Abstract
Background: The São Paulo State area has been facing a water crisis that caused
water shortage in many cities, and a series of socioeconomic problems as an outcome. Water
supply massive land-use alteration throughout São Paulo State river basins, coupled with
climate change effects might produce severe damage to the region if preventive actions are
not enforced in time.
Objective: This study aims to apply an adapted methodology of fragility analysis to a tributary
of the Itupararanga reservoir (Brazil) using a hydrological modeling tool. Based on the
determination of the flow and drainage system direction and object-based image analysis, a
final map of the fragility will be constructed.
Methods: This paper presents a fragility assessment methodology on a local scale using a
rural watershed of the study area. This approach uses object-based classification of topography
data from Shuttle Radar Topography Mission to extract the most fragile territorial units
of the watershed area, in terms of pollution and siltation contribution risk, combined with
land cover classification.
Results: The study area exhibits very high and medium fragility areas related to water contamination
and siltation risk that can be seen as priority areas for land cover management
and monitoring, although most of the basin area was classified as very low fragility.
Conclusion: The methodology applications have great potential uses in territorial planning,
protected areas and restoration priorities delimitation, ecological-economic zoning, hazard
evaluation and mitigation, erosional processes and water protection and management at
both local and regional scale studies.
Keywords:
Environmental fragility, land cover, physiographic segmentation, SRTM, swater, crisis.
Graphical Abstract
[1]
Forney W, Richards L, Adams K, et al. Land cover change and effects on water quality and ecosystem health in the lake Tahoe Basin, Nevada and California. In: US Geological Survey Open-File Report, 2001; p. 01-418.
[2]
ANAConjuntura dos recursos hídricos no Brasil: informe 2012.
[9]
Tricart J. Ecodinâmica. Rio de Janeiro, Brasil: IBGE 1977.
[12]
Carneiro FF, Augusto LGS, Rigotto RM, et al. Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde - Rio de Janeiro: EPSJV. São Paulo: Expressão Popular 2015.
[13]
Ross JLS. Recursos Hídricos e as Bacias Hidrográficas: âncoras do planejamento e gestão ambientalRevista do Departamento de Geografia - FFLCH-USP 1998; 12: 89-121
[14]
Comitê de bacias hidrográficas. Nossas Águas. Comitê de Bacias Hidrográficas dos rios Sorocaba e Médio Tietê, Sorocaba, 2006.
[15]
Manfré LA, da Silva AM, Urban RC. Atributos de qualidade de solos sob dois diferentes tipos de manejo no município de Ibiúna/SP, Brazil. Interciencia 2011; 36(10): 757-63.
[17]
Companhia Ambiental do Estado – CETESB. Qualidade das águas superficiais no estado de São Paulo2014. São Paulo: CETESB. Série Relatórios /CETESB, ISSN 0103-4103).2015.
[18]
Brasil. Topodata: banco de dados geomorfométricos do Brasil. 2008. INPE, São José dos Campos, Brazil.
[20]
Chinnayakanahalli K, Kroeber C, Hill RA, Tarboton DG, Olson JR, Hawkins CP. The Multi-Watershed Delineation Tool: GIS Software in support of regional watershed analyses. Utah State University: Logan, Utah 2006.
[27]
Manfré LA. Identificação e mapeamento de áreas de deslizamentos associadas a rodovias utilizando imagens de sensoriamento remote 2015.
[28]
Martinelli M. Compartimentos do Relevo-IBGE 2000. Atlas do Estado de São Paulo 2000.
[31]
Bossard M, Feranec J, Otahel J. CORINE land cover technical guide-Addendum. Copenhagen: EEA 2000.
[32]
Beltrame AMK, Quintanilha JA. Aplicação do programa CORINE e classificação baseada em objetos para mapeamento da cobertura do solo de faixa de domínioXIV SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO. Natal, RN: Anais 2009; pp. 6781-8.
[34]
Foody GM. On the compensation for chance agreement in image classification accuracy assessment. Photogramm Eng Remote Sensing 1992; 58: 1459-60.
[35]
Ma Z, Redmond RL. Tau coefficients for accuracy assessment of classification of remote sensing data. Photogramm Eng Remote Sensing 1995; 61: 435-9.
[37]
Silva Neto JC. Evaluation of vulnerability to loss of soil in watershed of Salobra river, MS, based on the forms of terrain. Geografia 2013; 22: 05-25.