[2]
Panda, H. The complete book on cultivation and manufacture of tea; Asia Pacific Business Press Incorporated: New Dehli, India, 2011, p. 592.
[5]
Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res., 2011, 6(9), 2026-2032.
[13]
Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T.; Renaut, J. Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front. Plant Sci., 2018, 9, 22.
[22]
Yongguang, H.; Yongzong, L.; Jian, L. Comparative proteomics analysis of tea leaves exposed to subzero temperature: Molecular mechanism of freeze injury. Int. J. Agric. Biol. Eng., 2013, 6(4), 27-34.
[23]
Zhou, Q.; Chen, Z.; Lee, J.; Li, X.; Sun, W. Proteomic analysis of tea plants (Camellia sinensis) with purple young shoots during leaf development. PLoS One, 2017, 12(5), 18.
[24]
Zhou, L.; Xu, H.; Mischke, S.; Meinhardt, L.W.; Zhang, D.; Zhu, X.; Li, X.; Fang, W. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic. Res., 2014, 1, 9.
[27]
Ó’Fágáin, C. Lyophilization of proteins.Protein Purification Protocols; Cutler, P., Ed.; Humana Press: USA, 2004, pp. 309-321.
[30]
Melanie-9.1.1-software Melanie 2D gel analysis software for protein expression profiling; SIB Swiss Institute of Bioinformatics: Switzerland, 2018.
[49]
Peleg, Z.; Apse, M.P.; Blumwald, E. Engineering salinity and water-stress tolerance in crop plants: getting closer to the field.Adv. Botanical Res; Turkan, I., Ed.; Elsevier: CA, USA, 2011, pp. 405-443.
[61]
Cao, Y.; Luo, Q.; Tian, Y.; Meng, F. Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots. BMC Plant Biol., 2017, 17(1), 16.
[67]
Ferreyra, M.L.F.; Pezza, A.; Biarc, J.; Burlingame, A.L.; Casati, P. Plant L10 ribosomal proteins have different roles during development and translation under UV-B stress. Plant Physiol., 2010, 110.
[74]
Chi, X.; Zhang, Z.; Chen, N.; Zhang, X.; Wang, M.; Chen, M.; Wang, T.; Pan, L.; Chen, J.; Yang, Z. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One, 2017, 12(12), 28.
[75]
Cascella, K.; Jollivet, D.; Papot, C.; Léger, N.; Corre, E.; Ravaux, J.; Clark, M.S.; Toullec, J-Y. Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of Antarctic krill: differences in thermal habitats, responses and implications under climate change. PLoS One, 2015, 10(4), 23.
[91]
Mewis, I.; Khan, M.A.; Glawischnig, E.; Schreiner, M.; Ulrichs, C. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). J. Plant Physiol., 2012, 7(11), 15.
[94]
Karuppanapandian, T.; Moon, J.; Kim, C.; Manoharan, K.; Kim, W. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci., 2011, 5(6), 709-725.
[96]
Luis, A.; Corpas, F.J.; López-Huertas, E.; Palma, J.M. Plant superoxide dismutases: function under abiotic stress conditions. Antioxidants and antioxidant enzymes in higher plants; Gupta, D.K.; Palma, J.M.; Corpas, F.J; Cham, S., Ed.; Switzerland, 2018, pp. 1-26.
[98]
Heyno, E.; Innocenti, G.; Lemaire, S.D.; Issakidis-Bourguet, E.; Krieger-Liszkay, A. Putative role of the malate valve enzyme NADP–malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369, 8.
[99]
Babayev, H.; Mehvaliyeva, U.; Aliyeva, M.; Guliyev, N.; Feyziyev, Y. NADP-malate dehydrogenase isoforms of wheat leaves under drought: their localization, and some physicochemical and kinetic properties. J. Stress Physiol. Biochem., 2015, 11(3), 13-25.
[101]
Chmielewska, K.; Rodziewicz, P.; Swarcewicz, B.; Sawikowska, A.; Krajewski, P.; Marczak, Ł.; Ciesiołka, D.; Kuczyńska, A.; Mikołajczak, K.; Ogrodowicz, P. Analysis of drought-induced proteomic and metabolomic changes in barley (Hordeum vulgare L.) leaves and roots unravels some aspects of biochemical mechanisms involved in drought tolerance. Front. Plant Sci., 2016, 7, 14.
[106]
Pan, L.; Yang, Z.; Wang, J.; Wang, P.; Ma, X.; Zhou, M.; Li, J.; Gang, N.; Feng, G.; Zhao, J. Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum). PLoS One, 2017, 12(9), 20.