[24]
Biemar F, Foti M. Global progress against cancer-challenges and opportunities. Cancer Biol Med 2013; 10: 183-6.
[25]
Meyskens FL Jr, Mukhtar H, Rock CL, et al. Cancer prevention: obstacles, challenges, and the road ahead JNCI. J Natl Cancer Inst 2016; 108(2)djv309
[36]
Su AI, Welsh JB, Sapinoso LM, et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 2001; 61: 7388-93.
[52]
Iliopoulos AC. Complex systems: phenomenology, modeling, analysis. Int J Appl Exp Math 2016; 1: 11.
[65]
Unnithan SKR, Kannan B, Jathavedan M. Betweenness centrality in some classes of graphs. J Inter Combinator 2014. Article ID: 241723
[68]
Hwang W, Cho Y, Zhang A, et al. Bridging Centrality: Identifying Bridging Nodes In Scale-free Networks KDD Philadelphia, USA 2006.
[82]
Danon L, Dìaz-Guilera A, Duch J, et al. Comparing community structure identification. J Stat Mech 2005.P09008
[85]
Van Dongen S. Graph Clustering by Flow Simulation PhD Thesis, University of Utrecht (Netherlands) 2000.
[108]
Wang XF, Chen G. Complex networks: small-world, scale-free and beyond circuits and systems magazine. IEEE Circuits Syst Mag 2003; 3: 6-20.
[109]
Erdös P, Rényi A. On random graphs. Publicationes Mathematicae 1959; 6: 290-7.
[113]
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria 2008.
[114]
Csardi G, Nepusz T. The igraph software package for complex network research. Inter J Complex Syst 2006.
[126]
Li J, Li Y-X, Li Y-Y. Differential regulatory analysis based on co-expression network in cancer research. Biomed Res Int. Vol 2016.
[127]
Van Dam S, Võsa U, Van der Graaf A, et al. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform 2018; 19(4): 575-92.
[142]
Castelo R, Roverato A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. J Mach Learn Res 2006; 7: 2621-50.
[146]
Jiang X, Zhang H, Quan X. Differentially co-expressed disease gene identification based on gene co-expression network. BioMed Res Int 2016; 20163962761
[149]
Zhu L, Ding Y, Chen C. MetaDCN: meta-analysis framework for differential co-expression network detection with an application in breast cancer. Bioinformatics 2017; 33(8): 1121-9.
[158]
Zwiener I, Blettner M, Hommel G. Survival analysis-part 15 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2011; 108(10): 163-9.
[159]
Ferreira JC, Patino CM. What is survival analysis, and when should I use it? J Bras Pneumol. 2016; 42(1): 77-77. [173] Kartsonaki C, Survival analysis. Diagn Histopathol 2016; 22(7): 263-70.
[186]
Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks. Phys Rev 2004.E69045104
[194]
Lestas I, Paulsson J, Ross NE, et al. Noise in gene regulatory networks special issue on systems biology. IEEE 2008; pp. 189-200.
[203]
Moriyama M, Hoshida Y, Otsuka M, et al. Relevance network between chemo sensitivity and transcriptome in human hepatoma cells. Mol Cancer Ther 2003; 2: 199-205.
[220]
Wolfram Research, Inc.. Mathematica, Version 112, Champaign, IL In: 2017.
[221]
Wang E. Cancer systems biology. CRC Press 2017; p. 456.
[223]
Yan J, Risacher SL, Shen L, et al. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 2018; 19(6): 1370-81.