Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS

Page: [3983 - 3996] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Parasitic infections affecting the central nervous system (CNS) present high morbidity and mortality rates and affect millions of people worldwide. The most important parasites affecting the CNS are protozoans (Plasmodium sp., Toxoplasma gondii, Trypanosoma brucei), cestodes (Taenia solium) and free-living amoebae (Acantamoeba spp., Balamuthia mandrillaris and Naegleria fowleri). Current therapeutic regimens include the use of traditional chemicals or natural compounds that have very limited access to the CNS, despite their elevated toxicity to the host. Improvements are needed in drug administration and formulations to treat these infections and to allow the drug to cross the blood-brain barrier (BBB).

Methods: This work aims to elucidate the recent advancements in the use of nanoparticles as nanoscaled drug delivery systems (NDDS) for treating and controlling the parasitic infections that affect the CNS, addressing not only the nature and composition of the polymer chosen, but also the mechanisms by which these nanoparticles may cross the BBB and reach the infected tissue.

Results: There is a strong evidence in the literature demonstrating the potential usefulness of polymeric nanoparticles as functional carriers of drugs to the CNS. Some of them demonstrated the mechanisms by which drugloaded nanoparticles access the CNS and control the infection by using in vivo models, while others only describe the pharmacological ability of these particles to be utilized in in vitro environments.

Conclusion: The scarcity of the studies trying to elucidate the compatibility as well as the exact mechanisms by which NDDS might be entering the CNS infected by parasites reveals new possibilities for further exploratory projects. There is an urgent need for new investments and motivations for applying nanotechnology to control parasitic infectious diseases worldwide.

Keywords: Drug delivery systems, central nervous system, parasitic infections, blood-brain barrier, nanoparticles, polymers.

[1]
Zlokovic BV. New therapeutic targets in the neurovascular pathway in Alzheimer’s disease. Neurotherapeutics 2008; 5(3): 409-14.
[http://dx.doi.org/10.1016/j.nurt.2008.05.011]
[2]
Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 2015; 38: 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002]
[3]
Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci 2015; 38(10): 598-608.
[http://dx.doi.org/10.1016/j.tins.2015.08.003]
[4]
Liu WY, Wang Z. Bin, Zhang LC, Wei X, Li L. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther 2012; 18(8): 609-15.
[5]
Meister S, Zlatev I, Stab J, et al. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood-brain barrier model. Alzheimers Res Ther 2013; 5(6): 51.
[http://dx.doi.org/10.1186/alzrt225]
[6]
Yu YJ, Watts RJ. Developing therapeutic antibodies for neurodegenerative disease. Neurotherapeutics 2013; 10(3): 459-72.
[http://dx.doi.org/10.1007/s13311-013-0187-4]
[7]
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72.
[http://dx.doi.org/10.1038/jcbfm.2012.126]
[8]
Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell 2015; 163: 1064-78.
[9]
Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010; 468: 562-6.
[http://dx.doi.org/10.1038/nature09513]
[10]
Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature 2010; 468: 557-61.
[http://dx.doi.org/10.1038/nature09522]
[11]
Lindqvist A. Quantitative aspects of nanodelivery across the blood- brain barrier. Uppsala: Acta Universitatis Upsaliensis 2015; p. 7.
[12]
Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2005; 2(1): 73-85.
[13]
Miller DS. Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly. Adv Cancer Res 2015; 125: 43-70.
[14]
Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J 2008; 10: 455-72.
[http://dx.doi.org/10.1208/s12248-008-9055-2]
[15]
Tuma PL, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev 2003; 83: 871-932.
[16]
Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009; 66(17): 2873-96.
[17]
Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol 2014; 71: 147-63.
[http://dx.doi.org/10.1016/bs.apha.2014.06.001]
[18]
Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3]
[19]
Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014; 81(1): 49-60.
[http://dx.doi.org/10.1016/j.neuron.2013.10.061]
[20]
Sun BL, Wang LH, Yang T, et al. Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog Neurobiol 2018; 163-164: 118-43.
[21]
Ahn JH, Cho H, Kim J-H, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019; 572(7767): 62-6.
[http://dx.doi.org/10.1038/s41586-019-1419-5]
[22]
Ha S-W, Hwang K, Jin J, et al. Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system. Int J Nanomedicine 2019; 14: 3743-52.
[23]
Lejon V, Bentivoglio M, Franco JR. Human African trypanosomiasis. Handb Clin Neurol 2013; 114: 169-81.
[24]
Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996; 93(24): 14164-9.
[http://dx.doi.org/10.1073/pnas.93.24.14164]
[25]
Omarch G, Kippie Y, Mentor S, et al. Comparative in vitro transportation of pentamidine across the blood-brain barrier using polycaprolactone nanoparticles and phosphatidylcholine liposomes. Artif Cells Nanomed Biotechnol 2019; 47: 1428-36.
[http://dx.doi.org/10.1080/21691401.2019.1596923]
[26]
Guo Q, Zhu Q, Miao T, et al. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J Control Release 2019; 203: 117-29.
[27]
Chan TG, Morse SV, Copping MJ, Choi JJ, Vilar R. Targeted delivery of DNA-Au nanoparticles across the blood-brain barrier using focused ultrasound. ChemMedChem 2018; 13: 1311-4.
[http://dx.doi.org/10.1002/cmdc.201800262]
[28]
Neha B, Ganesh B, Preeti K. Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharm Life Sci 2013; 2: 107-32.
[29]
Silva GA. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 2008; 9: 1-4.
[http://dx.doi.org/10.1186/1471-2202-9-S3-S4]
[30]
Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005; 2(4): 541-53.
[http://dx.doi.org/10.1602/neurorx.2.4.541]
[31]
Conti A, Mériaux S, Larrat B. About the Marty model of blood-brain barrier closure after its disruption using focused ultrasound. Phys Med Biol 2019; 64(14)14NT02
[http://dx.doi.org/10.1088/1361-6560/ab259d]
[32]
Kang JH, Cho J, Ko YT. Investigation on the effect of nanoparticle size on the blood-brain tumour barrier permeability by in situ perfusion via internal carotid artery in mice. J Drug Target 2019; 27(1): 103-10.
[http://dx.doi.org/10.1080/1061186X.2018.1497037]
[33]
Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019; 48: 2967-3014.
[http://dx.doi.org/10.1039/C8CS00805A]
[34]
Teleanu D, Chircov C, Grumezescu A, Volceanov A, Teleanu R. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018; 10: 269.
[35]
Liu L, Chen Q, Wen L, Li C, Qin H, Xing D. Photoacoustic therapy for precise eradication of glioblastoma with a tumor site blood-brain barrier permeability upregulating nanoparticle. Adv Funct Mater 2019; 2929(40)1904827
[36]
Kafa H, Wang JTW, Rubio N, et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J Control Release 2016; 255: 217-9.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.031]
[37]
Kafa H, Wang JTW, Rubio N, et al. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 2015; 53: 437-52.
[38]
Chen W, Ouyang J, Yi X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 2018; 30(3)1703458
[39]
Hu X, Wei Z, Mu L. Graphene oxide nanosheets at trace concentrations elicit neurotoxicity in the offspring of zebrafish. Carbon 2017; 117: 182-91.
[http://dx.doi.org/10.1016/j.carbon.2017.02.092]
[40]
Zhang H, Wang T, Qiu W, et al. Monitoring the opening and recovery of the blood-brain barrier with noninvasive molecular imaging by biodegradable ultrasmall Cu2-xSe nanoparticles. Nano Lett 2018; 18: 4985-92.
[41]
Chwalek K, Sood D, Cantley WL, White JD, Tang-Schomer M, Kaplan DL. Engineered 3D silk-collagen-based model of polarized neural tissue. J Vis Exp 2015; (105): e52970
[42]
Deng M, Huang Z, Zou Y, Yin G, Liu J, Gu J. Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides. Colloids Surf B Biointerfaces 2014; 116: 465-71.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.021]
[43]
Kim J, Ahn SI, Kim YT. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. J Ind Eng Chem 2019; 73: 8-18.
[http://dx.doi.org/10.1016/j.jiec.2019.01.021]
[44]
Wu VM, Huynh E, Tang S, Uskoković V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 2019; 88: 422-7.
[45]
Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci Rep 2019; 9: 1-9.
[http://dx.doi.org/10.1038/s41598-019-44569-6]
[46]
Cox A, Vinciguerra D, Re F, et al. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur J Pharm Biopharm 2019; 142: 70-82.
[http://dx.doi.org/10.1016/j.ejpb.2019.06.004]
[47]
Steinberg HE, Russo P, Angulo N, et al. Toward detection of toxoplasmosis from urine in mice using hydro-gel nanoparticles concentration and parallel reaction monitoring mass spectrometry. Nanomedicine 2018; 14(2): 461-9.
[http://dx.doi.org/10.1016/j.nano.2017.11.020]
[48]
Cox A, Andreozzi P, Dal Magro R, et al. Evolution of nanoparticle protein corona across the blood-brain barrier. ACS Nano 2018; 12: 7292-300.
[http://dx.doi.org/10.1021/acsnano.8b03500]
[49]
Kim KT, Lee HS, Lee JJ, et al. Nanodelivery systems for overcoming limited transportation of therapeutic molecules through the blood-brain barrier. Future Med Chem 10(22): 2659-74.
[http://dx.doi.org/10.4155/fmc-2018-0208]
[50]
Naidu PSR, Gavriel N, Gray CGG, et al. Elucidating the inability of functionalized nanoparticles to cross the blood-brain barrier and target specific cells in vivo. ACS Appl Mater Interfaces 2019; 11: 22085-95.
[51]
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2018; 270: 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015]
[52]
Wakaskar RR. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target 2018; 26: 311-8.
[http://dx.doi.org/10.1080/1061186X.2017.1367006]
[53]
Tan JPK, Voo ZX, Lim S, et al. Effective encapsulation of apomorphine into biodegradable polymeric nanoparticles through a reversible chemical bond for delivery across the blood-brain barrier. Nanomedicine 2019; 17: 236-45.
[http://dx.doi.org/10.1016/j.nano.2019.01.014]
[54]
Aguilera G, Berry CC, West RM, et al. Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood-brain barrier. Nanoscale Adv 2019; 1: 671-85.
[http://dx.doi.org/10.1039/C8NA00010G]
[55]
Bittner A, Ducray AD, Widmer HR, Stoffel MH, Mevissen M. Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood-brain barrier. Beilstein J Nanotechnol 2019; 10: 941-54.
[56]
Burns A, Self WT. Antioxidant inorganic nanoparticles and their potential applications in biomedicine.In: Smart Nanoparticles for Biomedicine 2018; pp.159-69.
[57]
Nigro A, Pellegrino M, Greco M, et al. Dealing with skin and blood-brain barriers: the unconventional challenges of mesoporous silica nanoparticles. Pharmaceutics 2018; 10: 250.
[58]
Nosrati H, Tarantash M, Bochani S, et al. Glutathione (GSH) peptide conjugated magnetic nanoparticles as blood-brain barrier shuttle for MRI-monitored brain delivery of paclitaxel. ACS Biomater Sci Eng 2019; 5: 1677-85.
[59]
Khan AM, Korzeniowska B, Gorshkov V, et al. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 2019; 13: 221-39.
[http://dx.doi.org/10.1080/17435390.2018.1540728]
[60]
Bao Q, Hu P, Xu Y, et al. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018; 12: 6794-805.
[61]
Aryal M, Papademetriou I, Zhang YZ, Power C, McDannold N, Porter T. MRI monitoring and quantification of ultrasound-mediated delivery of liposomes dually labeled with gadolinium and fluorophore through the blood-brain barrier. Ultrasound Med Biol 2019; 45: 1733-42.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.02.024]
[62]
Ingle AP, Shende S, Gupta I, et al. Metal nanoparticles in management of diseases of the central nervous system In: Kon K, Rai M, Eds The Microbiology of Central Nervous System Infections Academic Press 2018; pp. 81-98.
[http://dx.doi.org/10.1016/B978-0-12-813806-9.00005-6]
[63]
Rajendran K, Anwar A, Khan NA, Shah MR, Siddiqui R. Trans-cinnamic acid conjugated gold nanoparticles as potent therapeutics against brain-eating amoeba Naegleria fowleri. ACS Chem Neurosci 2019; 81-98.
[http://dx.doi.org/10.1021/acschemneuro.9b00111]
[64]
Betzer O, Shilo M, Motiei M, Popovtzer R. Insulin-coated gold nanoparticles as an effective approach for bypassing the blood-brain barrier. Proceedings of the Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI 108911H 2019: 52.
[http://dx.doi.org/10.1117/12.2510353]
[65]
Anwar A, Rajendran K, Siddiqui R, Raza Shah M, Khan NA. Clinically approved drugs against CNS diseases as potential therapeutic agents to target brain-eating amoebae. ACS Chem Neurosci 2019; 10: 658-6.
[http://dx.doi.org/10.1021/acschemneuro.8b00484]
[66]
Hoffmann A, Pfeil J, Mueller AK, et al. MRI of iron oxide nanoparticles and myeloperoxidase activity links inflammation to brain edema in experimental cerebral malaria. Radiology 2019; 290: 359-67.
[http://dx.doi.org/10.1148/radiol.2018181051]
[67]
Teixeira MC, Martins-Gomes C, Singh KK, Veiga FJ, Silva AM, Souto EB. Targeting of lipid/polymeric (hybrid) nanoparticles to the brain for the treatment of degenerative diseases In: Kesharwani P, Gupta U, Eds Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors Academic Press 2018; pp 147-68
[68]
Sharma G, Parchur AK, Jagtap JM, Hansen CP, Joshi A. Hybrid Nanostructures in Targeted Drug Delivery In: Bohara RA, Thorat N, Eds Hybrid Nanostructures for Cancer Theranostics Elsevier 2019; 139-58
[http://dx.doi.org/10.1016/B978-0-12-813906-6.00008-1]
[69]
He C, Li J, Cai P, et al. Two-step targeted hybrid nanoconstructs increase brain penetration and efficacy of the therapeutic antibody trastuzumab against brain metastasis of HER2-positive breast cancer. Adv Funct Mater 2018; 281705668
[70]
Tanzina HS, Chowdhury E. Recent progress in delivery of therapeutic and imaging agents utilizing organic-inorganic hybrid nanoparticles. Curr Drug Deliv 2017; 14: 485-96.
[71]
Belletti D, Grabrucker AM, Pederzoli F, et al. Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. Int J Pharm 2018; 543: 300-10.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.061]
[72]
Peralta S, Blanco S, Hernández R, et al. Synthesis and characterization of different sodium hyaluronate nanoparticles to transport large neurotherapheutic molecules through blood brain barrier after stroke. Eur Polym J 2019; 112: 433-1.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.030]
[73]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64: 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007]
[74]
Li C, Li S, Tu T, et al. Paclitaxel-loaded cholesterol-conjugated polyoxyethylene sorbitol oleate polymeric micelles for glioblastoma therapy across the blood-brain barrier. Polym Chem 2015; 6: 2740-51.
[http://dx.doi.org/10.1039/C4PY01422G]
[75]
Rad Mansoor K, Rad Sima K, Rad Soheila K. Advancement of polymer-based nanoparticles as smart drug delivery systems in neurodegenerative medicine. J Nanomed Res 2019; 8: 1-4.
[76]
Ligade PC, Jadhav KR, Kadam VJ. Brain drug delivery system: an overview. Curr Drug Ther 2010; 5(2)
[77]
Khan R, Ahmad E, Zaman M, Qadeer A, Rabbani G. Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine 2014; 9: 899.
[http://dx.doi.org/10.2147/IJN.S54171]
[78]
Cupaioli FA, Zucca FA, Boraschi D, Zecca L. Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 2014; 119-120: 20-38.
[79]
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32(8-9): 762-98.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[80]
Le Breton A, Préat V, Silva JM, Danhier F, Coco R, Ansorena E. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[81]
Chekh BOC, Ferens MV, Ostapiv DD, Samaryk VY, Varvarenko SM, Vlizlo VV. Characteristics of novel polymer based on pseudo-polyamino acids GluLa-DPG-PEG600: binding of albumin, biocompatibility, biodistribution and potential crossing the blood-brain barrier in rats. Ukr Biochem J 2017; 89: 13-21.
[http://dx.doi.org/10.15407/ubj89.04.013]
[82]
Lu Q, Cai X, Zhang X, et al. synthetic polymer nanoparticles functionalized with different ligands for receptor-mediated transcytosis across the blood-brain barrier. ACS Appl Bio Mater 2018; 1: 1687-94.
[http://dx.doi.org/10.1021/acsabm.8b00502]
[83]
Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005; 2(1): 108-19.
[http://dx.doi.org/10.1602/neurorx.2.1.108]
[84]
Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13.
[http://dx.doi.org/10.1081/DDC-120001481]
[85]
Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond) 2012; 7: 1225-33.
[http://dx.doi.org/10.2217/nnm.12.86]
[86]
Ben Zirar S, Astier A, Muchow M, Gibaud S. Comparison of nanosuspensions and hydroxypropyl-β-cyclodextrin complex of melarsoprol: pharmacokinetics and tissue distribution in mice. Eur J Pharm Biopharm 2008; 70: 649-56.
[87]
Chang J, Jallouli Y, Kroubi M, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 2009; 379: 285-92.
[88]
Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm 2007; 344: 103-9.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.023]
[89]
Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 2005; 298: 274-92.
[90]
Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 2010; 7: 1191-207.
[91]
Vinogradov SV. Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 2007; 4(1): 5-17.
[http://dx.doi.org/10.1517/17425247.4.1.5]
[92]
WHO. World malaria report 2018; 2018: 1-210.
[93]
Peixoto B, Kalei I. To characterize the neurocognitive sequelae of cerebral malaria (CM) in an adult sample of the city of Benguela, Angola. Asian Pac J Trop Biomed 2013; 3: 532-5.
[94]
White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet 2014; 383: 723-35.
[95]
Storm J, Jespersen JS, Seydel KB, et al. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol Med 2019; 11e9164
[http://dx.doi.org/10.15252/emmm.201809164]
[96]
Pais TF, Penha-Gonçalves C. Brain endothelium: the “innate immunity response hypothesis” in cerebral malaria pathogenesis. Front Immunol 2019; 9: 3100.
[97]
Tunon-Ortiz A, Lamb TJ. Blood brain barrier disruption in cerebral malaria: beyond endothelial cell activation. PLoS Pathog 2019; 15e1007786
[98]
Craig AG, Khairul MFM, Patil PR. Cytoadherence and severe malaria. Malays J Med Sci 2012; 19: 5-18.
[99]
Beeson JG, Chan J-A, Fowkes FJ. PfEMP1 as a target of human immunity and a vaccine candidate against malaria. Expert Rev Vaccines 2013; 12: 105-8.
[100]
Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol 2017; 7: 324.
[101]
Moxon CA, Wassmer SC, Milner DA, et al. Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood 2013; 122: 845-51.
[http://dx.doi.org/10.1182/blood-2013-03-490219]
[102]
Nishanth G, Schlüter D. Blood-brain barrier in cerebral malaria: pathogenesis and therapeutic intervention. Trends Parasitol Trends Parasitol 2019; 35(7): 516-28.
[http://dx.doi.org/10.1016/j.pt.2019.04.010] [PMID: 31147271]
[103]
Eugenin EA, Martiney JA, Berman JW. The malaria toxin hemozoin induces apoptosis in human neurons and astrocytes: Potential role in the pathogenesis of cerebral malaria. Brain Res 2019; 1720 146317
[104]
Storm J, Craig AG. Pathogenesis of cerebral malaria - inflammation and cytoadherence. Front Cell Infect Microbiol 2014; 4.
[105]
Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria. Microbiol Spectr 2009; 361: 455-67.
[106]
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23: 917-28.
[http://dx.doi.org/10.1038/nm.4381]
[107]
WHO. Status report on artemisinin resistance and ACT efficacy August 2018.
[108]
Rahman K, Khan SU, Fahad S, et al. Nano-biotechnology: a new approach to treat and prevent malaria. Int J Nanomedicine 2019; 14: 1401-0.
[http://dx.doi.org/10.2147/IJN.S190692]
[109]
Portnoy E, Vakruk N, Bishara A, et al. Indocyanine green liposomes for diagnosis and therapeutic monitoring of cerebral malaria. Theranostics 2016; 6: 167-76.
[110]
Waknine-Grinberg JH, Even-Chen S, Avichzer J, et al. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PLoS One 2013; 8e72722
[111]
Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 2007; 59: 935-40.
[http://dx.doi.org/10.1211/jpp.59.7.0004]
[112]
Vanka R, Kuppusamy G, Praveen Kumar S, et al. Ameliorating the in vivo antimalarial efficacy of artemether using nanostructured lipid carriers. J Microencapsul 2018; 35: 121-36.
[http://dx.doi.org/10.1080/02652048.2018.1441915]
[113]
Avnir Y, Turjeman K, Tulchinsky D, et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS One 2011; 6e25721
[114]
Zucker D, Barenholz Y. Optimization of vincristine–topotecan combination - paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release 2010; 146: 326-33.
[115]
Prasad K, Garner P. Steroids for treating cerebral malaria. Cochrane Database Syst Rev 1999; 1999(3)CD000972
[http://dx.doi.org/10.1002/14651858.CD000972]
[116]
Guo J, Waknine-Grinberg JH, Mitchell AJ, Barenholz Y, Golenser J. Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based β-methasone nanodrug. BioMed Res Int 2014; 2014 292471
[117]
Postma NS, Crommelin DJ, Eling WM, Zuidema J. Treatment with liposome-bound recombinant human tumor necrosis factor-alpha suppresses parasitemia and protects against Plasmodium berghei k173-induced experimental cerebral malaria in mice. J Pharmacol Exp Ther 1999; 288: 114-20.
[118]
Owais M, Varshney GC, Choudhury A, Chandra S, Gupta CM. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice. Antimicrob Agents Chemother 1995; 39: 180-4.
[http://dx.doi.org/10.1128/AAC.39.1.180]
[119]
Rajendran V, Singh C, Ghosh PC. Improved efficacy of doxycycline in liposomes against Plasmodium falciparum in culture and Plasmodium berghei infection in mice. Can J Physiol Pharmacol 2018; 96: 1145-52.
[http://dx.doi.org/10.1139/cjpp-2018-0067]
[120]
Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. Fishman JB 1987; 18: 299-304.
[http://dx.doi.org/10.1002/jnr.490180206]
[121]
Mishra A, Kaushik NK, Sardar M, Sahal D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B Biointerfaces 2013; 111: 713-8.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.036]
[122]
Bajpai AK, Choubey J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J Mater Sci Mater Med 2006; 17: 345-58.
[http://dx.doi.org/10.1007/s10856-006-8235-9]
[123]
Scaria PV, Chen B, Rowe CG, et al. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity. PLoS One 2017; 12 e0190312
[http://dx.doi.org/10.1371/journal.pone.0190312]
[124]
Montoya J, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363: 1965-76.
[125]
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii - induced neuronal alterations. Parasite Immunol 2015; 37: 159-70.
[126]
Antinori A, Ammassari A, Luca D, Cingolani A, Fortini M, Tartaglione T. Diagnosis of AIDS-related focal brain lesion. Neurology s 1997; 687-94.
[127]
Mahadevan A, Ramalingaiah AH, Parthasarathy S, Nath A, Ranga U, Krishna SS. Neuropathological correlate of the “concentric target sign” in MRI of HIV-associated cerebral toxoplasmosis. J Magn Reson Imaging 2013; 38(2): 488-95.
[128]
Kaplan JE, Benson C, Holmes KK, et al. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 2009; 58(RR-4): 1-207 quiz CE1-4.
[129]
Dunay IR, Heimesaat MM, Bushrab FN, et al. Atovaquone maintenance therapy prevents reactivation of toxoplasmic encephalitis in a murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 2004; 48(12): 4848-54.
[http://dx.doi.org/10.1128/AAC.48.12.4848-4854.2004]
[130]
Shubar HM, Lachenmaier S, Heimesaat MM, et al. SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood-brain barriers. J Drug Target 2011; 19: 114-24.
[http://dx.doi.org/10.3109/10611861003733995]
[131]
Hughes W, Leoung G, Kramer F, et al. Comparison of atovaquone (566c80) with trimethoprim-sulfamethoxazole to treat Pneumocystis carinii pneumonia in patients with AIDS. N Engl J Med 1993; 328: 1521-7.
[132]
Araujo FG, Huskinson J, Remington JS. Remarkable in vitro and in vivo activities of the hydroxynaphthoquinone 566C80 against tachyzoites and tissue cysts of Toxoplasma gondii. Antimicrob Agents Chemother 1991; 35(2): 293-9.
[133]
Soukupová J, Kvítek L, Panáček A, Nevěčná T, Zbořil R. Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Mater Chem Phys 2008.
[134]
Mishra PR, Shaal L. Al , Müller RH, Keck CM. Production and characterization of Hesperetin nanosuspensions for dermal delivery 2009; 111(1): 77-81.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.030]
[135]
Jong A, Huang S-H. Blood-brain barrier drug discovery for central nervous system infections. Curr Drug Targets Infect Disord 2005; 5(1): 65-72.
[http://dx.doi.org/10.2174/1568005053174672]
[136]
das Neves J. Bahia MF, Amiji MM, Sarmento B. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv 2011; 8(8): 1085-104.
[137]
Andrade F, Antunes F, Nascimento AV, et al. Chitosan formulations as carriers for therapeutic proteins. Curr Drug Discov Technol 2011; 8(3): 157-72.
[138]
Perng CY, Kearney AS, Palepu NR, Smith BR, Azzarano LM. Assessment of oral bioavailability enhancing approaches for SB-247083 using flow-through cell dissolution testing as one of the screens. Int J Pharm 2003; 250(1): 147-56.
[http://dx.doi.org/10.1016/S0378-5173(02)00521-5]
[139]
Montoya JG, Remington JS. Management of Toxoplasma gondii infection during pregnancy. Clin Infect Dis 2008; 47(4): 554-66.
[140]
Etewa SE, El-Maaty DAA, Hamza RS, et al. Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. J Parasit Dis 2018; 42: 102-3.
[http://dx.doi.org/10.1007/s12639-017-0973-8]
[141]
Koide T, Nose M, Ogihara Y, Yabu Y, Ohta N. Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull 2002; 25: 131-3.
[142]
Augusta V. Medicinal Chemistry–III 2016; 7: 801-20.
[143]
Nagajyothi F, Zhao D, Weiss LM, Tanowitz HB. Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitol Res 2012; 110: 2491-9.
[http://dx.doi.org/10.1007/s00436-011-2790-9]
[144]
Mohamed H, Michel S, Eric D. Curcuma as a parasiticidal agent: a review. Planta Med 2011; 77: 672-8.
[145]
Azami SJ, Teimouri A, Keshavarz H, et al. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice. Int J Nanomedicine 2018; 13: 7363-74.
[http://dx.doi.org/10.2147/IJN.S181896]
[146]
Baker CH, Welburn SC. Long wait for a new drug for human African trypanosomiasis. Trends Parasitol 2018; 34(10): 818-27.
[147]
Kennedy PGE. Clinical features diagnosis and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 2013; 12: 186-94.
[148]
Unciti-broceta JD, Arias JL, Maceira J, Soriano M. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog 2015; 11(6)e1004942
[http://dx.doi.org/10.1371/journal.ppat.1004942]
[149]
Kroubi M, Daulouede S, Karembe H. Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology 2010; 21(50)505102
[http://dx.doi.org/10.1088/0957-4484/21/50/505102]
[150]
Olbrich C, Gessner A, Kayser O, Müller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002; 10(5): 387-96.
[http://dx.doi.org/10.1080/1061186021000001832] [PMID: 12442809]
[151]
Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002; 10: 317-25.
[http://dx.doi.org/10.1080/10611860290031877]
[152]
Kroubi M, Karembe H, Betbeder D. Drug delivery systems in the treatment of African trypanosomiasis infections. Expert Opin Drug Deliv 2011; 8: 735-47.
[http://dx.doi.org/10.1517/17425247.2011.574122]
[153]
WHO. Taeniasis/Cysticercosis. 2019.
[154]
Gripper LB, Welburn SC. Neurocysticercosis infection and disease-a review. Acta Trop 2017; 166: 218-24.
[http://dx.doi.org/10.1016/j.actatropica.2016.11.015] [PMID: 27880878]
[155]
Garcia HH, Nash TE, Del Brutto OH. Clinical symptoms, diagnosis, and treatment of neurocysticercosis. Lancet Neurol 2014; 13: 1202-5.
[http://dx.doi.org/10.1016/S1474-4422(14)70094-8]
[156]
Garcia HH, Rodriguez S, Friedland JS. Immunology of Taenia solium taeniasis and human cysticercosis. Parasite Immunol 2014; 36: 388-96.
[157]
Del Brutto OH. Neurocysticercosis: a review. ScientificWorldJournal 2012; 2012159821
[http://dx.doi.org/10.1100/2012/159821] [PMID: 22312322]
[158]
Carpio A, Fleury A, Romo ML, Abraham R. Neurocysticercosis: the good, the bad, and the missing. Expert Rev Neurother 2018; 18(4): 289-301.
[http://dx.doi.org/10.1080/14737175.2018.1451328]
[159]
Pittella JEH. Pathology of CNS parasitic infections. Handb Clin Neurol 2013; 114: 65-88.
[http://dx.doi.org/10.1016/B978-0-444-53490-3.00005-4]
[160]
Singh SK, Prasad KN. Immunopathogenesis of neurocysticercosis: role of cytokines. Immunome Res 2015; 11(2)
[161]
Cárdenas G, Fragoso G, Rosetti M, et al. Neurocysticercosis: the effectiveness of the cysticidal treatment could be influenced by the host immunity. Med Microbiol Immunol 2014; 203(6): 373-81.
[http://dx.doi.org/10.1007/s00430-014-0345-2]
[162]
Fleury A, Dessein A, Preux P, et al. Symptomatic human neurocysticercosis. J Neurol 2004; 251(7): 830-7.
[http://dx.doi.org/10.1007/s00415-004-0437-9]
[163]
Restrepo BI, Alvarez JI, Castano JA, et al. Brain granulomas in neurocysticercosis patients are associated with a Th1 and Th2 profile. Infect Immun 2001; 69: 4554-60.
[http://dx.doi.org/10.1128/IAI.69.7.4554-4560.2001]
[164]
Alvarez JI, Colegial CH, Castaño CA, Trujillo J, Teale JM, Restrepo BI. The human nervous tissue in proximity to granulomatous lesions induced by Taenia solium metacestodes displays an active response. J Neuroimmunol 2002; 127: 139-44.
[http://dx.doi.org/10.1016/S0165-5728(02)00101-7]
[165]
Fleury A, Carrillo-Mezo R, Flisser A, Sciutto E, Corona T. Subarachnoid basal neurocysticercosis: a focus on the most severe form of the disease. Expert Rev Anti Infect Ther 2011; 9: 123-33.
[http://dx.doi.org/10.1586/eri.10.150]
[166]
Sinha S, Sharma BS. Neurocysticercosis: a review of current status and management. J Clin Neurosci 2009; 16: 867-76.
[http://dx.doi.org/10.1016/j.jocn.2008.10.030]
[167]
Vinaud MC, Ferreira CS, de Souza Lino R. Junior, Bezerra JCB. Taenia crassiceps: energetic and respiratory metabolism from cysticerci exposed to praziquantel and albendazole in vitro. Exp Parasitol 2008; 120: 221-6.
[168]
Silva LD, Lima NF, Arrua EC, Salomon CJ, Vinaud MC. In vivo treatment of experimental neurocysticercosis with praziquantel nanosuspensions - a metabolic approach. Drug Deliv Transl Res 2018; 8: 1265-73.
[169]
Silva LD, Arrúa EC, Pereira DA, et al. Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci. Acta Trop 2016; 161: 100-5.
[http://dx.doi.org/10.1016/j.actatropica.2016.06.002]
[170]
de Souza AL, Andreani T, de Oliveira RN, et al. In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the Schistosomiasis treatment. Int J Pharm 2014; 463: 31-7.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.022]
[171]
Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp, Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 2007; 50(1): 1-26.
[172]
Matin A, Siddiqui R, Jayasekera S, Khan NA. Increasing importance of Balamuthia mandrillaris. Clin Microbiol Rev 2008; 21(3): 435-48.
[http://dx.doi.org/10.1128/CMR.00056-07]
[173]
Visvesvara GS. Free-living amebae as opportunistic agents of human disease. J Neuroparasitology 2010; 1: 1-13.
[http://dx.doi.org/10.4303/jnp/N100802]
[174]
Pugh JJ, Levy RA. Naegleria fowleri: diagnosis, pathophysiology of brain inflammation, and antimicrobial treatments. ACS Chem Neurosci 2016; 7(9): 1178-9.
[175]
Xu J, Zhang S, MacHado A, et al. Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor. Sci Rep 2017; 7: 4794.
[http://dx.doi.org/10.1038/s41598-017-05184-5]
[176]
Rajendran K, Anwar A, Khan NA, Siddiqui R. Brain-Eating Amoebae: silver nanoparticle conjugation enhanced efficacy of anti-amoebic drugs against Naegleria fowleri. ACS Chem Neurosci 2017; 8: 2626-30.
[177]
Jamil Kanaani HG. Effects of cinnamic acid derivatives on in vitro growth of Plasmodium falciparum and on the permeability of the membrane of malaria-infected erythrocytes. Antimicrob Agents Chemother 1992; 36: 1102-8.
[178]
Imai H, Masayasu H, Dewar D, Graham DI, Macrae IM. Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 2001; 32(9): 2149-54.
[http://dx.doi.org/10.1161/hs0901.095725]
[179]
Nikawa T, Schuch G, Wagner G, Sies H. Interaction of ebselen with glutathione S-transferase and papain in vitro. Biochem Pharmacol 1994; 47(6): 1007-12.
[http://dx.doi.org/10.1016/0006-2952(94)90411-1]
[180]
Bender KO, Garland M, Ferreyra JA, et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 2015; 7(306)306ra148
[http://dx.doi.org/10.1126/scitranslmed.aac9103]
[181]
Scheidt K a. Roush WR, McKerrow JH, Selzer PM, Hansell E, Rosenthal PJ. Structure-based design, synthesis and evaluation of conformationally constrained cysteine protease inhibitors. Bioorg Med Chem 1998; 6(12): 2477-94.
[182]
Debnath A, Nelson AT, Silva-Olivares A, Shibayama M, Siegel D, McKerrow JH. In vitro efficacy of ebselen and BAY 11-7082 against Naegleria fowleri. Front Microbiol 2018; 9: 1-8.
[183]
Heggie TW, Küpper T. Surviving Naegleria fowleri infections: a successful case report and novel therapeutic approach. Travel Med Infect Dis 2017; 16: 49-51.
[http://dx.doi.org/10.1016/j.tmaid.2016.12.005]