Lewis Acid Promoted, One-Pot Synthesis of Fluoroquinolone Clubbed 1,3,4-Thiadiazole Motifs under Microwave Irradiation: Their Biological Activities

Page: [60 - 66] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: A Lewis acid promoted efficient and facile procedure for one-pot synthesis of a novel series of fluoroquinolone clubbed with thiadiazoles motifs under microwave irradiation is described here. This technique has more advantages such as high yield, a clean procedure, low reaction time, simple work-up and use of Lewis acid catalyst.

Objective: Our aim is to generate a biologically active 1,3,4- thiadiazole ring system by using a onepot synthesis method and microwave-assisted heating. High yield and low reaction time were the main purposes to synthesize bioactive fluoroquinolone clubbed 1,3,4- thiadiazole moiety.

Methods: Fluoroquinolone Clubbed 1,3,4-Thiadiazole Motifs was prepared by Lewis acid promoted, one-pot synthesis, under microwave irradiation. All the synthesized molecules were determined by IR, 1H NMR, 13C NMR, and Mass spectra. The antimicrobial activity of synthesized compounds was examined against two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), and three fungi (Candida albicans, Aspergillus niger, Aspergillus clavatus) using the MIC (Minimal Inhibitory Concentration) method and antitubercular activity H37Rv using L. J. Slope Method.

Results: Lewis acid promoted, one-pot synthesis of Fluoroquinolone clubbed 1,3,4-Thiadiazole motifs under microwave irradiation is an extremely beneficial method because of its low reaction time and good yield. Some of these novel derivatives showed moderate to good in vitro antibacterial, antifungal, and antitubercular activity.

Conclusion: One-pot synthesis of 1,3,4-Thiadiazole by using Lewis acid catalyst gives a good result for saving time and also getting more production of novel heterocyclic compounds with good antimicrobial properties via microwave heating method.

Keywords: Fluoroquinolone, 1, 3, 4- thiadiazole, antimicrobial activity, M. tuberculosis H37Rv, microwave irradiation, one-pot synthesis.

Graphical Abstract

[1]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[2]
Schillaci, D.; Spanò, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G.; Cascioferro, S. Pharmaceutical approaches to target antibiotic resistance mechanisms. J. Med. Chem., 2017, 60(20), 8268-8297.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00215] [PMID: 28594170]
[3]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed. Engl., 2003, 42(43), 5274-5293.
[http://dx.doi.org/10.1002/anie.200200569] [PMID: 14613157]
[4]
Dade, J.; Provot, O.; Moskowitz, H.; Mayrargue, J.; Prina, E. Synthesis of 2-substituted trifluoromethylquinolines for the evaluation of leishmanicidal activity. Chem. Pharm. Bull. (Tokyo), 2001, 49(4), 480-483.
[http://dx.doi.org/10.1248/cpb.49.480] [PMID: 11310679]
[5]
Veyssier, P.; Bryskier, A. Antimicrobial agents: Antibacterials and Antifungals; ASM Press: Washington, DC, 2005, pp. 941-963.
[http://dx.doi.org/10.1128/9781555815929.ch35]
[6]
Cnubben, N.H.P.; Wortelboer, H.M.; van Zanden, J.J.; Rietjens, I.M.C.M.; van Bladeren, P.J. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 219-232.
[http://dx.doi.org/10.1517/17425255.1.2.219] [PMID: 16922638]
[7]
Boyle, R.G.; Travers, S. Hypoxia: targeting the tumour. Anticancer. Agents Med. Chem., 2006, 6(4), 281-286.
[http://dx.doi.org/10.2174/187152006777698169] [PMID: 16842231]
[8]
Kawase, M.; Motohashi, N. New multidrug resistance reversal agents. Curr. Drug Targets, 2003, 4(1), 31-43.
[http://dx.doi.org/10.2174/1389450033347064] [PMID: 12528988]
[9]
Stein, G.E. The 4-quinolone antibiotics: past, present, and future. Pharmacotherapy, 1988, 8(6), 301-314.
[http://dx.doi.org/10.1002/j.1875-9114.1988.tb04088.x] [PMID: 2851772]
[10]
Guo, X.; Liu, M.L.; Guo, H.Y.; Wang, Y.C.; Wang, J.X. Synthesis and in vitro antibacterial activity of 7-(3-amino-6,7-dihydro-2-methyl-2H-pyrazolo[4,3-c] pyridin-5(4H)-yl)fluoroquinolone derivatives. Molecules, 2011, 16(3), 2626-2635.
[http://dx.doi.org/10.3390/molecules16032626] [PMID: 21441865]
[11]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[12]
Nakatani, K.; Sando, S.; Saito, I. Improved selectivity for the binding of naphthyridine dimer to guanine-guanine mismatch. Bioorg. Med. Chem., 2001, 9(9), 2381-2385.
[http://dx.doi.org/10.1016/S0968-0896(01)00160-2] [PMID: 11553479]
[13]
He, C.; Lippard, S.J. Synthesis and electrochemical studies of diiron complexes of 1,8-naphthyridine-based dinucleating ligands to model features of the active sites of non-heme diiron enzymes. Inorg. Chem., 2001, 40(7), 1414-1420.
[http://dx.doi.org/10.1021/ic000975k] [PMID: 11261945]
[14]
Da Silva, A.D.; De Almeida, M.V.; De Souza, M.V.N.; Couri, M.R.C. Biological activity and synthetic metodologies for the preparation of fluoroquinolones, a class of potent antibacterial agents. Curr. Med. Chem., 2003, 10(1), 21-39.
[http://dx.doi.org/10.2174/0929867033368637] [PMID: 12570719]
[15]
Mitscher, L.A. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105(2), 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
[16]
Matar, S.A.; Talib, W.H.; Mustafa, M.S.; Mubarak, M.S.; Aldamen, M.A. Synthesis, characterization, and antimicrobial activity of schiff bases derived from benzaldehydes and 3,3′- diaminopropylamine. Arab. J. Chem., 2015, 8, 850-857.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.039]
[17]
More, G.; Raut, D.; Aruna, K.; Bootwala, S. Synthesis, spectroscopic characterization and antimicrobial activity evaluation of new tridentate Schiff bases and their Co(II) complexes. J. Saudi Chem. Soc., 2017, 21, 954-964.
[http://dx.doi.org/10.1016/j.jscs.2017.05.002]
[18]
Zafar, H.; Ahmad, A.; Khan, A.U.; Khan, T.A. Synthesis, characterization and antimicrobial studies of Schiff base complexes. J. Mol. Struct., 2015, 1097, 129-135.
[http://dx.doi.org/10.1016/j.molstruc.2015.04.034]
[19]
Tariq, S.; Avecilla, F.; Sharma, G.P.; Mondal, N.; Azam, A. Design, synthesis and biological evaluation of quinazolin-4(3H)-one Schiff base conjugates as potential antiamoebic agents. J. Saudi Chem. Soc., 2018, 22, 306-315.
[http://dx.doi.org/10.1016/j.jscs.2016.05.006]
[20]
Sahoo, J.; Paidesetty, S.K. Antimicrobial, analgesic, antioxidant and in silico study of synthesized salicylic acid congeners and their structural interpretation. Egypt. J. Basic Appl. Sci., 2015, 2, 268-280.
[21]
Prasanna, A.D.; Tejshree, A.D. Design and synthesis of thiadiazole derivatives as antidiabetic agents. Med. Chem., 2014, 4, 390-399.
[22]
Malleshappa, N.N.; Harun, M.P.; Sarita, K.; Swaranjit, S.C. Synthesis and antimicrobial evaluation of novel 1,3,4-thiadiazole derivatives of 2-(4-formyl-2-methoxyphenoxy) acetic acid. Arab. J. Chem., 2016, 9, S1283-S1289.
[http://dx.doi.org/10.1016/j.arabjc.2012.02.003]
[23]
Cascioferro, S.; Parrino, B.; Petri, G.L.; Cusimano, M.G.; Schillaci, D.; Di Sarno, V.; Musella, S.; Giovannetti, E.; Cirrincione, G.; Diana, P. 2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors. Eur. J. Med. Chem., 2019, 167, 200-210.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.007] [PMID: 30772604]
[24]
Hu, Y.; Li, C-Y. Xiao-Ming Wang; Yong-Hua Yang; Hai-Liang Zhu; 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev., 2014, 114, 5572-5610.
[http://dx.doi.org/10.1021/cr400131u] [PMID: 24716666]
[25]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[26]
Kappe, C.O. High-speed combinatorial synthesis utilizing microwave irradiation. Curr. Opin. Chem. Biol., 2002, 6(3), 314-320.
[http://dx.doi.org/10.1016/S1367-5931(02)00306-X] [PMID: 12023111]
[27]
Blackwell, H.E. Out of the oil bath and into the oven--microwave-assisted combinatorial chemistry heats up. Org. Biomol. Chem., 2003, 1(8), 1251-1255.
[http://dx.doi.org/10.1039/b301432k] [PMID: 12929652]
[28]
Bacsa, B.; Bosze, S.; Kappe, C.O. Direct solid-phase synthesis of the beta-amyloid (1-42) peptide using controlled microwave heating. J. Org. Chem., 2010, 75(6), 2103-2106.
[http://dx.doi.org/10.1021/jo100136r] [PMID: 20180552]
[29]
Hjørringgaard, C.U.; Pedersen, J.M.; Vosegaard, T.; Nielsen, N.C.; Skrydstrup, T. An automatic solid-phase synthesis of peptaibols. J. Org. Chem., 2009, 74(3), 1329-1332.
[http://dx.doi.org/10.1021/jo802058x] [PMID: 19108634]
[30]
Bardts, M.; Gonsior, N.; Ritter, H. Polymer synthesis and modification by use of microwaves. Macromol. Chem. Phys., 2008, 209, 25-31.
[http://dx.doi.org/10.1002/macp.200700443]
[31]
Holtze, C.; Antonietti, M.; Tauer, K. Ultrafast conversion and molecular weight control through temperature programming in microwave-induced miniemulsion polymerization. Macromolecule, 2006, 39, 5720-5728.
[http://dx.doi.org/10.1021/ma060608d]
[32]
Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis – a critical technology overview. Green Chem., 2004, 6, 128-141.
[http://dx.doi.org/10.1039/B310502D]
[33]
Das, S.K. Application of microwave irradiation in the synthesis of carbohydrates. Synlett, 2004, 6, 915-932.
[http://dx.doi.org/10.1055/s-2004-820034]
[34]
corsaro, A.; Chiacchio, U.; Pistara, V.; Romeo, G. Microwave-assisted chemistry of carbohydrates. Curr. Org. Chem., 2004, 8, 511-538.
[http://dx.doi.org/10.2174/1385272043485828]