, F. Role of computational methods in going beyond x-ray crystallography to explore protein structure and dynamics. Int. J. Mol. Sci., 2018, 19, 3401-3423.
[http://dx.doi.org/10.3390/ijms19113401]
[2]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[3]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[4]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[5]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Iα and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18(10), 966-978.
[http://dx.doi.org/10.2174/0929866511107010966] [PMID: 21592084]
[6]
Zhou, G.P.; Chen, D.; Liao, S.; Huang, R.B. Recent progresses in studying helix-helix interactions in proteins by incorporating the wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16(6), 581-590.
[http://dx.doi.org/10.2174/1568026615666150819104617] [PMID: 26286215]
[7]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[8]
Talevi, A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol., 2015, 6, 205-205.
[http://dx.doi.org/10.3389/fphar.2015.00205]
[9]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[10]
Chou, K.C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem., 1988, 30(1), 3-48.
[http://dx.doi.org/10.1016/0301-4622(88)85002-6] [PMID: 3046672]
[11]
Huang, R.B.; Cheng, D.; Liao, S.M.; Lu, B.; Wang, Q.Y.; Xie, N.Z.; Troy Ii, F.A.; Zhou, G.P. The Intrinsic Relationship Between Structure and Function of the Sialyltransferase ST8Sia Family Members. Curr. Top. Med. Chem., 2017, 17(21), 2359-2369.
[http://dx.doi.org/10.2174/1568026617666170414150730] [PMID: 28413949]
[12]
Zhou, G.P. Editorial: current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11(3), 216-217.
[http://dx.doi.org/10.2174/1573406411666141229162618] [PMID: 25548926]
[13]
Taylor, D. The pharmaceutical industry and the future of drug development In: Pharmaceuticals in the Environment; , 2019, pp. 1-33.
[http://dx.doi.org/10.1039/9781782622345-00001]
[14]
Zhang, M-Q.; Rees, D.C. A review of recent applications of cyclodextrins for drug discovery. Expert Opin. Ther. Pat., 1999, 9, 1697-1717.
[http://dx.doi.org/10.1517/13543776.9.12.1697]
[15]
Loftsson, T.; Masson, M. Cyclodextrins in topical drug formulations: theory and practice. Int. J. Pharm., 2001, 225(1-2), 15-30.
[http://dx.doi.org/10.1016/S0378-5173(01)00761-X] [PMID: 11489551]
[16]
Szejtli, J. Past, present and future of cyclodextrin research. Pure Appl. Chem., 2004, 76, 1825-1845.
[http://dx.doi.org/10.1351/pac200476101825]
[17]
Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv., 2005, 2(2), 335-351.
[http://dx.doi.org/10.1517/17425247.2.1.335] [PMID: 16296758]
[18]
Shimpi, S.; Chauhan, B.; Shimpi, P. Cyclodextrins: application in different routes of drug administration. Acta Pharm., 2005, 55(2), 139-156.
[PMID: 16179128]
[19]
Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech, 2005, 6(2), E329-E357.
[http://dx.doi.org/10.1208/pt060243] [PMID: 16353992]
[20]
Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm., 2007, 329(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[21]
Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol., 2008, 36(1), 30-42.
[http://dx.doi.org/10.1177/0192623307310945] [PMID: 18337219]
[22]
Arun, R.; Ashok Kumar, C.K.; Sravanthi, V.V.N.S.S. Cyclodextrins as drug carrier molecule: a review. Sci. Pharm., 2008, 76, 567-598.
[http://dx.doi.org/10.3797/scipharm.0808-05]
[23]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol., 2010, 62(11), 1607-1621.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01030.x] [PMID: 21039545]
[24]
Nitalikar, M.M.; Sakarkar, D.M.; Jain, P.V. The cyclodextrins: a review. JCPR, 2012, 10, 01-06.
[25]
Das, S.K.; Rajabalaya, R.; David, S.; Gani, N.; Khanam, J.; Nanda, A. Cyclodextrins – the molecular container. RJPBCS, 2013, 4, 1694-1720.
[26]
Tesconi, M.; Landis, M.S. Practical aspects of solubility determination and considerations for enabling formulation technologies. Amer Pharm Rev., 2013, 16(2), 5/1-5/6.
[27]
Vyas, A.; Saraf, S.; Saraf, S. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem., 2008, 62, 23-42.
[http://dx.doi.org/10.1007/s10847-008-9456-y]
[28]
Tiwari, G.; Tiwari, R.; Rai, A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci., 2010, 2(2), 72-79.
[http://dx.doi.org/10.4103/0975-7406.67003] [PMID: 21814436]
[29]
Lala, R.; Thorat, A.; Gargote, C. Current trends in β-cyclodextrin based drug delivery systems. IJRAP, 2011, 2, 1520-1526.
[30]
Ali, N.; Harikumar, S.L.; Kaur, A. Cyclodextrins: an excipient tool in drug delivery. IJRP, 2012, 3, 44-50.
[31]
Heidel, J.D.; Schluep, T. Cyclodextrin-containing polymers: versatile platforms of drug delivery materials. J. Drug Deliv., 2012, 17.
[32]
Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem., 2012, 8, 2091-2099.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[33]
Loftsson, T.; Másson, M.; Brewster, M.E. Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci., 2004, 93(5), 1091-1099.
[http://dx.doi.org/10.1002/jps.20047] [PMID: 15067686]
[34]
Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci., 2012, 101(9), 3019-3032.
[http://dx.doi.org/10.1002/jps.23077] [PMID: 22334484]
[35]
Dodziuk, H. Cyclodextrins and their complexes: Chemistry, analytical methods, applications, Wiley-VCH Verlag GmbH & Co KGaA: Weinheim; , 2006.
[36]
Wenz, G. Superstructures with cyclodextrins: Chemistry and applications II. Beilstein J. Org. Chem., 2015, 11, 271-272.
[http://dx.doi.org/10.3762/bjoc.11.30] [PMID: 25815079]
[37]
Saenger, W.; Betzel, Ch.; Zabel, V. Hydrogen bonding patterns and dynamics in the hydration of biological macromolecules. Proc Int Symp Biomol Struct Interactions, Suppl. J. Biosci., 1985, 8, 437-450.
[http://dx.doi.org/10.1007/BF02703995]
[38]
Dodziuk, H. Molecules with holes – cyclodextrins. In: Cyclodextrins and their complexes: chemistry, analytical methods, application; Helena, Dodziuk, Ed.; Wiley Online Library: Weinheim, 2006, pp. 1-30.
[39]
Chankvedatze, B. The application of cyclodextrins for enantioseparations. In: Cyclodextrins and their complexes: chemistry, analytical methods, applications; Helena, Dodziuk, Ed.; Wiley Online Library: Weinheim, 2006, pp. 119-146.
[http://dx.doi.org/10.1002/3527608982.ch6]
[40]
Macheras, P.; Karalis, V.; Valsami, G. Keeping a critical eye on the science and the regulation of oral drug absorption: a review. J. Pharm. Sci., 2013, 102(9), 3018-3036.
[http://dx.doi.org/10.1002/jps.23534] [PMID: 23568812]
[41]
Loftsson, T.; Konrádsdóttir, F.; Másson, M. Development and evaluation of an artificial membrane for determination of drug availability. Int. J. Pharm., 2006, 326(1-2), 60-68.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.009] [PMID: 16920289]
[42]
Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konrádsdóttir, F. Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci., 2007, 96(10), 2532-2546.
[http://dx.doi.org/10.1002/jps.20992] [PMID: 17630644]
[43]
Dahan, A.; Miller, J.M.; Hoffman, A.; Amidon, G.E.; Amidon, G.L. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J. Pharm. Sci., 2010, 99(6), 2739-2749.
[http://dx.doi.org/10.1002/jps.22033] [PMID: 20039391]
[44]
Beig, A.; Agbaria, R.; Dahan, A. Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS One, 2013, 8(7)e68237
[http://dx.doi.org/10.1371/journal.pone.0068237] [PMID: 23874557]
[45]
Mura, P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharm. Biomed. Anal., 2015, 113, 226-238.
[http://dx.doi.org/10.1016/j.jpba.2015.01.058] [PMID: 25743620]
[46]
Dodziuk, H. Modeling of CyDs and their complexes. In: Cyclodextrins and their complexes: chemistry, analytical methods, applications; Helena, Dodziuk, Ed.; Wiley Online Library: Weinheim, 2006, pp. 335-355.
[47]
Peeters, J.; Neeskens, P.; Tollenaere, J.P.; Van Remoortere, P.; Brewster, M.E. Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4, and 7. J. Pharm. Sci., 2002, 91(6), 1414-1422.
[http://dx.doi.org/10.1002/jps.10126] [PMID: 12115841]
[48]
Brewster, M.E.; Neeskens, P.; Peeters, J. Solubilization of itraconazole as a function of cyclodextrin structural space. J. Incl. Phenom. Macrocycl. Chem., 2007, 57, 561-566.
[http://dx.doi.org/10.1007/s10847-006-9249-0]
[49]
Cai, Y.Y.; Yap, C.W.; Wang, Z. Solubilization of vorinostat by cyclodextrins. J. Clin. Pharm. Ther., 2009, 34, 1-6.
[PMID: 20831676]
[50]
Bozkir, A.; Denli, Z.F.; Basaran, B. Effect of hydroxypropyl-β-cyclodextrin on the solubility, stability and in-vitro release of ciprofloxacin for ocular drug delivery. Acta Pol. Pharm., 2012, 69(4), 719-724.
[PMID: 22876616]
[51]
Sughir, A.; Skiba, M.; Lameiras, P. Investigation of inclusion complex of tiagabine hydrochloride with 2-hydroxypropyl β-cyclodextrin. Proceedings of the 14th International Cyclodextrins Symposium, Kyoto, JapanMay 8-11, 2008, pp. 209-12.
[52]
Sughir, A.; Lahiani-Skiba, M.; Oulyadi, H.; Skiba, M. 2-Hydroxypropyl β-cyclodextrin: a new tool for the improvement of the chemical stability of tiagabine HCl. Lett. Drug Des. Discov., 2009, 6, 236-241.
[http://dx.doi.org/10.2174/157018009787847800]
[53]
Irie, T.; Otagiri, M.; Sunada, M.; Uekama, K.; Ohtani, Y.; Yamada, Y.; Sugiyama, Y. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharmacobiodyn., 1982, 5(9), 741-744.
[http://dx.doi.org/10.1248/bpb1978.5.741] [PMID: 7153847]
[54]
Liu, B. Therapeutic potential of cyclodextrins in the treatment of Niemann-Pick type C disease. Clin. Lipidol., 2012, 7(3), 289-301.
[http://dx.doi.org/10.2217/clp.12.31] [PMID: 25152773]
[55]
Tanaka, Y.; Yamada, Y.; Ishitsuka, Y.; Matsuo, M.; Shiraishi, K.; Wada, K.; Uchio, Y.; Kondo, Y.; Takeo, T.; Nakagata, N.; Higashi, T.; Motoyama, K.; Arima, H.; Mochinaga, S.; Higaki, K.; Ohno, K.; Irie, T. Efficacy of 2-hydroxypropyl-β-cyclodextrin in Niemann-Pick disease type C model mice and its pharmacokinetic analysis in a patient with the disease. Biol. Pharm. Bull., 2015, 38(6), 844-851.
[http://dx.doi.org/10.1248/bpb.b14-00726] [PMID: 26027824]
[56]
Swaroop, M.; Thorne, N.; Rao, M.S.; Austin, C.P.; McKew, J.C.; Zheng, W. Evaluation of cholesterol reduction activity of methyl-β-cyclodextrin using differentiated human neurons and astrocytes. J. Biomol. Screen., 2012, 17(9), 1243-1251.
[http://dx.doi.org/10.1177/1087057112456877] [PMID: 22923786]
[57]
Karginov, V.A.; Nestorovich, E.M.; Moayeri, M.; Leppla, S.H.; Bezrukov, S.M. Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc. Natl. Acad. Sci. USA, 2005, 102(42), 15075-15080.
[http://dx.doi.org/10.1073/pnas.0507488102] [PMID: 16214885]
[58]
Karginov, V.A.; Yohannes, A.; Robinson, T.M.; Fahmi, N.E.; Alibek, K.; Hecht, S.M. β-cyclodextrin derivatives that inhibit anthrax lethal toxin. Bioorg. Med. Chem., 2006, 14(1), 33-40.
[http://dx.doi.org/10.1016/j.bmc.2005.07.054] [PMID: 16169738]
[59]
Karginov, V.A.; Nestorovich, E.M.; Schmidtmann, F.; Robinson, T.M.; Yohannes, A.; Fahmi, N.E.; Bezrukov, S.M.; Hecht, S.M. Inhibition of S. aureus α-hemolysin and B. anthracis lethal toxin by β-cyclodextrin derivatives. Bioorg. Med. Chem., 2007, 15(16), 5424-5431.
[http://dx.doi.org/10.1016/j.bmc.2007.05.058] [PMID: 17572091]
[60]
Kong, L.; Harrington, L.; Li, Q.; Cheley, S.; Davis, B.G.; Bayley, H. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nat. Chem., 2013, 5(8), 651-659.
[http://dx.doi.org/10.1038/nchem.1695] [PMID: 23881495]
[61]
Welliver, M. New drug sugammadex: a selective relaxant binding agent. AANA J., 2006, 74(5), 357-363.
[PMID: 17048555]
[62]
Cooper, A.; Nutley, M.; MacLean, E.J.; Cameron, K.; Fielding, L.; Mestres, J.; Palin, R. Mutual induced fit in cyclodextrin-rocuronium complexes. Org. Biomol. Chem., 2005, 3(10), 1863-1871.
[http://dx.doi.org/10.1039/b415903a] [PMID: 15889169]
[63]
Welliver, M.; McDonough, J.; Kalynych, N.; Redfern, R. Discovery, development, and clinical application of sugammadex sodium, a selective relaxant binding agent. Drug Des. Devel. Ther., 2009, 2, 49-59.
[PMID: 19920893]
[64]
Schaller, S.J.; Fink, H. Sugammadex as a reversal agent for neuromuscular block: an evidence-based review. Core Evid., 2013, 8, 57-67.
[PMID: 24098155]
[65]
Sugammadex. (Available at . www.drugs.com/mtm/sugammadex.html)
[66]
Trollope, L.; Cruickshank, D.L.; Noonan, T.; Bourne, S.A.; Sorrenti, M.; Catenacci, L.; Caira, M.R. Inclusion of trans-resveratrol in methylated cyclodextrins: synthesis and solid-state structures. Beilstein J. Org. Chem., 2014, 10, 3136-3151.
[http://dx.doi.org/10.3762/bjoc.10.331] [PMID: 25670983]
[67]
Caira, M.R.; Bourne, S.A.; Samsodien, H.; Smith, V.J. Inclusion complexes of 2-methoxyestradiol with dimethylated and permethylated β-cyclodextrins: models for cyclodextrin-steroid interaction. Beilstein J. Org. Chem., 2015, 11, 2616-2630.
[http://dx.doi.org/10.3762/bjoc.11.281] [PMID: 26734107]
[68]
González-Gaitano, G.; Isasi, J.R.; Vélaz, I.; Zornoza, A. Drug carrier systems based on cyclodextrin supramolecular assemblies and polymers: present and perspectives. Curr. Pharm. Des., 2017, 23(3), 411-432.
[PMID: 27855609]
[69]
Kamada, M.; Hirayama, F.; Udo, K.; Yano, H.; Arima, H.; Uekama, K. Cyclodextrin conjugate-based controlled release system: repeated- and prolonged-releases of ketoprofen after oral administration in rats. J. Control. Release, 2002, 82(2-3), 407-416.
[http://dx.doi.org/10.1016/S0168-3659(02)00171-2] [PMID: 12175753]
[70]
Schaschke, N.; Assfalg-Machleidt, I.; Machleidt, W.; Lassleben, T.; Sommerhoff, C.P.; Moroder, L. β-cyclodextrin/epoxysuccinyl peptide conjugates: a new drug targeting system for tumor cells. Bioorg. Med. Chem. Lett., 2000, 10(7), 677-680.
[http://dx.doi.org/10.1016/S0960-894X(00)00078-0] [PMID: 10762052]
[71]
Salmaso, S.; Semenzato, A.; Caliceti, P.; Hoebeke, J.; Sonvico, F.; Dubernet, C.; Couvreur, P. Specific antitumor targetable β-cyclodextrin-poly(ethylene glycol)-folic acid drug delivery bioconjugate. Bioconjug. Chem., 2004, 15(5), 997-1004.
[http://dx.doi.org/10.1021/bc034186d] [PMID: 15366952]
[72]
Michel, D.; Chitanda, J.M.; Balogh, R.; Yang, P.; Singh, J.; Das, U.; El-Aneed, A.; Dimmock, J.; Verrall, R.; Badea, I. Design and evaluation of cyclodextrin-based delivery systems to incorporate poorly soluble curcumin analogs for the treatment of melanoma. Eur. J. Pharm. Biopharm., 2012, 81(3), 548-556.
[http://dx.doi.org/10.1016/j.ejpb.2012.03.016] [PMID: 22531300]
[73]
Lu, X.; Ping, Y.; Xu, F.J. Biofunctional conjugates comprising β-cyclodextrin, polyethyleneimine, and 5-fluoro-2′-deoxyuridine for drug delivery and gene transfer. Bioconjug. Chem., 2010, 21(10), 1855-1856.
[http://dx.doi.org/10.1021/bc1002136]
[74]
Vadnerkar, G.; Dhaneshwar, S. Macromolecular prodrug of 4-aminosalicylic acid for targeted delivery to inflamed colon. Curr. Drug Discov. Technol., 2013, 10(1), 16-24.
[PMID: 22725691]
[75]
Wei, G.; Dong, R.; Wang, D. Functional materials from the covalent modification of reduced graphene oxide and β-cyclodextrin as a drug delivery carrier. New J. Chem., 2014, 38, 140-145.
[http://dx.doi.org/10.1039/C3NJ00690E]
[76]
Sizovs, A.; McLendon, P.M.; Srinivasachari, S.; Reineke, T.M. Carbohydrate polymers for nonviral nucleic acid delivery. Top. Curr. Chem., 2010, 296, 131-190.
[http://dx.doi.org/10.1007/128_2010_68] [PMID: 21504102]
[77]
Alabi, C.; Vegas, A.; Anderson, D. Attacking the genome: emerging siRNA nanocarriers from concept to clinic. Curr. Opin. Pharmacol., 2012, 12(4), 427-433.
[http://dx.doi.org/10.1016/j.coph.2012.05.004] [PMID: 22726555]
[78]
Jazkewitsch, O.; Mondrzyk, A.; Staffel, R.; Ritter, H. Cyclodextrin-modified polyesters from lactones and from bacteria: an approach to new drug carrier systems. Macromolecules, 2011, 44, 1365-1371.
[http://dx.doi.org/10.1021/ma1027627]
[79]
Sajomsang, W.; Nuchuchua, O.; Gonil, P.; Saesoo, S.; Sramala, I.; Soottitantawat, A.; Puttipipatkhachorn, S.; Ruktanonchai, U.R. Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr. Polym., 2012, 89(2), 623-631.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.060] [PMID: 24750767]
[80]
Malam, Y.; Lim, E.J.; Seifalian, A.M. Current trends in the application of nanoparticles in drug delivery. Curr. Med. Chem., 2011, 18(7), 1067-1078.
[http://dx.doi.org/10.2174/092986711794940860] [PMID: 21254971]
[81]
Trapani, A.; Garcia-Fuentes, M.; Alonso, M.J. Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan. Nanotechnology, 2008, 19(18)185101
[http://dx.doi.org/10.1088/0957-4484/19/18/185101] [PMID: 21825684]
[82]
Dhule, S.S.; Penfornis, P.; Frazier, T.; Walker, R.; Feldman, J.; Tan, G.; He, J.; Alb, A.; John, V.; Pochampally, R. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine (Lond.), 2012, 8(4), 440-451.
[http://dx.doi.org/10.1016/j.nano.2011.07.011] [PMID: 21839055]
[83]
Silambarasi, T.; Latha, S.; Thambidurai, M.; Selamani, P. Formulation and evaluation of curcumin loaded magnetic nanoparticles for cancer therapy. IJPSR, 2012, 3, 1393-1400.
[84]
Bilensoy, E.; Hincal, A.A. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin. Drug Deliv., 2009, 6(11), 1161-1173.
[http://dx.doi.org/10.1517/17425240903222218] [PMID: 19705965]
[85]
Venuti, V.; Rossi, B.; Mele, A.; Melone, L.; Punta, C.; Majolino, D.; Masciovecchio, C.; Caldera, F.; Trotta, F. Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Expert Opin. Drug Deliv., 2017, 14(3), 331-340.
[http://dx.doi.org/10.1080/17425247.2016.1215301] [PMID: 27449474]
[86]
Hayiyana, Z.; Choonara, Y.E.; Makgotloe, A.; du Toit, L.C.; Kumar, P.; Pillay, V. Ester-based hydrophilic cyclodextrin nanosponges for topical ocular drug delivery. Curr. Pharm. Des., 2016, 22(46), 6988-6997.
[http://dx.doi.org/10.2174/1381612822666161216113207] [PMID: 27981908]
[87]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015198268
[http://dx.doi.org/10.1155/2015/198268]
[88]
Rocheleau, M-J. Generic capillary electrophoresis conditions for chiral assay in early pharmaceutical development. Electrophoresis, 2005, 26(12), 2320-2329.
[http://dx.doi.org/10.1002/elps.200410265] [PMID: 15912539]
[89]
Burrai, L.; Nieddu, M.; Pirisi, M.A.; Carta, A.; Briguglio, I.; Boatto, G. Enantiomeric separation of 13 new amphetamine-like designer drugs by capillary electrophoresis, using modified-B-cyclodextrins. Chirality, 2013, 25(10), 617-621.
[http://dx.doi.org/10.1002/chir.22185] [PMID: 23873695]
[90]
Mittal, P.; Rana, A.C.; Bala, R.; Seth, N. Lipid based self-microemulsifying drug delivery system (SMEDDS) for lipophilic drugs: An acquainted review. IJRP, 2011, 2, 75-80.
[91]
Mekjaruskul, C.; Yang, Y-T.; Leed, M.G.D.; Sadgrove, M.P.; Jay, M.; Sripanidkulchai, B. Novel formulation strategies for enhancing oral delivery of methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-hydroxypropyl-β-cyclodextrin. Int. J. Pharm., 2013, 445(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.052] [PMID: 23376503]
[92]
Zhu, X.; Pandharkar, T.; Werbovetz, K. Identification of new antileishmanial leads from hits obtained by high-throughput screening. Antimicrob. Agents Chemother., 2012, 56(3), 1182-1189.
[http://dx.doi.org/10.1128/AAC.05412-11] [PMID: 22143523]
[93]
Liu, C.; Zhang, W.; Wang, Q.; Sun, Y.; Diao, G.W. The water-soluble inclusion complex of ilexgenin A with β-cyclodextrin polymer--a novel lipid-lowering drug candidate. Org. Biomol. Chem., 2013, 11(30), 4993-4999.
[http://dx.doi.org/10.1039/c3ob40715b] [PMID: 23783808]
[94]
Lopes, M.S.; Sales Júnior, P.A.; Lopes, A.G.F.; Yoshida, M.I.; Silva, T.H.; Romanha, A.J.; Alves, R.J.; Oliveira, R.B. The activity of a metronidazole analogue and its β-cyclodextrin complex against Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz, 2011, 106(8), 1055-1057.
[http://dx.doi.org/10.1590/S0074-02762011000800027] [PMID: 22241134]
[95]
Stellenboom, N.; Hunter, R.; Caira, M.R. Synthesis and inclusion of S-aryl alkylthiosulfinates as stable allicin mimics. ARKIVOC, 2007, 9, 53-63.
[96]
Kashima, N.; Fujikura, Y.; Komura, T.; Fujiwara, S.; Sakamoto, M.; Terao, K.; Nishikawa, Y. Development of a method for oral administration of hydrophobic substances to Caenorhabditis elegans: pro-longevity effects of oral supplementation with lipid-soluble antioxidants. Biogerontology, 2012, 13(3), 337-344.
[http://dx.doi.org/10.1007/s10522-012-9378-3] [PMID: 22484623]
[97]
Elbary, A.A.; Kassem, M.A.; Abou Samra, M.M.; Khalil, R.M. Formulation and hypoglycemic activity of pioglitazone-cyclodextrin inclusion complexes. Drug Discov. Ther., 2008, 2(2), 94-107.
[PMID: 22504505]
[98]
Shou, W.Z.; Naidong, W. Post-column infusion study of the ‘dosing vehicle effect’ in the liquid chromatography/tandem mass spectrometric analysis of discovery pharmacokinetic samples. Rapid Commun. Mass Spectrom., 2003, 17(6), 589-597.
[http://dx.doi.org/10.1002/rcm.951] [PMID: 12621622]
[99]
Chang, L.; Bakhos, L.; Wang, Z.; Venton, D.L.; Klein, W.L. Femtomole immunodetection of synthetic and endogenous amyloid-β oligomers and its application to Alzheimer’s disease drug candidate screening. J. Mol. Neurosci., 2003, 20(3), 305-313.
[http://dx.doi.org/10.1385/JMN:20:3:305] [PMID: 14501013]
[100]
Simms, P.J.; Jeffries, C.T.; Zhao, X.; Huang, Y.; Arrhenius, T. Gradient elution of organic acids on a β-cyclodextrin column in the polar organic mode and its application to drug discovery. J. Chromatogr. A, 2004, 1052(1-2), 69-75.
[http://dx.doi.org/10.1016/j.chroma.2004.08.102] [PMID: 15527122]
[101]
Pascal, B.; Maud, G.; Georges, D. The effect of cyclodextrins on the aqueous solubility of a new MMP inhibitor: phase solubility, 1H NMR spectroscopy and molecular modeling studies, preparation and stability study of nebulizable solutions. J. Pharm. Pharm. Sci., 2005, 8, 164-175.
[102]
Mansky, P.; Dai, W-G.; Li, S.; Pollock-Dove, C.; Daehne, K.; Dong, L.; Eichenbaum, G. Screening method to identify preclinical liquid and semi-solid formulations for low solubility compounds: miniaturization and automation of solvent casting and dissolution testing. J. Pharm. Sci., 2007, 96(6), 1548-1563.
[http://dx.doi.org/10.1002/jps.20799] [PMID: 17094139]
[103]
Fălămaş, A.; Cȋntă Pȋnzaru, S.; Dehelean, C.A.; Peev, C.I.; Soica, C. Betulin and its natural resource as potential anticancer drug candidate seen by FT-Raman and FT-IR spectroscopy. J. Raman Spectrosc., 2011, 42, 97-107.
[http://dx.doi.org/10.1002/jrs.2658]
[104]
Gali, Y.; Delezay, O.; Brouwers, J.; Addad, N.; Augustijns, P.; Bourlet, T.; Hamzeh-Cognasse, H.; Ariën, K.K.; Pozzetto, B.; Vanham, G. In vitro evaluation of viability, integrity, and inflammation in genital epithelia upon exposure to pharmaceutical excipients and candidate microbicides. Antimicrob. Agents Chemother., 2010, 54(12), 5105-5114.
[http://dx.doi.org/10.1128/AAC.00456-10] [PMID: 20921308]
[105]
Yamashita, T.; Ozaki, S.; Kushida, I. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide. Int. J. Pharm., 2011, 419(1-2), 170-174.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.045] [PMID: 21840385]
[106]
Rugutt, J.K.; Rugutt, K.J. Antimycobacterial activity of steroids, long-chain alcohols and lytic peptides. Nat. Prod. Res., 2012, 26(11), 1004-1011.
[http://dx.doi.org/10.1080/14786419.2010.539977] [PMID: 21851148]
[107]
Maes, J.; Verlooy, L.; Buenafe, O.E.; de Witte, P.A.M.; Esguerra, C.V.; Crawford, A.D. Evaluation of 14 organic solvents and carriers for screening applications in zebrafish embryos and larvae. PLoS One, 2012, 7(10)e43850
[http://dx.doi.org/10.1371/journal.pone.0043850] [PMID: 23082109]
[108]
Gopinathan, S.; O’Neill, E.; Rodriguez, L.A.; Champ, R.; Phillips, M.; Nouraldeen, A.; Wendt, M.; Wilson, A.G.E.; Kramer, J.A. In vivo toxicology of excipients commonly employed in drug discovery in rats. J. Pharmacol. Toxicol. Methods, 2013, 68(2), 284-295.
[http://dx.doi.org/10.1016/j.vascn.2013.02.009] [PMID: 23499653]
[109]
Merzlikine, A.; Abramov, Y.A.; Kowsz, S.J.; Thomas, V.H.; Mano, T. Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies. Int. J. Pharm., 2011, 418(2), 207-216.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.065] [PMID: 21497190]
[110]
Cai, W.S.; Wang, T.; Liu, Y.Z.; Liu, P.; Chipot, C.; Shao, X.G. Free energy calculations for cyclodextrin inclusion complexes. Curr. Org. Chem., 2011, 15, 839-847.
[http://dx.doi.org/10.2174/138527211794518853]
[111]
Lipp, R. The innovator pipeline: bioavailability challenges and advanced oral drug delivery opportunities. Amer Pharm Rev., 2013, 16(10), 14-16.
[112]
Brewster, M.E.; Loftsson, T. The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems. Pharmazie, 2002, 57(2), 94-101.
[PMID: 11878196]
[113]
Ionescu, C.; Caira, M.R., Eds.; Drug Metabolism: Current Concepts; Springer: Dordrecht, 2005.
[http://dx.doi.org/10.1007/1-4020-4142-X]
[114]
Wilson, A.G.E.; Nouraldeen, A.; Gopinathan, S. A new paradigm for improving oral absorption of drugs in discovery: role of physicochemical properties, different excipients and the pharmaceutical scientist. Future Med. Chem., 2010, 2(1), 1-5.
[http://dx.doi.org/10.4155/fmc.09.146] [PMID: 21426039]