Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives

Page: [2016 - 2101] Pages: 86

  • * (Excluding Mailing and Handling)

Abstract

In recent years, the synthesis and evaluation of the biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole derivatives have been the subject of a large number of studies by academia and industry. In these studies it has been shown that this large and highly differentiated class of heteroarene derivatives includes high valuable compounds having important biological and pharmacological properties such as antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer, antiviral, antihypertensive, cholesterol-lowering, antifibrotic, antiuricemic, antidiabetic, antileishmanial and antiulcer activities.

The present review with 411 references, in which we focused on the literature data published mainly from 2011 to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different molecular targets and their potential use as drugs to treat various types of diseases. Reference was also made to substantial literature data acquired before 2011 in this burgeoning research area.

Keywords: 1H-Imidazoles, drugs, inhibitors, antibacterial agents, antifungals, antivirals, anti-inflammatory agents, anticancer agents, antihypertensive agents, antiobesity agents, antileishmanial agents, synthesis, review.

Graphical Abstract

[1]
Bellina, F.; Cauteruccio, S.; Rossi, R. Synthesis and biological activity of vicinal diaryl-substituted 1H-imidazoles. Tetrahedron, 2007, 63, 4571-4624.
[http://dx.doi.org/10.1016/j.tet.2007.02.075]
[2]
Sullivan, J.D.; Giles, R.L.; Looper, R.E. 2-Aminoimidazoles from Leucetta sponges: synthesis and biology of an important pharmacophore. Curr. Bioact. Compd., 2009, 5, 39-78.
[http://dx.doi.org/10.2174/157340709787580892]
[3]
Gupta, P.; Gupta, J. K. Synthesis of bioactive imidazoles: A Review. Int. J. Mod. Chem, 2015, 7, 60-80; see also.Chem. Sci. J., 2015, 6, e100091/12.
[http://dx.doi.org/10.4172/2150-3494.100091]
[4]
Heravi, M.M.; Daraie, M.; Zadsirjan, V. Current advances in the synthesis and biological potencies of tri- and tetra-substituted 1H-imidazoles. Mol. Divers., 2015, 19(3), 577-623.
[http://dx.doi.org/10.1007/s11030-015-9590-6]
[5]
Bansal, R.; Soni, P.K.; Ahirwar, M.K.; Halve, A.K. One-pot multicomponent synthesis of some pharmacologically significant 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles: A review. Int. Res. J. Pure. Appl. Chem, 2016, 11, e24493/26.
[http://dx.doi.org/10.9734/irjpac/2016/24493]
[6]
Kamijo, S.; Yamamoto, Y. Recent progress in the catalytic synthesis of imidazoles. Chem. Asian J., 2007, 2(5), 568-578.
[http://dx.doi.org/10.1002/asia.200600418]
[7]
Bhatnagar, A.; Sharma, P.K.; Kumar, N. A Review on “imidazoles”: their chemistry and pharmacological potentials. Int. J. Pharm. Tech. Res., 2011, 3, 268-282.
[8]
Shalini, K.; Sharma, P.K.; Kumar, N. Imidazole and its biological activities: a review. Der Chemica Sinica, 2010, 1, 36-47.
[9]
Verma, A.; Joshi, S.; Singh, D. Imidazole: having versatile biological activities J. Chem, 2013, 2013, e329412/12-260.
[http://dx.doi.org/10.1155/2013/329412]
[10]
Gupta, V.; Kant, V. A Review on biological activity of imidazole and thiazole moieties and their derivatives. Sci. Int., 2013, 1, 253-260.
[http://dx.doi.org/10.17311/sciintl.2013.253.260]
[11]
Zhang, L.; Peng, X-M.; Damu, G.L.V.; Geng, R-X.; Zhou, C-H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev., 2014, 34(2), 340-437.
[http://dx.doi.org/10.1002/med.21290]
[12]
Rice, L.B. Unmet medical needs in antibacterial therapy. Biochem. Pharmacol., 2006, 71(7), 991-995.
[http://dx.doi.org/10.1016/j.bcp.2005.09.018]
[13]
Todd, A.; Worsley, A.J.; Anderson, R.J.; Groundwater, P.W. Current research and development into new antibacterial agents. Pharm. J., 2009, 283, 359-360.
[14]
Rai, J.; Randhawa, G.K.; Kaur, M. Recent advances in antibacterial drugs. Int. J. Appl. Basic Med. Res., 2013, 3(1), 3-10.
[http://dx.doi.org/10.4103/2229-516X.112229]
[15]
Kern, W.V. Neue antibiotika auf dem markt und in entwicklung. Internist (Berl.), 2015, 56(11), 1255-1263.
[http://dx.doi.org/10.1007/s00108-015-3705-0]
[16]
Jones, J.A.; Virga, K.G.; Gumina, G.; Hevener, K.E. Recent advances in the rational design and optimization of antibacterial agents. MedChemComm, 2016, 7(9), 1694-1715.
[http://dx.doi.org/10.1039/C6MD00232C]
[17]
Zala, S.P.; Ramalingam, B.; Sen, D.J.; Patel, C.N. Synthesis and biological evaluation of 2,4,5-triphenyl-1H-Imidazole-1-yl derivatives. J. Appl. Pharm. Sci., 2012, 2, 202-208.
[http://dx.doi.org/10.7324/JAPS.2012.2732]
[18]
Bahnous, M.; Bouraiou, A.; Chelghoum, M.; Bouacida, S.; Roisnel, T.; Smati, F.; Bentchouala, C.; Gros, P.C.; Belfaitah, A. Synthesis, crystal structure and antibacterial activity of new highly functionalized ionic compounds based on the imidazole nucleus. Bioorg. Med. Chem. Lett., 2013, 23(5), 1274-1278.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.004]
[19]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005]
[20]
Mal, S.K.; Bohé, L.; Achab, S. Convenient access to bis-indole alkaloids. Application to the synthesis of topsentins. Tetrahedron, 2008, 64, 5904-5914.
[http://dx.doi.org/10.1016/j.tet.2008.04.045]
[21]
Jallapally, A.; Addla, D.; Yogeeswari, P.; Sriram, D.; Kantevari, S. 2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2014, 24(23), 5520-5524.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.084]
[22]
Kantevari, S.; Addla, D.; Bagul, P.K.; Sridhar, B.; Banerjee, S.K. Synthesis and evaluation of novel 2-butyl-4-chloro-1-methylimidazole embedded chalcones and pyrazoles as angiotensin converting enzyme (ACE) inhibitors. Bioorg. Med. Chem., 2011, 19(16), 4772-4781.
[http://dx.doi.org/10.1016/j.bmc.2011.06.085]
[23]
Rajkumar, R.; Kamaraj, A.; Krishnasamy, K. Synthesis, spectral characterization and biological evaluation of novel 1-(2-(4,5-dimethyl-2-phenyl-1H-imidazol-1yl)ethyl)piperazine derivatives. J. Saudi Chem. Soc., 2014, 18, 735-743.
[http://dx.doi.org/10.1016/j.jscs.2014.08.001]
[24]
Nikalje, A.P.G.; Ghodke, M.S.; Kalam Khan, F.A.; Sangshetti, J.N. Can catalyzed onepot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents. Chin. Chem. Lett., 2015, 26, 108-112.
[http://dx.doi.org/10.1016/j.cclet.2014.10.020]
[25]
Salman, A.S.; Abdel-Aziem, A.; Alkubbat, M.J.S. Synthesis, spectroscopic characterization and antimicrobial activity of some new 2-substituted imidazole derivatives. Int. J. Org. Chem., 2015, 5, 15-28.
[26]
Salman, A.S.; Abdel-Aziem, A.; Alkubbat, M.J. Design, synthesis of some new thio-substituted imidazole and their biological activity. Am. J. Org. Chem, 2015, 5, 57-72.
[http://dx.doi.org/10.5923.j.ajoc.20150502.01.html]
[27]
Abbas, I.; Gomha, S.; Elaasser, M.; Bauomi, M. Synthesis and biological evaluation of new pyridines containing imidazole moiety as antimicrobial and anticancer agents. Turk. J. Chem., 2015, 39, 334-346.
[http://dx.doi.org/10.3906/kim-1410-25]
[28]
Dhawas, A.K.; Thakare, S.S.; Thakare, N.R. Synthesis and characterization of some new 1,4,5-trisubstituted imidazole-2-thiols derivatives. J. Chem. Pharm. Res., 2012, 4, 866-871.
[29]
Zhang, L.; Kumar, K.V.; Geng, R-X.; Zhou, C-H. Design and biological evaluation of novel quinolone-based metronidazole derivatives as potent Cu(2+) mediated DNA-targeting antibacterial agents. Bioorg. Med. Chem. Lett., 2015, 25(17), 3699-3705.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.041]
[30]
Peng, X-M.; Cai, G-X.; Zhou, C-H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr. Top. Med. Chem., 2013, 13(16), 1963-2010.
[http://dx.doi.org/10.2174/15680266113139990125]
[31]
Freeman, C.D.; Klutman, N.E.; Lamp, K.C. Metronidazole. A therapeutic review and update. Drugs, 1997, 54(5), 679-708.
[http://dx.doi.org/10.2165/00003495-199754050-00003]
[32]
Bhujanga Rao, A.K.S.; Rao, G.C.; Singh, B.B. A new high-yielding method for the preparation of 2-alkyl- and 1,2-dialkyl-4-nitro-5-bromoimidazoles. J. Org. Chem., 1992, 57, 3240-3242.
[http://dx.doi.org/10.1021/jo00037a051]
[33]
Bhujanga Rao, A.K.S.; Rao, G.C.; Singh, B.B. Novel synthesis of 4(5)-cyclic amino-5(4)-nitroimidazoles. Synth. Commun., 1994, 24, 341-351.
[http://dx.doi.org/10.1080/00397919408011193]
[34]
Sharma, A.; Kumar, V.; Kumar, S.; Pathak, D.P. Synthesis, characterization and biological evaluation of some imidazole bearing hydrazones as possible antimicrobial and anthelmintic agents. Bull. Pharm. Res., 2016, 6, 21-27.
[http://dx.doi.org/10.21276/bpr.2016.6.1.4]
[35]
Abdullayev, Y.A.; Abbasov, V.M.; Talybov, A.H.; Tagizade, Z.Y.; Kochetkov, K.A.; Marzouk, A.A.; Akhmadova, S.Z. Synthesis and antimicrobial activity of tetrasubstituted imidazoles. Processes Petrochem. Oil Ref., 2017, 18, 69-74.
[36]
Fang, Y.; Yuan, R.; Ge, W-H.; Wang, Y-J.; Liu, G-X.; Li, M-Q.; Xu, J-B.; Wan, Y.; Zhou, S-L.; Han, X-G.; Zhang, P.; Liu, J-J.; Wu, H. Synthesis and biological evaluation of 1,2,4,5-tetrasubstituted imidazoles. Res. Chem. Intermed., 2017, 43, 4413-4421.
[http://dx.doi.org/10.1007/s11164-017-2886-7]
[37]
Gupta, S.; Verma, P.; Singh, V. Synthesis and biological studies of thiol derivatives containing imidazole moiety. Indian J. Chem., 2016, 55B, 362-367.
[38]
Husain, A.; Drabu, S.; Kumar, N. Synthesis and biological screening of di- and trisubstituted imidazoles. Acta Pol. Pharm., 2009, 66(3), 243-248.
[39]
Gill, R.K.; Kumar, V.; Robijns, S.C.A.; Steenackers, H.P.L.; Van der Eycken, E.V.; Bariwal, J. Polysubstituted 2-aminoimidazoles as anti-biofilm and antiproliferative agents: Discovery of potent lead. Eur. J. Med. Chem., 2017, 138, 152-169.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.043]
[40]
Ermolat’ev, D.S.; Bariwal, J.B.; Steenackers, H.P.L.; De Keersmaecker, S.C.J.; Van der Eycken, E.V. Concise and diversity-oriented route toward polysubstituted 2-aminoimidazole alkaloids and their analogues. Angew. Chem. Int. Ed. Engl., 2010, 49(49), 9465-9468.
[http://dx.doi.org/10.1002/anie.201004256]
[41]
De Keersmaecker, S.C.J.; Varszegi, C.; van Boxel, N.; Habel, L.W.; Metzger, K.; Daniels, R.; Marchal, K.; De Vos, D.; Vanderleyden, J. Chemical synthesis of (S)-4,5-dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella typhimurium. J. Biol. Chem., 2005, 280(20), 19563-19568.
[http://dx.doi.org/10.1074/jbc.M412660200]
[42]
Rajaraman, D.; Sundararajan, G.; Loganath, N.K.; Krishnasamy, K. Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3,4-dimethoxyphenethyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies. J. Mol. Struct., 2017, 1127, 597-610.
[http://dx.doi.org/10.1016/j.molstruc.2016.08.021]
[43]
Mathias, F.; Kabri, Y.; Okdah, L.; Di Giorgio, C.; Rolain, J.-M.; Spitz, C.; Crozet, M. D.; Vanelle, P. An efficient one-pot catalyzed synthesis of 2,4- disubstituted-5-nitroimidazoles displaying antiparasitic and antibacterial activities Molecules, 2017, 22, e1278/21.
[http://dx.doi.org/10.3390/molecules22081278]
[44]
Perfect, J.R. The antifungal pipeline: a reality check. Nat. Rev. Drug Discov., 2017, 16(9), 603-616.
[http://dx.doi.org/10.1038/nrd.2017.46]
[45]
Rani, N.; Sharma, A.; Gupta, G.K.; Singh, R. Imidazoles as potential antifungal agents: a review. Mini Rev. Med. Chem., 2013, 13(11), 1626-1655.
[http://dx.doi.org/10.2174/13895575113139990069]
[46]
Saberi, A. Synthesis of novel highly potent antibacterial and antifungal agents. Asian J. Med. Pharm. Res., 2012, 1, 1-5.
[47]
Yurttaş, L.; Duran, M.; Demirayak, Ş.; Gençer, H.K.; Tunalı, Y. Synthesis and initial biological evaluation of substituted 1-phenylamino-2-thio-4,5-dimethyl-1H-imidazole derivatives. Bioorg. Med. Chem. Lett., 2013, 23(24), 6764-6768.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.024]
[48]
Lamberth, C.; Dumeunier, R.; Trah, S.; Wendeborn, S.; Godwin, J.; Schneiter, P.; Corran, A. Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 3: imidazoles. Bioorg. Med. Chem., 2013, 21(1), 127-134.
[http://dx.doi.org/10.1016/j.bmc.2012.10.052]
[49]
Lamberth, C.; Trah, S.; Wendeborn, S.; Dumeunier, R.; Courbot, M.; Godwin, J.; Schneiter, P. Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 2: pyridazines. Bioorg. Med. Chem., 2012, 20(9), 2803-2810.
[http://dx.doi.org/10.1016/j.bmc.2012.03.035]
[50]
Van Leusen, A.M.; Wildeman, J.; Oldenziel, O.H. Chemistry of sulfonylmethyl isocyanides. 12. base-induced cycloaddition of sulfonylmethyl isocyanides to C,N double bonds. synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J. Org. Chem., 1977, 42, 1153-1159.
[http://dx.doi.org/10.1021/jo00427a012]
[51]
Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol., 2015, 69, 71-92.
[http://dx.doi.org/10.1146/annurev-micro-091014-104330]
[52]
White, T.C.; Marr, K.A.; Bowden, R.A. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev., 1998, 11(2), 382-402.
[http://dx.doi.org/10.1128/CMR.11.2.382]
[53]
Çevik, U.A.; Levent, S.; Özkay, Y.; Karaca, H.; Cantürk, Z.; Tunali, Y.; Uçucu, Ü. Microwave assisted synthesis of some 1,2,4,5-tetrasubstituted imidazole derivatives as antimicrobial agents. Eur. Int. J. Sci. Technol., 2016, 5, 59-76.
[54]
Bagheri, H.; Simiand, E.; Montastruc, J-L.; Magnaval, J-F. Adverse drug reactions to anthelmintics. Ann. Pharmacother., 2004, 38(3), 383-388.
[http://dx.doi.org/10.1345/aph.1D325]
[55]
Shalaby, H.A. Anthelmintics resistance; How to overcome it? Iran. J. Parasitol., 2013, 8(1), 18-32.
[56]
Turrens, J.F.; Watts, B.P., Jr; Zhong, L.; Docampo, R. Inhibition of Trypanosoma cruzi and T. brucei NADH fumarate reductase by benznidazole and anthelmintic imidazole derivatives. Mol. Biochem. Parasitol., 1996, 82(1), 125-129.
[http://dx.doi.org/10.1016/0166-6851(96)02722-3]
[57]
Dahiya, R.; Kumar, A. Synthesis, spectral and anthelmintic activity studies on some novel imidazole derivatives. E-J. Chem., 2008, 5, 1133-1143.
[http://dx.doi.org/10.1155/2008/161783]
[58]
Dutta, S. Synthesis and anthelmintic activity of some novel 2-substituted-4,5-diphenyl imidazoles. Acta Pharm., 2010, 60(2), 229-235.
[http://dx.doi.org/10.2478/v10007-010-0011-1]
[59]
Lakshmanan, B.; Mazumder, P.M.; Sasmal, D.; Ganguly, S.; Jena, S.S. In vitro anthelmintic activity of some 1-substituted imidazole derivatives. Acta Parasitol. Globalis, 2011, 2, 1-5.
[60]
Liu, G-L.; Hu, Y.; Chen, X-H.; Wang, G-X.; Ling, F. Synthesis and anthelmintic activity of coumarin-imidazole hybrid derivatives against Dactylogyrus intermedius in goldfish. Bioorg. Med. Chem. Lett., 2016, 26(20), 5039-5043.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.090]
[61]
Sharma, A.; Kumar, V.; Kumar, S.; Pathak, D.P. Synthesis, characterization and biological evaluation of some imidazole bearing thiazolidin-4-ones as possible antimicrobial and anthelmintic agents. Curr. Chem. Biol., 2016, 9, 113-122.
[http://dx.doi.org/10.2174/2212796810666160128200129]
[62]
Rocha, J.A.; Andrade, I.M.; Véras, L.M.C.; Quelemes, P.V.; Lima, D.F.; Soares, M.J.S.; Pinto, P.L.S.; Mayo, S.J.; Ivanova, G.; Rangel, M.; Correia, M.; Mafud, A.C.; Mascarenhas, Y.P.; Delerue-Matos, C.; de Moraes, J.; Eaton, P.; Leite, J.R.S.A. Anthelmintic, antibacterial and cytotoxicity activity of imidazole alkaloids from Pilocarpus microphyllus leaves. Phytother. Res., 2017, 31(4), 624-630.
[http://dx.doi.org/10.1002/ptr.5771]
[63]
Kharb, R.; Sharma, P.C.; Bhandari, A.; Shahar Yar, M. Synthesis, spectral characterization and anthelmintic evaluation of some novel imidazole bearing triazole derivatives. Der Pharm. Lett., 2012, 4, 652-657.
[64]
Mohammed, M.; Arul, K.; Anjana, A.K.; Remya, K. Synthesis, docking studies and pharmacological evaluation of imidazole analogues of arecoline. Int. J. Curr. Pharm. Res., 2014, 6, 22-26.
[65]
Ab Rahman, N.N.N.; Sarker, M.Z.I.; Setianto, W.B.; Omar, F.M.; Akanda, M.J.H.; Kadir, M.O.A. Optimization of arecoline extraction from areca nut using supercritical carbon dioxide. Yao Wu Shi Pin Fen Xi. Yao Wu Shi Pin Fen Xi, 2010, 18, 1-7.
[66]
Chavan, Y.V.; Singhal, R.S. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols. J. Sci. Food Agric., 2013, 93(10), 2580-2589.
[http://dx.doi.org/10.1002/jsfa.6081]
[67]
Malvezzi, M.; Carioli, G.; Bertuccio, P.; Boffetta, P.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2017, with focus on lung cancer. Ann. Oncol., 2017, 28(5), 1117-1123.
[http://dx.doi.org/10.1093/annonc/mdx033]
[68]
Ali, R.; Mirza, Z.; Ashraf, G.M.D.; Kamal, M.A.; Ansari, S.A.; Damanhouri, G.A.; Abuzenadah, A.M.; Chaudhary, A.G.; Sheikh, I.A. New anticancer agents: recent developments in tumor therapy. Anticancer Res., 2012, 32(7), 2999-3005.
[69]
Rana, A.; Alex, J.M.; Chauhan, M.; Joshi, G.; Kumar, R. A review on pharmacophoric designs of antiproliferative agents. Med. Chem. Res., 2014, 24, 903-920.
[http://dx.doi.org/10.1007/s00044-014-1196-5]
[70]
Lu, D-Y.; Lu, T-R.; Zhu, H.; Ding, J.; Xu, B. Anticancer drug development, getting out from bottleneck. Med. Chem. (Los Angeles), 2017, 7, 739-744.
[http://dx.doi.org/10.4172/2161-0444.1000423]
[71]
Iradyan, M.A.; Iradyan, N.S.; Arsenyan, F.G.; Stepanyan, G.M. Imidazole derivatives and their antitumor activity. Pharm. Chem. J., 2009, 43, 439-443.
[http://dx.doi.org/10.1007/s11094-009-0333-9]
[72]
Baroniya, S.; Anwer, Z.; Sharma, P.K.; Dudhe, R.; Kumar, N. Recent advancement in imidazole as anti-cancer agents: A review. Pharm. Sin., 2010, 1, 172-182.
[73]
Torres, F.C.; García-Rubiño, M.E.; Lozano-López, C.; Kawano, D.F.; Eifler-Lima, V.L.; von Poser, G.L.; Campos, J.M. Imidazoles and benzimidazoles as tubulin-modulators for anti-cancer therapy. Curr. Med. Chem., 2015, 22(11), 1312-1323.
[http://dx.doi.org/10.2174/0929867322666150114164032]
[74]
Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. MedChemComm, 2017, 8(9), 1742-1773.
[http://dx.doi.org/10.1039/C7MD00067G]
[75]
Özkay, Y.; Işikdağ, I.; İncesu, Z.; Akalin, G. Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity. Eur. J. Med. Chem., 2010, 45(8), 3320-3328.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.015]
[76]
Duran, M.; Demirayak, Ş. Synthesis of 2-[4,5-dimethyl-1-(phenylamino)-1H-imidazol-2-ylthio]-N-(thiazole-2-yl) acetamide derivatives and their anticancer activities. Med. Chem. Res., 2012, 22, 4110-4124.
[http://dx.doi.org/10.1007/s00044-012-0411-5]
[77]
Zav’yalov, S.I.; Kravchenko, N.E.; Ezhova, G.I.; Kulikova, L.B.; Zavozin, A.G.; Dorofeeva, O.V. Synthesis of 2-aminothiazole derivatives. Pharm. Chem. J., 2007, 41, 105-108.
[http://dx.doi.org/10.1007/s11094-007-0023-4]
[78]
Koti, R.S.; Kolavi, G.D.; Hegde, V.S.; Khazi, I.M. Intramolecular amidation: Synthesis of novel thiazole-fused diazepinones. Synth. Commun., 2007, 37, 99-105.
[http://dx.doi.org/10.1080/00397910600978481]
[79]
Singh, N.; Sharma, U.S.; Sutar, N.; Kumar, S.; Sharma, U.K. Synthesis and antimicrobial activity of some novel 2-amino thiazole derivatives. J. Chem. Pharm. Res., 2010, 2, 691-698.
[80]
Sharma, G.K.; Sharma, N.K.; Pathak, D. Microwave irradiated synthesis of some substituted imidazole derivatives as potential antibacterial and anticancer agents. Indian J. Chem., 2013, 52B, 266-272.
[81]
Sharma, G.V.M.; Ramesh, A.; Singh, A.; Srikanth, G.; Jayaram, V.; Duscharla, D.; Jun, J.H.; Ummanni, R.; Malhotra, S.V. Imidazole derivatives show anticancer potential by inducing apoptosis and cellular senescence. MedChemComm, 2014, 5, 1751-1760.
[http://dx.doi.org/10.1039/C4MD00277F]
[82]
Bendgude, R.D.; Kondawar, M.S. Anticancer studies of novel 2-iodo-4-hydroxymethyl-1,5-diphenyl substituted-1H-imidazole derivatives. Eur. J. Biomed. Pharm. Sci., 2016, 3, 204-207.
[83]
Chen, R. MTT assay of cell numbers after drug/toxin treatment. Bio. Protoc, 2011, 1, e51/2.
[http://dx.doi.org/10.21769/bioprotoc.51]
[84]
Bendgude, R.D.; Kondawar, M.S. Anticancer studies of novel 2,4-disubstituted-1,5-diphenyl-1H-imidazole derivatives. Int. Res. J. Pharm., 2016, 7, 19-22.
[http://dx.doi.org/10.7897/2230-8407.0710116]
[85]
Bendgude, R.D.; Kondawar, M.S. Synthesis and molecular modeling studies of novel 2,4-disubstituted-1,5-diphenyl-1H-imidazole derivatives as potential anti-tubercular agents. Curr. Bioact. Compd., 2017, 13, 244-258.
[http://dx.doi.org/10.2174/1573407212666160804122247]
[86]
Cornec, A-S.; Monti, L.; Kovalevich, J.; Makani, V.; James, M.J.; Vijayendran, K.G.; Oukoloff, K.; Yao, Y.; Lee, V.M.Y.; Trojanowski, J.Q.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Multitargeted imidazoles: potential therapeutic leads for Alzheimer’s and other neurodegenerative diseases. J. Med. Chem., 2017, 60(12), 5120-5145.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00475]
[87]
Fukushima, N.; Furuta, D.; Hidaka, Y.; Moriyama, R.; Tsujiuchi, T. Post-translational modifications of tubulin in the nervous system. J. Neurochem., 2009, 109(3), 683-693.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06013.x]
[88]
Hogendorf, A.S.; Hogendorf, A.; Kurczab, R.; Satała, G.; Lenda, T.; Walczak, M.; Latacz, G.; Handzlik, J.; Kieć-Kononowicz, K.; Wierońska, J. M.; Woźniak, M.; Cieślik, P.; Bugno, R.; Staroń, J.; Bojarski, A. J. Lowbasicity 5-HT7 receptor agonists synthesized using the van leusen multicomponent protocol Sci. Rep, 2017, 7, e1444/15.
[http://dx.doi.org/10.1038/s41598-017-00822-4]
[89]
Koswatta, P.B.; Lovely, C.J. Structure and synthesis of 2-aminoimidazole alkaloids from Leucetta and Clathrina sponges. Nat. Prod. Rep., 2011, 28(3), 511-528.
[http://dx.doi.org/10.1039/C0NP00001A]
[90]
Žula, A.; Kikelj, D.; Ilaš, J. 2-Aminoimidazoles in medicinal chemistry. Mini Rev. Med. Chem., 2013, 13(13), 1921-1943.
[http://dx.doi.org/10.2174/1389557511313130007]
[91]
Copp, B.R.; Fairchild, C.R.; Cornell, L.; Casazza, A.M.; Robinson, S.; Ireland, C.M. Naamidine A is an antagonist of the epidermal growth factor receptor and an in vivo active antitumor agent. J. Med. Chem., 1998, 41(20), 3909-3911.
[http://dx.doi.org/10.1021/jm980294n]
[92]
Gong, K.-K.; Tang, X.-L.; Liu, Y.-S.; Li, P.-L.; Li, G.-Q. Imidazole alkaloids from the south china sea sponge Pericharax heteroraphis and their cytotoxic and antiviral activities. Molecules, 2016, 21, e150/8.
[http://dx.doi.org/10.3390/molecules21020150]
[93]
James, R.D.; Jones, D.A.; Aalbersberg, W.; Ireland, C.M. Naamidine A intensifies the phosphotransferase activity of extracellular signal-regulated kinases causing A-431 cells to arrest in G1. Mol. Cancer Ther., 2003, 2(8), 747-751.
[94]
LaBarbera, D.V.; Modzelewska, K.; Glazar, A.I.; Gray, P.D.; Kaur, M.; Liu, T.; Grossman, D.; Harper, M.K.; Kuwada, S.K.; Moghal, N.; Ireland, C.M. The marine alkaloid naamidine A promotes caspase-dependent apoptosis in tumor cells. Anticancer Drugs, 2009, 20(6), 425-436.
[http://dx.doi.org/10.1097/CAD.0b013e32832ae55f]
[95]
Ohta, S.; Tsuno, N.; Nakamura, S.; Taguchi, N.; Yamashita, M.; Kawasaki, I.; Fujieda, M. Total syntheses of naamine A and naamidine A, marine imidazole alkaloids. Heterocycles, 2000, 53, 1939-1955.
[http://dx.doi.org/10.3987/COM-00-8952]
[96]
Aberle, N.S.; Lessene, G.; Watson, K.G. A concise total synthesis of naamidine A. Org. Lett., 2006, 8(3), 419-421.
[http://dx.doi.org/10.1021/ol052568o]
[97]
Gibbons, J.B.; Salvant, J.M.; Vaden, R.M.; Kwon, K-H.; Welm, B.E.; Looper, R.E. Synthesis of naamidine A and selective access to N2-acyl-2-aminoimidazole analogues. J. Org. Chem., 2015, 80(20), 10076-10085.
[http://dx.doi.org/10.1021/acs.joc.5b01703]
[98]
Aberle, N.; Catimel, J.; Nice, E.C.; Watson, K.G. Synthesis and biological evaluation of analogues of the anti-tumor alkaloid naamidine A. Bioorg. Med. Chem. Lett., 2007, 17(13), 3741-3744.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.017]
[99]
Witchard, H.M.; Watson, K.G. Synthesis of 5-amino-3-methylimidazolidine-2,4-dione and 1,3,5-triazine derivatives as analogues of the alkaloids naamidine A and G. Synthesis, 2010, 2010, 4312-4316.
[http://dx.doi.org/10.1055/s-0030-1258963]
[100]
Carmely, S.; Kashman, Y. Naamines and naamidines, novel imidazole alkaloids from the calcareous sponge Leucetta chagosensis. Tetrahedron Lett., 1987, 28, 3003-3006.
[http://dx.doi.org/10.1016/S0040-4039(00)96268-3]
[101]
Hassan, W.; Edrada, R.; Ebel, R.; Wray, V.; Berg, A.; van Soest, R.; Wiryowidagdo, S.; Proksch, P. New imidazole alkaloids from the Indonesian sponge Leucetta chagosensis. J. Nat. Prod., 2004, 67(5), 817-822.
[http://dx.doi.org/10.1021/np0305223]
[102]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT Assay.Cancer Cell Culture: Methods Protocols 2e; Humana Press, 2011, Vol. 731, pp. 237-245.
[103]
Tsukamoto, S.; Kawabata, T.; Kato, H.; Ohta, T.; Rotinsulu, H.; Mangindaan, R.E.; van Soest, R.W.; Ukai, K.; Kobayashi, H.; Namikoshi, M. Naamidines H and I, cytotoxic imidazole alkaloids from the Indonesian marine sponge Leucetta chagosensis. J. Nat. Prod., 2007, 70(10), 1658-1660.
[http://dx.doi.org/10.1021/np070246i]
[104]
Mancini, I.; Guella, G.; Debitus, C.; Pietra, F. Novel naamidine-type alkaloids and mixed-ligand zinc(II) complexes from a calcareous sponge, Leucetta sp. of the coral sea. Helv. Chim. Acta, 1995, 78, 1178-1184.
[http://dx.doi.org/10.1002/hlca.19950780511]
[105]
Koswatta, P.B.; Lovely, C.J. Total syntheses of naamidine G and 14- methoxynaamidine G. Tetrahedron Lett., 2010, 51, (1), 164-166.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.117] [PMID: 20161552]
[106]
Koswatta, P.B.; Lovely, C.J. Expedient total syntheses of preclathridine a and clathridine A. Tetrahedron Lett., 2009, 50, 4998-5000.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.088]
[107]
Koswatta, P.B.; Lovely, C.J. Concise total synthesis of naamine G and naamidine H. Chem. Commun. (Camb.), 2010, 46(12), 2148-2150.
[http://dx.doi.org/10.1039/b926285g]
[108]
Lovely, C.J.; Du, H.; Sivappa, R.; Bhandari, M.R.; He, Y.; Dias, H.V.R. Preparation and Diels-Alder chemistry of 4-vinylimidazoles. J. Org. Chem., 2007, 72(10), 3741-3749.
[http://dx.doi.org/10.1021/jo0626008]
[109]
Bhandari, M.R.; Sivappa, R.; Lovely, C.J. Total synthesis of the putative structure of nagelamide D. Org. Lett, 2009, 11(7), 1535-1538.
[http://dx.doi.org/10.1021/ol9001762] [PMID: 19278243]
[110]
Koswatta, P.B.; Kasiri, S.; Das, J.K.; Bhan, A.; Lima, H.M.; Garcia-Barboza, B.; Khatibi, N.N.; Yousufuddin, M.; Mandal, S.S.; Lovely, C.J. Total synthesis and cytotoxicity of Leucetta alkaloids. Bioorg. Med. Chem., 2017, 25(5), 1608-1621.
[http://dx.doi.org/10.1016/j.bmc.2017.01.024]
[111]
Zhang, X.; Wang, K.; Sheng, H.; Li, T.; Chen, G.; Chen, F.; Wang, Q.; Cheng, Z.; Wang, Z.; Han, Z. IRTKS suppresses p53 activity through promoting MDM2 mediated p53 monoubiquitination. Cancer Res., 2010, 70, 1008.
[http://dx.doi.org/10.1158/1538-7445.am10-1008]
[112]
Wang, S.; Zhao, Y.; Bernard, D.; Aguilar, A.; Kumar, S. Targeting the MDM2-p53 protein protein interaction for new cancer therapeutics. Top. Med. Chem., 2012, 8, 57-79.
[http://dx.doi.org/10.1007/978-3-642-28965-1_2]
[113]
Fotouhi, N.; Graves, B. Small molecule inhibitors of p53/MDM2 interaction. Curr. Top. Med. Chem., 2005, 5(2), 159-165.
[http://dx.doi.org/10.2174/1568026053507705]
[114]
Vu, B.T.; Vassilev, L. Small-molecule inhibitors of the p53-MDM2 interaction. In:. Small Molecule Inhibitors of Protein-Protein Interactions, Vassilev, L.; Fry, D., Eds.; Springer: Berlin, Heidelberg. 2010, 348, pp. 151-172.
[http://dx.doi.org/10.1007/82_2010_110]
[115]
Nayak, S.K.; Khatik, G.L.; Narang, R.; Monga, V.; Chopra, H.K. p53-Mdm2 interaction inhibitors as novel nongenotoxic anticancer agents. Curr. Cancer Drug Targets, 2018, 18(8), 749-772.
[http://dx.doi.org/10.2174/1568009617666170623111953]
[116]
Zhao, Y.; Aguilar, A.; Bernard, D.; Wang, S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J. Med. Chem., 2015, 58(3), 1038-1052.
[http://dx.doi.org/10.1021/jm501092z]
[117]
Furet, P.; Chène, P.; De Pover, A.; Valat, T.S.; Lisztwan, J.H.; Kallen, J.; Masuya, K. The central valine concept provides an entry in a new class of non peptide inhibitors of the p53-MDM2 interaction. Bioorg. Med. Chem. Lett., 2012, 22(10), 3498-3502.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.083]
[118]
Dudek, J.M.; Horton, R.A. TR-FRET biochemical assays for detecting posttranslational modifications of p53. J. Biomol. Screen., 2010, 15(5), 569-575.
[http://dx.doi.org/10.1177/1087057110365898]
[119]
Vaupel, A.; Bold, G.; De Pover, A.; Stachyra-Valat, T.; Lisztwan, J.H.; Kallen, J.; Masuya, K.; Furet, P. Tetra-substituted imidazoles as a new class of inhibitors of the p53-MDM2 interaction. Bioorg. Med. Chem. Lett., 2014, 24(9), 2110-2114.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.039]
[120]
Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: a randomized controlled trial. celecoxib long-term arthritis safety study. JAMA, 2000, 284(10), 1247-1255.
[http://dx.doi.org/10.1001/jama.284.10.1247]
[121]
Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; Kvien, T.K.; Schnitzer, T.J. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N. Engl. J. Med., 2000, 343(21), 1520-1528.
[http://dx.doi.org/10.1056/NEJM200011233432103]
[122]
Kimmey, M.B. NSAID, ulcers, and prostaglandins. J. Rheumatol. Suppl., 1992, 36, 68-73.
[123]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24(2), 121-132.
[http://dx.doi.org/10.1016/j.bpg.2009.11.005]
[124]
Chen, Z.; Gibson, T.B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.; Wright, A.; Vanderbilt, C.; Cobb, M.H. MAP kinases. Chem. Rev., 2001, 101(8), 2449-2476.
[http://dx.doi.org/10.1021/cr000241p]
[125]
Lee, J.C.; Kumar, S.; Griswold, D.E.; Underwood, D.C.; Votta, B.J.; Adams, J.L. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology, 2000, 47(2-3), 185-201.
[http://dx.doi.org/10.1016/S0162-3109(00)00206-X]
[126]
Amir, M.; Somakala, K.; Ali, S. p38 MAP kinase inhibitors as anti inflammatory agents. Mini Rev. Med. Chem., 2013, 13(14), 2082-2096.
[http://dx.doi.org/10.2174/13895575113136660098]
[127]
Loeser, R.F.; Erickson, E.A.; Long, D.L. Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. Curr. Opin. Rheumatol., 2008, 20(5), 581-586.
[http://dx.doi.org/10.1097/BOR.0b013e3283090463]
[128]
Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta, 2007, 1773(8), 1358-1375.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.010]
[129]
Shah, N.G.; Tulapurkar, M.E.; Ramarathnam, A.; Brophy, A.; Martinez, R., III; Hom, K.; Hodges, T.; Samadani, R.; Singh, I.S.; MacKerell, A.D., Jr; Shapiro, P.; Hasday, J.D. Novel noncatalytic substrate-selective p38α-specific MAPK inhibitors with endothelial-stabilizing and anti-inflammatory activity. J. Immunol., 2017, 198(8), 3296-3306.
[http://dx.doi.org/10.4049/jimmunol.1602059]
[130]
Igea, A.; Nebreda, A.R. The stress kinase p38α as a target for cancer therapy. Cancer Res., 2015, 75(19), 3997-4002.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0173]
[131]
Scior, T.; Domeyer, D.M.; Cuanalo-Contreras, K.; Laufer, S.A. Pharmacophore design of p38α MAP kinase inhibitors with either 2,4,5-trisubstituted or 1,2,4,5-tetrasubstituted imidazole scaffold. Curr. Med. Chem., 2011, 18(10), 1526-1539.
[http://dx.doi.org/10.2174/092986711795328409]
[132]
Laufer, L.S.; Margutti, S.; Hauser, D. Medicinal chemistry approaches for the inhibition of the p38 MAPK pathway. In: Protein Kinases as Drug Targets, Klebl, B.; Mueller, G.; Hamacher, M., Eds.; Wiley-VCH . 2011, pp. 271-304.
[http://dx.doi.org/10.1002/9783527633470.ch9]
[133]
Müller, S.; Knapp, S. Targeting kinases for the treatment of inflammatory diseases. Expert Opin. Drug Discov., 2010, 5(9), 867-881.
[http://dx.doi.org/10.1517/17460441.2010.504203]
[134]
Schindler, J.F.; Monahan, J.B.; Smith, W.G. p38 pathway kinases as anti-inflammatory drug targets. J. Dent. Res., 2007, 86(9), 800-811.
[http://dx.doi.org/10.1177/154405910708600902]
[135]
Kumar, S.; Boehm, J.; Lee, J.C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov., 2003, 2(9), 717-726.
[http://dx.doi.org/10.1038/nrd1177]
[136]
Kong, T-T.; Zhang, C-M.; Liu, Z-P. Recent developments of p38α MAP kinase inhibitors as antiinflammatory agents based on the imidazole scaffolds. Curr. Med. Chem., 2013, 20(15), 1997-2016.
[http://dx.doi.org/10.2174/0929867311320150006]
[137]
Laufer, S.A.; Zimmermann, W.; Ruff, K.J. Tetrasubstituted imidazole inhibitors of cytokine release: probing substituents in the N-1 position. J. Med. Chem., 2004, 47(25), 6311-6325.
[http://dx.doi.org/10.1021/jm0496584]
[138]
Laufer, S.A.; Hauser, D.R.J.; Domeyer, D.M.; Kinkel, K.; Liedtke, A.J. Design, synthesis, and biological evaluation of novel tri- and tetrasubstituted imidazoles as highly potent and specific ATP-mimetic inhibitors of p38 MAP kinase: focus on optimized interactions with the enzyme’s surface-exposed front region. J. Med. Chem., 2008, 51(14), 4122-4149.
[http://dx.doi.org/10.1021/jm701529q]
[139]
Ziegler, K.; Hauser, D.R.J.; Unger, A.; Albrecht, W.; Laufer, S.A. 2-Acylaminopyridin-4-ylimidazoles as p38 MAP kinase inhibitors: design, synthesis, and biological and metabolic evaluations. ChemMedChem, 2009, 4(11), 1939-1948.
[http://dx.doi.org/10.1002/cmdc.200900242]
[140]
Laufer, S.; Hauser, D.; Stegmiller, T.; Bracht, C.; Ruff, K.; Schattel, V.; Albrecht, W.; Koch, P. Tri- and tetrasubstituted imidazoles as p38α mitogen-activated protein kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(22), 6671-6675.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.012]
[141]
Seerden, J-P.G.; Leusink-Ionescu, G.; Leguijt, R.; Saccavini, C.; Gelens, E.; Dros, B.; Woudenberg-Vrenken, T.; Molema, G.; Kamps, J.A.A.M.; Kellogg, R.M. Syntheses and structure-activity relationships for some triazolyl p38α MAPK inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(5), 1352-1357.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.034]
[142]
Seerden, J-P.G.; Leusink-Ionescu, G.; Woudenberg-Vrenken, T.; Dros, B.; Molema, G.; Kamps, J.A.A.M.; Kellogg, R.M. Synthesis and structure-activity relationships of 4-fluorophenyl-imidazole p38α MAPK, CK1δ and JAK2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(15), 3412-3418.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.080]
[143]
Albrecht, W.; Unger, A.; Bauer, S.M.; Laufer, S.A. Discovery of N-4-[5-(4-fluorophenyl)-3-methyl-2-methylsulfanyl-3H-imidazol-4-yl]-pyridin-2-yl-acetamide (CBS-3595), a dual p38α MAPK/PDE-4 inhibitor with activity against TNFα-related diseases. J. Med. Chem., 2017, 60, 5290-5305.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01647]
[144]
Cuenda, A.; Rouse, J.; Doza, Y.N.; Meier, R.; Cohen, P.; Gallagher, T.F.; Young, P.R.; Lee, J.C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett., 1995, 364(2), 229-233.
[http://dx.doi.org/10.1016/0014-5793(95)00357-F]
[145]
Kumar, S.; Jiang, M.S.; Adams, J.L.; Lee, J.C. Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem. Biophys. Res. Commun., 1999, 263(3), 825-831.
[http://dx.doi.org/10.1006/bbrc.1999.1454]
[146]
Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radić, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. Engl., 2002, 41(6), 1053-1057.
[http://dx.doi.org/10.1002/1521-3773(20020315)41:6<1053:aid-anie1053>3.0.co;2-4]
[147]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7]
[148]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:aid-anie2004>3.3.co;2-x]
[149]
Bellina, F.; Cauteruccio, S.; Di Fiore, A.; Rossi, R. Regioselective synthesis of 4,5-diaryl-1-methyl-1H-imidazoles including highly cytotoxic derivatives by Pd-catalyzed direct C5 arylation of 1-methyl-1H-imidazole with aryl bromides. Eur. J. Org. Chem., 2008, 2008, 5436-5445.
[http://dx.doi.org/10.1002/ejoc.200800738]
[150]
Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Nickel-catalyzed direct alkynylation of azoles with alkynyl bromides. Org. Lett., 2009, 11(18), 4156-4159.
[http://dx.doi.org/10.1021/ol901684h]
[151]
Behrend, L.; Milne, D.M.; Stöter, M.; Deppert, W.; Campbell, L.E.; Meek, D.W.; Knippschild, U. IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene, 2000, 19(47), 5303-5313.
[http://dx.doi.org/10.1038/sj.onc.1203939]
[152]
Steinhilber, D. 5-Lipoxygenase: a target for antiinflammatory drugs revisited. Curr. Med. Chem., 1999, 6(1), 71-85.
[153]
Steinhilber, D.; Hofmann, B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol., 2014, 114(1), 70-77.
[http://dx.doi.org/10.1111/bcpt.12114]
[154]
Batt, D.G. 5-lipoxygenase inhibitors and their anti-inflammatory activities. Prog. Med. Chem., 1992, 29, 1-63.
[http://dx.doi.org/10.1016/S0079-6468(08)70004-3]
[155]
Lemurell, M.; Ulander, J.; Winiwarter, S.; Dahlén, A.; Davidsson, Ö.; Emtenäs, H.; Broddefalk, J.; Swanson, M.; Hovdal, D.; Plowright, A.T.; Pettersen, A.; Rydén-Landergren, M.; Barlind, J.; Llinas, A.; Herslöf, M.; Drmota, T.; Sigfridsson, K.; Moses, S.; Whatling, C. Discovery of AZD6642, an inhibitor of 5-lipoxygenase activating protein (FLAP) for the treatment of inflammatory diseases. J. Med. Chem., 2015, 58(2), 897-911.
[http://dx.doi.org/10.1021/jm501531v]
[156]
Boudreau, L. H.; Lassalle-Claux, G.; Cormier, M.; Blanchard, S.; Doucet, M. S.; Surette, M. E.; Touaibia, M. New hydroxycinnamic acid esters as novel 5-lipoxygenase inhibitors that affect leukotriene biosynthesis. Mediators Inflam, 2017, 2017, e6904634/12.
[http://dx.doi.org/10.1155/2017/6904634]
[157]
Nieves, A.; Garza, L.A. Does prostaglandin D2 hold the cure to male pattern baldness? Exp. Dermatol., 2014, 23(4), 224-227.
[http://dx.doi.org/10.1111/exd.12348]
[158]
Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin. Immunol., 2006, 119(3), 229-240.
[http://dx.doi.org/10.1016/j.clim.2006.01.016]
[159]
Ohnishi, H.; Miyahara, N.; Gelfand, E.W. The role of leukotriene B4 in allergic diseases. Allergol. Int., 2008, 57(4), 291-298.
[http://dx.doi.org/10.2332/allergolint.08-RAI-0019]
[160]
North, R.A. Molecular physiology of P2X receptors. Physiol. Rev., 2002, 82(4), 1013-1067.
[http://dx.doi.org/10.1152/physrev.00015.2002]
[161]
Jacobson, K.A.; Jarvis, M.F.; Williams, M. Purine and pyrimidine (P2) receptors as drug targets. J. Med. Chem., 2002, 45(19), 4057-4093.
[http://dx.doi.org/10.1021/jm020046y]
[162]
Kahlenberg, J.M.; Dubyak, G.R. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am. J. Physiol. Cell Physiol., 2004, 286(5), C1100-C1108.
[http://dx.doi.org/10.1152/ajpcell.00494.2003]
[163]
Ferrari, D.; Pizzirani, C.; Adinolfi, E.; Lemoli, R.M.; Curti, A.; Idzko, M.; Panther, E.; Di Virgilio, F. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol., 2006, 176(7), 3877-3883.
[http://dx.doi.org/10.4049/jimmunol.176.7.3877]
[164]
Romagnoli, R.; Baraldi, P.G.; Cruz-Lopez, O.; Lopez-Cara, C.; Preti, D.; Borea, P.A.; Gessi, S. The P2X7 receptor as a therapeutic target. Expert Opin. Ther. Targets, 2008, 12(5), 647-661.
[http://dx.doi.org/10.1517/14728222.12.5.647]
[165]
Carroll, W.A.; Donnelly-Roberts, D.; Jarvis, M.F. Selective P2X7 receptor antagonists for chronic inflammation and pain. Purinergic Signal., 2009, 5(1), 63-73.
[http://dx.doi.org/10.1007/s11302-008-9110-6]
[166]
Bartlett, R.; Stokes, L.; Sluyter, R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol. Rev., 2014, 66(3), 638-675.
[http://dx.doi.org/10.1124/pr.113.008003]
[167]
Park, J-H.; Kim, Y-C. P2X7 receptor antagonists: a patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(3), 257-267.
[http://dx.doi.org/10.1080/13543776.2017.1246538]
[168]
Gleave, R.J.; Walter, D.S.; Beswick, P.J.; Fonfria, E.; Michel, A.D.; Roman, S.A.; Tang, S-P. Synthesis and biological activity of a series of tetrasubstituted-imidazoles as P2X7 antagonists. Bioorg. Med. Chem. Lett., 2010, 20(16), 4951-4954.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.018]
[169]
Chambers, L.J.; Stevens, A.J.; Moses, A.P.; Michel, A.D.; Walter, D.S.; Davies, D.J.; Livermore, D.G.; Fonfria, E.; Demont, E.H.; Vimal, M.; Theobald, P.J.; Beswick, P.J.; Gleave, R.J.; Roman, S.A.; Senger, S. Synthesis and structure-activity relationships of a series of (1H-pyrazol-4-yl) acetamide antagonists of the P2X7 receptor. Bioorg. Med. Chem. Lett., 2010, 20(10), 3161-3164.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.096]
[170]
Gupta, S.; Barrett, T.; Whitmarsh, A.J.; Cavanagh, J.; Sluss, H.K.; Dérijard, B.; Davis, R.J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J., 1996, 15(11), 2760-2770.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00636.x]
[171]
Yoon, S.O.; Park, D.J.; Ryu, J.C.; Ozer, H.G. Tep, C.; Shin, Yong J.; Lim, Tae H.; Pastorino, L.; Kunwar, Ajaya J.; Walton, James C.; Nagahara, Alan H.; Lu, Kun P.; Nelson, Randy J.; Tuszynski, Mark H.; Huang, K., JNK3 perpetuates metabolic stress induced by Abeta peptides. Neuron, 2012, 75, 824-837.
[http://dx.doi.org/10.1016/j.neuron.2012.06.024]
[172]
Siddiqui, M.A.; Reddy, P.A. Small molecule JNK (c-Jun N-terminal kinase) inhibitors. J. Med. Chem., 2010, 53(8), 3005-3012.
[http://dx.doi.org/10.1021/jm9003279]
[173]
Zhang, T.; Inesta-Vaquera, F.; Niepel, M.; Zhang, J.; Ficarro, S.B.; Machleidt, T.; Xie, T.; Marto, J.A.; Kim, N.; Sim, T.; Laughlin, J.D.; Park, H.; LoGrasso, P.V.; Patricelli, M.; Nomanbhoy, T.K.; Sorger, P.K.; Alessi, D.R.; Gray, N.S. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol., 2012, 19(1), 140-154.
[http://dx.doi.org/10.1016/j.chembiol.2011.11.010]
[174]
Graczyk, P.P. JNK inhibitors as anti-inflammatory and neuroprotective agents. Future Med. Chem., 2013, 5(5), 539-551.
[http://dx.doi.org/10.4155/fmc.13.34]
[175]
Gehringer, M.; Muth, F.; Koch, P.; Laufer, S.A. c-Jun N-terminal kinase inhibitors: a patent review (2010-2014). Expert Opin. Ther. Pat., 2015, 25(8), 849-872.
[http://dx.doi.org/10.1517/13543776.2015.1039984]
[176]
Koch, P.; Gehringer, M.; Laufer, S.A. Inhibitors of c-Jun N-terminal kinases: an update. J. Med. Chem., 2015, 58(1), 72-95.
[http://dx.doi.org/10.1021/jm501212r]
[177]
Resnick, L.; Fennell, M. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov. Today, 2004, 9(21), 932-939.
[http://dx.doi.org/10.1016/s1359-6446(04)03251-9]
[178]
Antoniou, X.; Falconi, M.; Di Marino, D.; Borsello, T. JNK3 as a therapeutic target for neurodegenerative diseases. J. Alzheimers Dis., 2011, 24(4), 633-642.
[http://dx.doi.org/10.3233/JAD-2011-091567]
[179]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M. J. c-Jun N-Terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol, 2016, 6, e321/12.
[http://dx.doi.org/10.3389/fphar.2015.00321]
[180]
Muth, F.; Günther, M.; Bauer, S.M.; Döring, E.; Fischer, S.; Maier, J.; Drückes, P.; Köppler, J.; Trappe, J.; Rothbauer, U.; Koch, P.; Laufer, S.A. Tetra-substituted pyridinylimidazoles as dual inhibitors of p38α mitogen-activated protein kinase and c-Jun N-terminal kinase 3 for potential treatment of neurodegenerative diseases. J. Med. Chem., 2015, 58, 443-456; see also erratum. J. Med. Chem., 2015, 58, 2567.
[http://dx.doi.org/10.1021/jm501557a]
[181]
Singh, J.; Petter, R.C.; Kluge, A.F. Targeted covalent drugs of the kinase family. Curr. Opin. Chem. Biol., 2010, 14(4), 475-480.
[http://dx.doi.org/10.1016/j.cbpa.2010.06.168]
[182]
Johnson, D.S.; Weerapana, E.; Cravatt, B.F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem., 2010, 2(6), 949-964.
[http://dx.doi.org/10.4155/fmc.10.21]
[183]
Barf, T.; Kaptein, A. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem., 2012, 55(14), 6243-6262.
[http://dx.doi.org/10.1021/jm3003203]
[184]
Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S.J.; Jones, L.H.; Gray, N.S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol., 2013, 20(2), 146-159.
[http://dx.doi.org/10.1016/j.chembiol.2012.12.006]
[185]
Muth, F.; El-Gokha, A.; Ansideri, F.; Eitel, M.; Döring, E.; Sievers-Engler, A.; Lange, A.; Boeckler, F.M.; Lämmerhofer, M.; Koch, P.; Laufer, S.A. Tri- and tetrasubstituted pyridinylimidazoles as covalent inhibitors of c-Jun N-terminal kinase 3. J. Med. Chem., 2017, 60(2), 594-607.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01180]
[186]
Fujiwara, T.; Sato, A.; el-Farrash, M.; Miki, S.; Abe, K.; Isaka, Y.; Kodama, M.; Wu, Y.; Chen, L.B.; Harada, H.; Sugimoto, H.; Hatanaka, M.; Hinuma, Y. S-1153 inhibits replication of known drug-resistant strains of human immunodeficiency virus type 1. Antimicrob. Agents Chemother., 1998, 42(6), 1340-1345.
[http://dx.doi.org/10.1128/AAC.42.6.1340]
[187]
Lagoja, I.M.; Pannecouque, C.; Van Aerschot, A.; Witvrouw, M.; Debyser, Z.; Balzarini, J.; Herdewijn, P.; De Clercq, E. N-aminoimidazole derivatives inhibiting retroviral replication via a yet unidentified mode of action. J. Med. Chem., 2003, 46(8), 1546-1553.
[http://dx.doi.org/10.1021/jm0211117]
[188]
Zhan, P.; Liu, X.; Zhu, J.; Fang, Z.; Li, Z.; Pannecouque, C.; Clercq, E.D. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2009, 17(16), 5775-5781.
[http://dx.doi.org/10.1016/j.bmc.2009.07.028]
[189]
Le, G.; Vandegraaff, N.; Rhodes, D.I.; Jones, E.D.; Coates, J.A.V.; Thienthong, N.; Winfield, L.J.; Lu, L.; Li, X.; Yu, C.; Feng, X.; Deadman, J.J. Design of a series of bicyclic HIV-1 integrase inhibitors. Part 2: azoles: effective metal chelators. Bioorg. Med. Chem. Lett., 2010, 20(19), 5909-591.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.081]
[190]
Edwards, T.G.; Koeller, K.J.; Slomczynska, U.; Fok, K.; Helmus, M.; Bashkin, J.K.; Fisher, C. HPV episome levels are potently decreased by pyrrole-imidazole polyamides. Antiviral Res., 2011, 91(2), 177-186.
[http://dx.doi.org/10.1016/j.antiviral.2011.05.014]
[191]
Chong, P.; Sebahar, P.; Youngman, M.; Garrido, D.; Zhang, H.; Stewart, E.L.; Nolte, R.T.; Wang, L.; Ferris, R.G.; Edelstein, M.; Weaver, K.; Mathis, A.; Peat, A. Rational design of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Med. Chem., 2012, 55(23), 10601-10609.
[http://dx.doi.org/10.1021/jm301294g]
[192]
Loksha, Y.M.; el-Barbary, A.A.; el-Badawi, M.A.; Nielsen, C.; Pedersen, E.B. Synthesis of 2-(aminocarbonylmethylthio)-1H-imidazoles as novel capravirine analogues. Bioorg. Med. Chem., 2005, 13(13), 4209-4220.
[http://dx.doi.org/10.1016/j.bmc.2005.04.024]
[193]
Baba, M.; Shigeta, S.; Yuasa, S.; Takashima, H.; Sekiya, K.; Ubasawa, M.; Tanaka, H.; Miyasaka, T.; Walker, R.T.; De Clercq, E. Preclinical evaluation of MKC-442, a highly potent and specific inhibitor of human immunodeficiency virus type 1 in vitro. Antimicrob. Agents Chemother., 1994, 38(4), 688-692.
[http://dx.doi.org/10.1128/AAC.38.4.688]
[194]
Al-Soud, Y.A.; Al-Masoudi, N.A.; De Clercq, E.; Paneccoque, C. Nitroimidazoles, Part 4: Synthesis and anti-HIV activity of new 5-alkylsulfanyl and 5-(4′-arylsulfonyl)piperazinyl-4-nitroimidazole derivatives. Heteroatom Chem., 2007, 18, 333-340.
[http://dx.doi.org/10.1002/hc.20301]
[195]
Al-Masoudi, N.A.; Al-Soud, Y.A.; De Clercq, E.; Pannecouque, C. Nitroimidazoles Part 6. Synthesis, structure and in vitro anti-HIV activity of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Antivir. Chem. Chemother., 2007, 18(4), 191-200.
[http://dx.doi.org/10.1177/095632020701800403]
[196]
Yoon, J-J.; Chawla, D.; Paal, T.; Ndungu, M.; Du, Y.; Kurtkaya, S.; Sun, A.; Snyder, J.P.; Plemper, R.K. High-throughput screening-based identification of paramyxovirus inhibitors. J. Biomol. Screen., 2008, 13(7), 591-608.
[http://dx.doi.org/10.1177/1087057108321089]
[197]
Moore, T.W.; Sana, K.; Yan, D.; Krumm, S.A.; Thepchatri, P.; Snyder, J.P.; Marengo, J.; Arrendale, R.F.; Prussia, A.J.; Natchus, M.G.; Liotta, D.C.; Plemper, R.K.; Sun, A. Synthesis and metabolic studies of host directed inhibitors for antiviral therapy. ACS Med. Chem. Lett., 2013, 4(8), 762-767.
[http://dx.doi.org/10.1021/ml400166b]
[198]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365(6441), 61-65.
[http://dx.doi.org/10.1038/365061a0]
[199]
Zhang, J.; Hoffert, C.; Vu, H.K.; Groblewski, T.; Ahmad, S.; O’Donnell, D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci., 2003, 17(12), 2750-2754.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02704.x]
[200]
Ashton, J.C.; Glass, M. The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr. Neuropharmacol., 2007, 5(2), 73-80.
[http://dx.doi.org/10.2174/157015907780866884]
[201]
Lunn, C.A.; Reich, E.P.; Fine, J.S.; Lavey, B.; Kozlowski, J.A.; Hipkin, R.W.; Lundell, D.J.; Bober, L. Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists. Br. J. Pharmacol., 2008, 153(2), 226-239.
[http://dx.doi.org/10.1038/sj.bjp.0707480]
[202]
Dhopeshwarkar, A.; Mackie, K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol. Pharmacol., 2014, 86(4), 430-437.
[http://dx.doi.org/10.1124/mol.114.094649]
[203]
Yang, P.; Wang, L.; Xie, X-Q. Latest advances in novel cannabinoid CB2 ligands for drug abuse and their therapeutic potential. Future Med. Chem., 2012, 4(2), 187-204.
[http://dx.doi.org/10.4155/fmc.11.179]
[204]
Murineddu, G.; Deligia, F.; Dore, A.; Pinna, G.; Asproni, B.; Pinna, G.A. Different classes of CB2 ligands potentially useful in the treatment of pain. Recent Patents CNS Drug Discov., 2013, 8(1), 42-69.
[http://dx.doi.org/10.2174/15748898112079990016]
[205]
Nevalainen, T. Recent development of CB2 selective and peripheral CB1/CB2 cannabinoid receptor ligands. Curr. Med. Chem., 2014, 21(2), 187-203.
[http://dx.doi.org/10.2174/09298673113206660296]
[206]
Lange, J.H.M.; van der Neut, M.A.W.; Wals, H.C.; Kuil, G.D.; Borst, A.J.M.; Mulder, A.; den Hartog, A.P.; Zilaout, H.; Goutier, W.; van Stuivenberg, H.H.; van Vliet, B.J. Synthesis and SAR of novel imidazoles as potent and selective cannabinoid CB2 receptor antagonists with high binding efficiencies. Bioorg. Med. Chem. Lett., 2010, 20(3), 1084-1089.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.032]
[207]
Moldovan, R.P.; Hausmann, K.; Deuther-Conrad, W.; Brust, P. Development of highly affine and selective fluorinated cannabinoid Type 2 receptor ligands. ACS Med. Chem. Lett., 2017, 8(5), 566-571.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00129]
[208]
Ballard, C.G. Advances in the treatment of Alzheimer’s disease: benefits of dual cholinesterase inhibition. Eur. Neurol., 2002, 47(1), 64-70.
[http://dx.doi.org/10.1159/000047952]
[209]
Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr. Ther. Res. Clin. Exp., 2003, 64(4), 216-235.
[http://dx.doi.org/10.1016/S0011-393X(03)00059-6]
[210]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol., 2006, 9(1), 101-124.
[http://dx.doi.org/10.1017/S1461145705005833]
[211]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3]
[212]
Reale, M.; Di Nicola, M.; Velluto, L.; D’Angelo, C.; Costantini, E.; Lahiri, D.K.; Kamal, M.A.; Yu, Q.S.; Greig, N.H. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer’s disease subjects: exploring the cholinergic anti-inflammatory pathway. Curr. Alzheimer Res., 2014, 11(6), 608-622.
[http://dx.doi.org/10.2174/1567205010666131212113218]
[213]
Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine derivatives and Alzheimer’s disease. Curr. Med. Chem., 2010, 17(17), 1825-1838.
[http://dx.doi.org/10.2174/092986710791111206]
[214]
da Costa, J.S.; Lopes, J.P.B.; Russowsky, D.; Petzhold, C.L.; Borges, A.C.; Ceschi, M.A.; Konrath, E.; Batassini, C.; Lunardi, P.S.; Gonçalves, C.A.S. Synthesis of tacrine-lophine hybrids via one-pot four component reaction and biological evaluation as acetyl- and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 62, 556-563.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.029]
[215]
Lou, K.; Yao, Y.; Hoye, A.T.; James, M.J.; Cornec, A-S.; Hyde, E.; Gay, B.; Lee, V.M.Y.; Trojanowski, J.Q.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J. Med. Chem., 2014, 57(14), 6116-6127.
[http://dx.doi.org/10.1021/jm5005623]
[216]
McGeer, P.L.; McGeer, E.G. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol. Aging, 2007, 28(5), 639-647.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.013]
[217]
Yan, Q.; Zhang, J.; Liu, H.; Babu-Khan, S.; Vassar, R.; Biere, A.L.; Citron, M.; Landreth, G. Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. J. Neurosci., 2003, 23(20), 7504-7509.
[http://dx.doi.org/10.1523/JNEUROSCI.23-20-07504.2003]
[218]
Rocher, J-P.; Bonnet, B.; Boléa, C.; Lütjens, R.; Le Poul, E.; Poli, S.; Epping-Jordan, M.; Bessis, A-S.; Ludwig, B.; Mutel, V. mGluR5 negative allosteric modulators overview: a medicinal chemistry approach towards a series of novel therapeutic agents. Curr. Top. Med. Chem., 2011, 11(6), 680-695.
[http://dx.doi.org/10.2174/1568026611109060680]
[219]
Gregory, K.J.; Dong, E.N.; Meiler, J.; Conn, P.J. Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology, 2011, 60(1), 66-81.
[http://dx.doi.org/10.1016/j.neuropharm.2010.07.007]
[220]
Nickols, H.H.; Conn, P.J. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis., 2014, 61, 55-71.
[http://dx.doi.org/10.1016/j.nbd.2013.09.013]
[221]
Harpsøe, K.; Isberg, V.; Tehan, B.G.; Weiss, D.; Arsova, A.; Marshall, F.H.; Bräuner-Osborne, H.; Gloriam, D.E. Selective negative allosteric modulation of metabotropic glutamate receptors - A structural perspective of ligands and mutants. Sci. Rep, 2015, 5, e13869/11.
[http://dx.doi.org/10.1038/srep13869]
[222]
Vincent, K.; Cornea, V.M.; Jong, Y.-J.I.; Laferrière, A.; Kumar, N.; Mickeviciute, A.; Fung, J.S.T.; Bandegi, P.; Ribeiro-da-Silva, A.; O’Malley, K. L.; Coderre, T.J. Intracellular mGluR5 plays a critical role in neuropathic pain. Nat. Commun, 2016, 7, e10604/13.
[http://dx.doi.org/10.1038/ncomms10604]
[223]
Jaso, B.A.; Niciu, M.J.; Iadarola, N.D.; Lally, N.; Richards, E.M.; Park, M.; Ballard, E.D.; Nugent, A.C.; Machado-Vieira, R.; Zarate, C.A. Therapeutic modulation of glutamate receptors in major depressive disorder. Curr. Neuropharmacol., 2017, 15(1), 57-70.
[http://dx.doi.org/10.2174/1570159X14666160321123221]
[224]
Lindemann, L.; Jaeschke, G.; Michalon, A.; Vieira, E.; Honer, M.; Spooren, W.; Porter, R.; Hartung, T.; Kolczewski, S.; Büttelmann, B.; Flament, C.; Diener, C.; Fischer, C.; Gatti, S.; Prinssen, E.P.; Parrott, N.; Hoffmann, G.; Wettstein, J.G. CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J. Pharmacol. Exp. Ther., 2011, 339(2), 474-486.
[http://dx.doi.org/10.1124/jpet.111.185660]
[225]
Jaeschke, G.; Kolczewski, S.; Spooren, W.; Vieira, E.; Bitter-Stoll, N.; Boissin, P.; Borroni, E.; Büttelmann, B.; Ceccarelli, S.; Clemann, N.; David, B.; Funk, C.; Guba, W.; Harrison, A.; Hartung, T.; Honer, M.; Huwyler, J.; Kuratli, M.; Niederhauser, U.; Pähler, A.; Peters, J-U.; Petersen, A.; Prinssen, E.; Ricci, A.; Rueher, D.; Rueher, M.; Schneider, M.; Spurr, P.; Stoll, T.; Tännler, D.; Wichmann, J.; Porter, R.H.; Wettstein, J.G.; Lindemann, L. Metabotropic glutamate receptor 5 negative allosteric modulators: discovery of 2-chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]py-ridine (basimglurant, RO4917523), a promising novel medicine for psychiatric diseases. J. Med. Chem., 2015, 58(3), 1358-1371.
[http://dx.doi.org/10.1021/jm501642c]
[226]
Alfei, S.; Baig, I. An optimized and very detailed, grams scale synthesis of CTEP, through a complete characterization of all the isolated and purified intermediates. Org. Commun., 2017, 10, 114-121.
[http://dx.doi.org/10.25135/acg.oc.15.16.11.444]
[227]
Hamilton, A.; Vasefi, M.; Vander Tuin, C.; McQuaid, R.J.; Anisman, H.; Ferguson, S.S. Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an Alzheimer disease mouse model. Cell Rep., 2016, 15(9), 1859-1865.
[http://dx.doi.org/10.1016/j.celrep.2016.04.077]
[228]
Peterlik, D.; Stangl, C.; Bauer, A.; Bludau, A.; Keller, J.; Grabski, D.; Killian, T.; Schmidt, D.; Zajicek, F.; Jaeschke, G.; Lindemann, L.; Reber, S.O.; Flor, P.J.; Uschold-Schmidt, N. Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences. Brain Behav. Immun., 2017, 59, 79-92.
[http://dx.doi.org/10.1016/j.bbi.2016.08.007]
[229]
Chae, E.; Shin, Y-J.; Ryu, E-J.; Ji, M.K.; Ryune Cho, N.; Lee, K-H.; Jeong, H.J.; Kim, S-J.; Choi, Y.; Seok Oh, K.; Park, C-E.; Soo Yoon, Y. Discovery of biological evaluation of pyrazole/imidazole amides as mGlu5 receptor negative allosteric modulators. Bioorg. Med. Chem. Lett., 2013, 23(7), 2134-2139.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.116]
[230]
Hunkeler, W.; Kyburz, E.; Meier, M. Preparation of imidazodiazepines as psychotropic agents. European Patent Application EP285837 A, 1988.
[231]
Fuxe, K.; Borroto-Escuela, D.O. Basimglurant for treatment of major depressive disorder: a novel negative allosteric modulator of metabotropic glutamate receptor 5. Expert Opin. Investig. Drugs, 2015, 24(9), 1247-1260.
[http://dx.doi.org/10.1517/13543784.2015.1074175]
[232]
Lindemann, L.; Porter, R.H.; Scharf, S.H.; Kuennecke, B.; Bruns, A.; von Kienlin, M.; Harrison, A.C.; Paehler, A.; Funk, C.; Gloge, A.; Schneider, M.; Parrott, N.J.; Polonchuk, L.; Niederhauser, U.; Morairty, S.R.; Kilduff, T.S.; Vieira, E.; Kolczewski, S.; Wichmann, J.; Hartung, T.; Honer, M.; Borroni, E.; Moreau, J-L.; Prinssen, E.; Spooren, W.; Wettstein, J.G.; Jaeschke, G. Pharmacology of basimglurant (RO4917523, RG7090), a unique metabotropic glutamate receptor 5 negative allosteric modulator in clinical development for depression. J. Pharmacol. Exp. Ther., 2015, 353(1), 213-233.
[http://dx.doi.org/10.1124/jpet.114.222463]
[233]
Guerini, E.; Schadt, S.; Greig, G.; Haas, R.; Husser, C.; Zell, M.; Funk, C.; Hartung, T.; Gloge, A.; Mallalieu, N.L. A double-tracer technique to characterize absorption, distribution, metabolism and excretion (ADME) of [14C]-basimglurant and absolute bioavailability after oral administration and concomitant intravenous microdose administration of [13C6]-labeled basimglurant in humans. Xenobiotica, 2017, 47(2), 144-153.
[http://dx.doi.org/10.3109/00498254.2016.1169334]
[234]
Naik, P.; Murumkar, P.; Giridhar, R.; Yadav, M.R. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists--a perspective. Bioorg. Med. Chem., 2010, 18(24), 8418-8456.
[http://dx.doi.org/10.1016/j.bmc.2010.10.043]
[235]
Kellici, T.F.; Tzakos, A.G.; Mavromoustakos, T. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules, 2015, 20(3), 3868-3897.
[http://dx.doi.org/10.3390/molecules20033868]
[236]
Michel, M.C.; Foster, C.; Brunner, H.R.; Liu, L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol. Rev., 2013, 65(2), 809-848.
[http://dx.doi.org/10.1124/pr.112.007278]
[237]
Duncia, J.V.; Carini, D.J.; Chiu, A.T.; Johnson, A.L.; Price, W.A.; Wong, P.C.; Wexler, R.R.; Timmermans, P.B.M.W.M. The discovery of DuP 753, a potent, orally active nonpeptide angiotensin II receptor antagonist. Med. Res. Rev., 1992, 12(2), 149-191.
[http://dx.doi.org/10.1002/med.2610120203]
[238]
Bhardwaj, G. How the antihypertensive losartan was discovered? Expert Opin. Drug Discov., 2006, 1(6), 609-618.
[http://dx.doi.org/10.1517/17460441.1.6.609]
[239]
Xu, F.; Mao, C.; Hu, Y.; Rui, C.; Xu, Z.; Zhang, L. Cardiovascular effects of losartan and its relevant clinical application. Curr. Med. Chem., 2009, 16(29), 3841-3857.
[http://dx.doi.org/10.2174/092986709789178046]
[240]
Ripley, E.; Hirsch, A. Fifteen years of losartan: what have we learned about losartan that can benefit chronic kidney disease patients? Int. J. Nephrol. Renovasc. Dis., 2010, 3, 93-98.
[http://dx.doi.org/10.2147/IJNRD.S7038]
[241]
Simpson, K.L.; McClellan, K.J. Losartan: a review of its use, with special focus on elderly patients. Drugs Aging, 2000, 16(3), 227-250.
[http://dx.doi.org/10.2165/00002512-200016030-00006]
[242]
Bestehorn, K.; Wahle, K. Impact of losartan on stroke risk in hypertensive patients in primary care. Clin. Drug Investig., 2007, 27(5), 347-355.
[http://dx.doi.org/10.2165/00044011-200727050-00006]
[243]
Carini, D.J.; Duncia, J.V.; Aldrich, P.E.; Chiu, A.T.; Johnson, A.L.; Pierce, M.E.; Price, W.A.; Santella, J.B., III; Wells, G.J.; Wexler, R.R.; Wong, P.C.; Yoo, S.E.; Timmermans, P.B.M.W.M. Nonpeptide angiotensin II receptor antagonists: the discovery of a series of N-(biphenylylmethyl)imidazoles as potent, orally active antihypertensives. J. Med. Chem., 1991, 34(8), 2525-2547.
[http://dx.doi.org/10.1021/jm00112a031]
[244]
Smith, G.B.; Dezeny, G.C.; Hughes, D.L.; King, A.O.; Verhoeven, T.R. Mechanistic studies of the Suzuki cross-coupling reaction. J. Org. Chem., 1994, 59, 8151-8156.
[http://dx.doi.org/10.1021/jo00105a036]
[245]
Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.; Lieberman, D.R.; Reamer, R.A.; Tschaen, D.M.; Verhoeven, T.R.; Reider, P.J.; Lo, Y.S.; Rossano, L.T.; Brookes, A.S.; Meloni, D.; Moore, J.R.; Arnett, J.F. Efficient synthesis of losartan, a nonpeptide angiotensin ii receptor antagonist. J. Org. Chem., 1994, 59, 6391-6394.
[http://dx.doi.org/10.1021/jo00100a048]
[246]
Madasu, S.B.; Vekariya, N.A.; Koteswaramma, C.; Islam, A.; Sanasi, P.D.; Korupolu, R.B. An efficient, commercially viable, and safe process for preparation of losartan potassium, an angiotensin II receptor antagonist. Org. Process Res. Dev., 2012, 16, 2025-2030.
[http://dx.doi.org/10.1021/op300179u]
[247]
Daugulis, O.; Zaitsev, V.G. Anilide ortho-arylation by using C-H activation methodology. Angew. Chem. Int. Ed. Engl., 2005, 44(26), 4046-4048.
[http://dx.doi.org/10.1002/anie.200500589]
[248]
Ioannidou, H.A.; Koutentis, P.A. Silver-mediated palladium-catalyzed direct C-H arylation of 3-bromoisothiazole-4-carbonitrile. Org. Lett., 2011, 13(6), 1510-1513.
[http://dx.doi.org/10.1021/ol200196m]
[249]
Lazareva, A.; Daugulis, O. Direct palladium-catalyzed ortho-arylation of benzylamines. Org. Lett., 2006, 8(23), 5211-5213.
[http://dx.doi.org/10.1021/ol061919b]
[250]
Kalogirou, A.S.; Koutentis, P.A. Silver mediated direct C-H arylation of 3-bromoisothiazole-5-carbonitrile. Tetrahedron, 2014, 70, 6796-6802.
[http://dx.doi.org/10.1016/j.tet.2014.07.064]
[251]
Ding, Y-J.; Li, Y.; Dai, S-Y.; Lan, Q.; Wang, X-S. Pd(II)-catalyzed, controllable C-H mono-/diarylation of aryl tetrazoles: concise synthesis of Losartan. Org. Biomol. Chem., 2015, 13(11), 3198-3201.
[http://dx.doi.org/10.1039/C4OB02453B]
[252]
Katritzky, A.R.; Cai, C.; Meher, N.K. Efficient synthesis of 1,5-disubstituted tetrazoles. Synthesis, 2007, 2007, 1204-1208.
[http://dx.doi.org/10.1055/s-2007-966001]
[253]
Seki, M.; Nagahama, M. Synthesis of angiotensin II receptor blockers by means of a catalytic system for C-H activation. J. Org. Chem., 2011, 76(24), 10198-10206.
[http://dx.doi.org/10.1021/jo202041e]
[254]
Arksey, N.; Hadizad, T.; Ismail, B.; Hachem, M.; Valdivia, A.C.; Beanlands, R.S.; deKemp, R.A.; DaSilva, J.N. Synthesis and evaluation of the novel 2-[18F]fluoro-3-propoxy-triazole-pyridine-substituted losartan for imaging AT1 receptors. Bioorg. Med. Chem., 2014, 22(15), 3931-3937.
[http://dx.doi.org/10.1016/j.bmc.2014.06.011]
[255]
Thompson, A.S.; Humphrey, G.R.; DeMarco, A.M.; Mathre, D.J.; Grabowski, E.J.J. Direct conversion of activated alcohols to azides using diphenyl phosphorazidate. A practical alternative to mitsunobu conditions. J. Org. Chem., 1993, 58, 5886-5888.
[http://dx.doi.org/10.1021/jo00074a008]
[256]
Yanagisawa, H.; Amemiya, Y.; Kanazaki, T.; Shimoji, Y.; Fujimoto, K.; Kitahara, Y.; Sada, T.; Mizuno, M.; Ikeda, M.; Miyamoto, S.; Furukawa, Y.; Koike, H. Nonpeptide angiotensin II receptor antagonists: synthesis, biological activities, and structure-activity relationships of imidazole-5-carboxylic acids bearing alkyl, alkenyl, and hydroxyalkyl substituents at the 4-position and their related compounds. J. Med. Chem., 1996, 39(1), 323-338.
[http://dx.doi.org/10.1021/jm950450f]
[257]
Kourlaba, G.; Gialama, F.; Tsioufis, K.; Maniadakis, N. A literature review to evaluate the clinical and economic value of olmesartan for the treatment of hypertensive patients. Int. J. Cardiol., 2016, 221, 60-74.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.115]
[258]
Mizuno, M.; Sada, T.; Ikeda, M.; Fukuda, N.; Miyamoto, M.; Yanagisawa, H.; Koike, H. Pharmacology of CS-866, a novel nonpeptide angiotensin II receptor antagonist. Eur. J. Pharmacol., 1995, 285(2), 181-188.
[http://dx.doi.org/10.1016/0014-2999(95)00401-6]
[259]
Koike, H.; Sada, T.; Mizuno, M. In vitro and in vivo pharmacology of olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist. J. Hypertens. Suppl., 2001, 19(1), S3-S14.
[http://dx.doi.org/10.1097/00004872-200106001-00002]
[260]
Mizuno, M.; Sada, T.; Kato, M.; Koike, H. Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens. Res., 2002, 25(2), 271-278.
[http://dx.doi.org/10.1291/hypres.25.271]
[261]
Scott, L.J.; McCormack, P.L. Olmesartan medoxomil: a review of its use in the management of hypertension. Drugs, 2008, 68(9), 1239-1272.
[http://dx.doi.org/10.2165/00003495-200868090-00005]
[262]
Kurikawa, N.; Suga, M.; Kuroda, S.; Yamada, K.; Ishikawa, H. An angiotensin II type 1 receptor antagonist, olmesartan medoxomil, improves experimental liver fibrosis by suppression of proliferation and collagen synthesis in activated hepatic stellate cells. Br. J. Pharmacol., 2003, 139(6), 1085-1094.
[http://dx.doi.org/10.1038/sj.bjp.0705339]
[263]
Sanford, M.L.; Nagel, A.K. A review of current evidence of olmesartan medoxomil mimicking symptoms of celiac disease. J. Pharm. Pract., 2015, 28(2), 189-192.
[http://dx.doi.org/10.1177/0897190014527320]
[264]
Babu, K.S.; Reddy, M.S.; Tagore, A.R.; Reddy, G.S.; Sebastian, S.; Varma, M.S.; Venkateswarlu, G.; Bhattacharya, A.; Reddy, P.P.; Anand, R.V. Efficient synthesis of olmesartan medoxomil, an antihypertensive drug. Synth. Commun., 2008, 39, 291-298.
[http://dx.doi.org/10.1080/00397910802372558]
[265]
Ismail, M.A.H.; Barker, S.; Abou el-Ella, D.A.; Abouzid, K.A.M.; Toubar, R.A.; Todd, M.H. Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl-quinazolin-4-one derivatives as angiotensin II AT1 receptor antagonists. J. Med. Chem., 2006, 49(5), 1526-1535.
[http://dx.doi.org/10.1021/jm050232e]
[266]
Seki, M. 2,4-Dimethoxybenzyl group for the protection of tetrazole: an efficient synthesis of olmesartan medoxomil through C-H arylation. Synthesis, 2015, 47, 2985-2990.
[http://dx.doi.org/10.1055/s-0034-1378848]
[267]
Hanumantha Rao, B.; Subramanyeswara Rao, I.V.; Ravi Kanth, V.; Prasada Rao, K.V.V.; Balamurali Krishna, K.; Syama Sundar, B. A competent and commercially viable process for the synthesis of the anti-hypertensive drug olmesartan medoxomil. Sci. Pharm., 2015, 83(3), 465-478.
[http://dx.doi.org/10.3797/scipharm.1502-04]
[268]
Babu, K.S.; Tagore, A.R.; Reddy, G.S.; Venkateswarlu, G.; Reddy, P.P.; Anand, R.V. Synthesis of related substances of olmesartan medoxomil, an anti-hypertensive drug. ARKIVOC, 2010, 2010, 292-302.
[http://dx.doi.org/10.3998/ark.5550190.0011.224]
[269]
Hanumantha Rao, B.; Subramanyeswara Rao, I.V.; Ravi Kanth, V.; Prasada Rao, K.V.V.; Balamurali Krishna, K.; Syama Sundar, B. Process related impurities in the preparation of olmesartan medoxomil: An-antihypertensive drug. Indo Am. J. Pharm. Res, 2015, 5, 2744-2751.https://iajpr.com/archive/volume-5/september-2015, #9
[270]
Dams, I.; Ostaszewska, A.; Puchalska, M.; Chmiel, J.; Cmoch, P.; Bujak, I.; Białońska, A.; Szczepek, W.J. Synthesis and physicochemical characterization of the process-related impurities of olmesartan medoxomil. Do 5-(biphenyl-2-yl)-1-triphenylmethyltetrazole intermediates in sartan syntheses exist? Molecules, 2015, 20(12), 21346-21363.
[http://dx.doi.org/10.3390/molecules201219762]
[271]
El-Gamal, M.I.; Anbar, H.S.; Chung, H.J.; Kim, H-I.; Cho, Y-J.; Lee, B.S.; Lee, S.A.; Moon, J.Y.; Lee, D.J.; Kwon, D.; Choi, W-J.; Jeon, H-R.; Oh, C-H. Discovery of olmesartan hexetil: a new potential prodrug of olmesartan. Bioorg. Med. Chem. Lett., 2013, 23(5), 1347-1350.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.090]
[272]
Bao, X.; Zhu, W.; Zhang, R.; Wen, C.; Wang, L.; Yan, Y.; Tang, H.; Chen, Z. Synthesis and evaluation of novel angiotensin II receptor 1 antagonists as anti-hypertension drugs. Bioorg. Med. Chem., 2016, 24(9), 2023-2031.
[http://dx.doi.org/10.1016/j.bmc.2016.03.028]
[273]
Arora, P.K.; Chauhan, A. ACE inhibitors: A comprehensive review. Int. J. Pharm. Sci. Res., 2013, 4, 532.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.4(2).532-49]
[274]
Fatima, S.; Noor, S.; Fatima, A.; Maazuddin, M. A review on importance of ACE inhibitors in clinical practice. Med. Res. Chron., 2014, 1, 102-109.
[275]
Agata, J.; Ura, N.; Yoshida, H.; Shinshi, Y.; Sasaki, H.; Hyakkoku, M.; Taniguchi, S.; Shimamoto, K. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertens. Res., 2006, 29(11), 865-874.
[http://dx.doi.org/10.1291/hypres.29.865]
[276]
Salvador, G.L.O.; Marmentini, V.M.; Cosmo, W.R.; Junior, E.L. Angiotensin-converting enzyme inhibitors reduce mortality compared to angiotensin receptor blockers: Systematic review and meta-analysis. Eur. J. Prev. Cardiol., 2017, 24(18), 1914-1924.
[http://dx.doi.org/10.1177/2047487317728766]
[277]
Jallapally, A.; Addla, D.; Bagul, P.; Sridhar, B.; Banerjee, S.K.; Kantevari, S. Design, synthesis and evaluation of novel 2-butyl-4-chloroimidazole derived peptidomimetics as Angiotensin Converting Enzyme (ACE) inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3526-3533.
[http://dx.doi.org/10.1016/j.bmc.2015.04.024]
[278]
Giovannitti, J.A., Jr; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth. Prog., 2015, 62(1), 31-39.
[http://dx.doi.org/10.2344/0003-3006-62.1.31]
[279]
Munk, S.A.; Harcourt, D.A.; Arasasingham, P.N.; Burke, J.A.; Kharlamb, A.B.; Manlapaz, C.A.; Padillo, E.U.; Roberts, D.; Runde, E.; Williams, L.; Wheeler, L.A.; Garst, M.E. Synthesis and evaluation of 2-(arylamino)im-idazoles as α2-adrenergic agonists. J. Med. Chem., 1997, 40(1), 18-23.
[http://dx.doi.org/10.1021/jm9605142]
[280]
Zhang, X.; De Los Angeles, J.E.; He, M-Y.; Dalton, J.T.; Shams, G.; Lei, L.; Patil, P.N.; Feller, D.R.; Miller, D.D.; Hsu, F-L. Medetomidine analogs as α2-adrenergic ligands. 3. Synthesis and biological evaluation of a new series of medetomidine analogs and their potential binding interactions with α2-adrenoceptors involving a “methyl pocket”. J. Med. Chem., 1997, 40(19), 3014-3024.
[http://dx.doi.org/10.1021/jm960642q]
[281]
Scheinin, M.; Kallio, A.; Koulu, M.; Viikari, J.; Scheinin, H. Sedative and cardiovascular effects of medetomidine, a novel selective α2-adrenoceptor agonist, in healthy volunteers. Br. J. Clin. Pharmacol., 1987, 24(4), 443-451.
[http://dx.doi.org/10.1111/j.1365-2125.1987.tb03196.x]
[282]
Malhotra, V.; Pathak, S.R.; Nath, R.; Mukherjee, D.; Shanker, K. Substituted imidazole derivatives as novel cardiovascular agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 936-939.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.062]
[283]
Heravi, M.M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. Synthesis of 2,4,5-triarylimidazoles catalyzed by NiCl2.6H2O under heterogeneous system. J. Mol. Catal. Chem., 2007, 263, 279-281.
[http://dx.doi.org/10.1016/j.molcata.2006.08.070]
[284]
Zhou, Q.; Liao, J.K. Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr. Pharm. Des., 2009, 15(5), 467-478.
[http://dx.doi.org/10.2174/138161209787315684]
[285]
Pfefferkorn, J.A. Novel 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor: a patent review. Expert Opin. Ther. Pat., 2011, 21(2), 187-203.
[http://dx.doi.org/10.1517/13543776.2011.547478]
[286]
Sarver, R.W.; Bills, E.; Bolton, G.; Bratton, L.D.; Caspers, N.L.; Dunbar, J.B.; Harris, M.S.; Hutchings, R.H.; Kennedy, R.M.; Larsen, S.D.; Pavlovsky, A.; Pfefferkorn, J.A.; Bainbridge, G. Thermodynamic and structure guided design of statin based inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Med. Chem., 2008, 51(13), 3804-3813.
[http://dx.doi.org/10.1021/jm7015057]
[287]
Bowles, D.M.; Bolton, G.L.; Boyles, D.C.; Curran, T.T.; Hutchings, R.H.; Larsen, S.D.; Miller, J.M.; Park, W.K.C.; Ritsema, K.G.; Schineman, D.C.; Tamm, M. Preparation of a HMG-CoA reductase inhibitor via an optimized imidazole-forming condensation reaction. Org. Process Res. Dev., 2008, 12, 1183-1187.
[http://dx.doi.org/10.1021/op800092e]
[288]
Pfefferkorn, J.A.; Litchfield, J.; Hutchings, R.; Cheng, X-M.; Larsen, S.D.; Auerbach, B.; Bush, M.R.; Lee, C.; Erasga, N.; Bowles, D.M.; Boyles, D.C.; Lu, G.; Sekerke, C.; Askew, V.; Hanselman, J.C.; Dillon, L.; Lin, Z.; Robertson, A.; Olsen, K.; Boustany, C.; Atkinson, K.; Goosen, T.C.; Sahasrabudhe, V.; Chupka, J.; Duignan, D.B.; Feng, B.; Scialis, R.; Kimoto, E.; Bi, Y-A.; Lai, Y.; El-Kattan, A.; Bakker-Arkema, R.; Barclay, P.; Kindt, E.; Le, V.; Mandema, J.W.; Milad, M.; Tait, B.D.; Kennedy, R.; Trivedi, B.K.; Kowala, M. Discovery of novel hepatoselective HMG-CoA reductase inhibitors for treating hypercholesterolemia: a bench-to-bedside case study on tissue selective drug distribution. Bioorg. Med. Chem. Lett., 2011, 21(9), 2725-2731.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.103]
[289]
Guo, Z-S.; Yang, X-C. CAN catalyzed one-pot synthesis of imidazole derivatives in PEG-400 as HMG-CoA reductase inhibitor for benefit in atherosclerosis. Biomed. Res. (Aligarh), 2017, 28, 5992-5996.
[290]
Kleinsek, D.A.; Dugan, R.E.; Baker, T.A.; Porter, J.W. 3-Hydroxy-3-methylglutaryl-CoA reductase from rat liver. Methods Enzymol., 1981, 71(Pt C), 462-479.
[http://dx.doi.org/10.1016/0076-6879(81)71057-7]
[291]
Ghiassi-Nejad, Z.; Friedman, S.L. Advances in antifibrotic therapy. Expert Rev. Gastroenterol. Hepatol., 2008, 2(6), 803-816.
[http://dx.doi.org/10.1586/17474124.2.6.803]
[292]
Popov, Y.; Schuppan, D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology, 2009, 50(4), 1294-1306.
[http://dx.doi.org/10.1002/hep.23123]
[293]
Szabò, H.; Fiorino, G.; Spinelli, A.; Rovida, S.; Repici, A.; Malesci, A.C.; Danese, S. Review article: anti-fibrotic agents for the treatment of Crohn’s disease - lessons learnt from other diseases. Aliment. Pharmacol. Ther., 2010, 31(2), 189-201.
[http://dx.doi.org/10.1111/j.1365-2036.2009.04171.x]
[294]
Ezhilarasan, D.; Sokal, E.; Karthikeyan, S.; Najimi, M. Plant derived antioxidants and antifibrotic drugs: Past, present and future. J. Coast. Life Med., 2014, 2, 738-745.
[http://dx.doi.org/10.12980/JCLM.2.2014APJTB-2014-0111]
[295]
Nanthakumar, C.B.; Hatley, R.J.D.; Lemma, S.; Gauldie, J.; Marshall, R.P.; Macdonald, S.J.F. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat. Rev. Drug Discov., 2015, 14(10), 693-720.
[http://dx.doi.org/10.1038/nrd4592]
[296]
Torok, N.J.; Dranoff, J.A.; Schuppan, D.; Friedman, S.L. Strategies and endpoints of antifibrotic drug trials: Summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology, 2015, 62(2), 627-634.
[http://dx.doi.org/10.1002/hep.27720]
[297]
Noureddin, M.; Anstee, Q.M.; Loomba, R. Review article: emerging anti-fibrotic therapies in the treatment of non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther., 2016, 43(11), 1109-1123.
[http://dx.doi.org/10.1111/apt.13620]
[298]
Verrecchia, F.; Mauviel, A. Transforming growth factor-β and fibrosis. World J. Gastroenterol., 2007, 13(22), 3056-3062.
[http://dx.doi.org/10.3748/wjg.v13.i22.3056]
[299]
Pohlers, D.; Brenmoehl, J.; Löffler, I.; Müller, C.K.; Leipner, C.; Schultze-Mosgau, S.; Stallmach, A.; Kinne, R.W.; Wolf, G. TGF-β and fibrosis in different organs - molecular pathway imprints. Biochim. Biophys. Acta, 2009, 1792(8), 746-756.
[http://dx.doi.org/10.1016/j.bbadis.2009.06.004]
[300]
Grygielko, E.T.; Martin, W.M.; Tweed, C.; Thornton, P.; Harling, J.; Brooks, D.P.; Laping, N.J. Inhibition of gene markers of fibrosis with a novel inhibitor of transforming growth factor-β type I receptor kinase in puromycin-induced nephritis. J. Pharmacol. Exp. Ther., 2005, 313(3), 943-951.
[http://dx.doi.org/10.1124/jpet.104.082099]
[301]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S-J.; Park, H-J.; Lee, K.; Sheen, Y.Y.; Kim, D-K. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J. Med. Chem., 2014, 57(10), 4213-4238.
[http://dx.doi.org/10.1021/jm500115w]
[302]
Moon, J-A.; Kim, H-T.; Cho, I-S.; Sheen, Y.Y.; Kim, D-K. IN-1130, a novel transforming growth factor-β type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int., 2006, 70(7), 1234-1243.
[http://dx.doi.org/10.1038/sj.ki.5001775]
[303]
Johnston, C.I. Angiotensin receptor antagonists: focus on losartan. Lancet, 1995, 346(8987), 1403-1407.
[http://dx.doi.org/10.1016/s0140-6736(95)92411-6]
[304]
Couluris, M.; Kinder, B.W.; Xu, P.; Gross-King, M.; Krischer, J.; Panos, R.J. Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project. Lung, 2012, 190(5), 523-527.
[http://dx.doi.org/10.1007/s00408-012-9410-z]
[305]
Habashi, J.P.; Judge, D.P.; Holm, T.M.; Cohn, R.D.; Loeys, B.L.; Cooper, T.K.; Myers, L.; Klein, E.C.; Liu, G.; Calvi, C.; Podowski, M.; Neptune, E.R.; Halushka, M.K.; Bedja, D.; Gabrielson, K.; Rifkin, D.B.; Carta, L.; Ramirez, F.; Huso, D.L.; Dietz, H.C. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science, 2006, 312(5770), 117-121.
[http://dx.doi.org/10.1126/science.1124287]
[306]
Negri, A.L. Prevention of progressive fibrosis in chronic renal diseases: antifibrotic agents. J. Nephrol., 2004, 17(4), 496-503.
[307]
Cohn, R.D.; van Erp, C.; Habashi, J.P.; Soleimani, A.A.; Klein, E.C.; Lisi, M.T.; Gamradt, M.; ap Rhys, C.M.; Holm, T.M.; Loeys, B.L.; Ramirez, F.; Judge, D.P.; Ward, C.W.; Dietz, H.C. Angiotensin II type 1 receptor blockade attenuates TGF-β-induced failure of muscle regeneration in multiple myopathic states. Nat. Med., 2007, 13(2), 204-210.
[http://dx.doi.org/10.1038/nm1536]
[308]
Kim, H.; Baek, C. H.; Lee, R. B.; Chang, J. W.; Yang, W. S.; Lee, S.K. Antifibrotic effect of losartan, an angiotensin II receptor blocker, is mediated through inhibition of ER stress via up-regulation of SIRT1, followed by induction of HO-1 and thioredoxin. Int. J. Mol. Sci, 2017, 18, e305/17.
[http://dx.doi.org/10.3390/ijms18020305]
[309]
Go, M.F. Review article: natural history and epidemiology of Helicobacter pylori infection. Aliment. Pharmacol. Ther., 2002, 16(Suppl. 1), 3-15.
[http://dx.doi.org/10.1046/j.1365-2036.2002.0160s1003.x]
[310]
Izzotti, A.; Durando, P.; Ansaldi, F.; Gianiorio, F.; Pulliero, A. Interaction between Helicobacter pylori, diet, and genetic polymorphisms as related to non-cancer diseases. Mutat. Res., 2009, 667(1-2), 142-157.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.02.002]
[311]
Hassan, S. T. S.; Šudomová, M. The development of urease inhibitors: What opportunities exist for better treatment of Helicobacter pylori infection in children? Children, 2017, 4, e2/5.
[http://dx.doi.org/10.3390/children4010002]
[312]
Amtul, Z.; Rahman, A.U.; Siddiqui, R.A.; Choudhary, M.I. Chemistry and mechanism of urease inhibition. Curr. Med. Chem., 2002, 9(14), 1323-1348.
[http://dx.doi.org/10.2174/0929867023369853]
[313]
Upadhyay, L.S.B. Urease inhibitors: a review. Indian J. Biotechnol., 2012, 11, 381-388.
[314]
Konieczna, I.; Zarnowiec, P.; Kwinkowski, M.; Kolesinska, B.; Fraczyk, J.; Kaminski, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci., 2012, 13(8), 789-806.
[http://dx.doi.org/10.2174/138920312804871094]
[315]
Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[http://dx.doi.org/10.1517/13543776.2011.574615]
[316]
Modolo, L.V.; de Souza, A.X.; Horta, L.P.; Araujo, D.P.; de Fátima, Â. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res., 2015, 6(1), 35-44.
[http://dx.doi.org/10.1016/j.jare.2014.09.001]
[317]
Naureen, S.; Chaudhry, F.; Asif, N.; Munawar, M.A.; Ashraf, M.; Nasim, F.H.; Arshad, H.; Khan, M.A. Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity. Eur. J. Med. Chem., 2015, 102, 464-470.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.011]
[318]
Robinson, B. The fischer indole synthesis. Chem. Rev., 1963, 63, 373-401.
[http://dx.doi.org/10.1021/cr60224a003]
[319]
Taber, D.F.; Tirunahari, P.K. Indole synthesis: a review and proposed classification. Tetrahedron, 2011, 67(38), 7195-7210.
[http://dx.doi.org/10.1016/j.tet.2011.06.040]
[320]
Rajput, A.P.; Girase, P.D. Review article on Vilsmeier-Haack reaction. J. Pharm. Chem. Biol. Sci., 2012, 3, 25-43.
[321]
Naureen, S.; Ijaz, F.; Munawar, M.A.; Asif, N.; Chaudhry, F.; Ashraf, M.; Khan, M.A. Synthesis of tetrasubstitutd imidazoles containing indole and their antiurease and antioxidant activities. J. Chil. Chem. Soc., 2017, 62, 3583-3587.
[http://dx.doi.org/10.4067/s0717-97072017000303583]
[322]
Le Foll, B.; Goldberg, S.R. Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J. Pharmacol. Exp. Ther., 2005, 312(3), 875-883.
[http://dx.doi.org/10.1124/jpet.104.077974]
[323]
Dourish, C.T.; Wilding, J.P.H.; Halford, J.C.G. Anti-obesity Drugs: From animal models to clinical efficacy.Animal Transitional Models for CNS Drug Discovery; Academic Press, 2008, pp. 271-315.
[324]
Smith, R.A.; Fathi, Z.; Achebe, F.; Akuche, C.; Brown, S-E.; Choi, S.; Fan, J.; Jenkins, S.; Kluender, H.C.E.; Konkar, A.; Lavoie, R.; Mays, R.; Natoli, J.; O’Connor, S.J.; Ortiz, A.A.; Su, N.; Taing, C.; Tomlinson, S.; Tritto, T.; Wang, G.; Wirtz, S-N.; Wong, W.; Yang, X-F.; Ying, S.; Zhang, Z. Optimization of imidazole amide derivatives as cannabinoid-1 receptor antagonists for the treatment of obesity. Bioorg. Med. Chem. Lett., 2007, 17(10), 2706-2711.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.011]
[325]
Tsuji, K.; Nakamura, K.; Konishi, N.; Tojo, T.; Ochi, T.; Senoh, H.; Matsuo, M. Studies on anti-inflammatory agents. IV. Synthesis and pharmacological properties of 1,5-diarylpyrazoles and related derivatives. Chem. Pharm. Bull. (Tokyo), 1997, 45(6), 987-995.
[http://dx.doi.org/10.1248/cpb.45.987]
[326]
Carpino, L.A.; El-Faham, A. Tetramethylfluoroformamidinium hexafluorophosphate: a rapid-acting peptide coupling reagent for solution and solid phase peptide synthesis. J. Am. Chem. Soc., 1995, 117, 5401-5402.
[http://dx.doi.org/10.1021/ja00124a040]
[327]
Carpino, L.A.; Ionescu, D.; El-Faham, A. Peptide coupling in the presence of highly hindered tertiary amines. J. Org. Chem., 1996, 61, 2460-2465.
[http://dx.doi.org/10.1021/jo950912x]
[328]
Xia, L.; de Vries, H.; Lenselink, E.B.; Louvel, J.; Waring, M.J.; Cheng, L.; Pahlén, S.; Petersson, M.J.; Schell, P.; Olsson, R.I.; Heitman, L.H.; Sheppard, R.J.; IJzerman, A.P. Structure-affinity relationships and structure-kinetic relationships of 1,2-diarylimidazol-4-carboxamide derivatives as human cannabinoid 1 receptor antagonists. J. Med. Chem., 2017, 60(23), 9545-9564.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00861]
[329]
Strange, P.G. Use of the GTPγS ([35S] GTPγS and Eu-GTPγS) binding assay for analysis of ligand potency and efficacy at G protein-coupled receptors. Br. J. Pharmacol., 2010, 161(6), 1238-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00963.x]
[330]
Xia, L.; de Vries, H.; Yang, X.; Lenselink, E.B.; Kyrizaki, A.; Barth, F.; Louvel, J.; Dreyer, M.K.; van der Es, D.; IJzerman, A.P.; Heitman, L.H. Kinetics of human cannabinoid 1 (CB1) receptor antagonists: structure-kinetics relationships (SKR) and implications for insurmountable antagonism. Biochem. Pharmacol., 2018, 151, 166-179.
[http://dx.doi.org/10.1016/j.bcp.2017.10.014]
[331]
Van de Laar, F.; Wang, S.; Lucassen, P.; Van de Lisdonk, E.; Van den Hoogen, H.; Li, J.; Li, X.; Rutten, G.; Van Weel, C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus Cochrane Db. Syst. Rev., 2005, 2005(2)CD003639
[http://dx.doi.org/10.1002/14651858.cd003639]
[332]
van de Laar, F.A. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag., 2008, 4(6), 1189-1195.
[http://dx.doi.org/10.2147/VHRM.S3119]
[333]
Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: a review. Eur. J. Med. Chem., 2018, 152, 436-488.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061]
[334]
Field, R.A.; Haines, A.H.; Chrystal, E.J.T.; Luszniak, M.C. Histidines, histamines and imidazoles as glycosidase inhibitors. Biochem. J., 1991, 274(Pt 3), 885-889.
[http://dx.doi.org/10.1042/bj2740885]
[335]
Balba, M.; El-Hady, N.A.; Taha, N.; Rezki, N.; El Ashry, S.H. Inhibition of α-glucosidase and α-amylase by diaryl derivatives of imidazole-thione and 1,2,4-triazole-thiol. Eur. J. Med. Chem., 2011, 46(6), 2596-2601.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.051]
[336]
Yar, M.; Bajda, M.; Shahzad, S.; Ullah, N.; Gilani, M.A.; Ashraf, M.; Rauf, A.; Shaukat, A. Organocatalyzed solvent free an efficient novel synthesis of 2,4,5-trisubstituted imidazoles for α-glucosidase inhibition to treat diabetes. Bioorg. Chem., 2015, 58, 65-71.
[http://dx.doi.org/10.1016/j.bioorg.2014.11.006]
[337]
Naureen, S.; Noreen, S.; Nazeer, A.; Ashraf, M.; Alam, U.; Munawar, M.A.; Khan, M.A. Triarylimidazoles-synthesis of 3-(4,5-diaryl-1H-imidazol-2-yl)-2-phenyl-1H-indole derivatives as potent α-glucosidase inhibitors. Med. Chem. Res., 2014, 24, 1586-1595.
[http://dx.doi.org/10.1007/s00044-014-1239-y]
[338]
Zhang, X.; Sui, Z.; Kauffman, J.; Hou, C.; Chen, C.; Du, F.; Kirchner, T.; Liang, Y.; Johnson, D.; Murray, W.V.; Demarest, K. Evaluation of anti-diabetic effect and gall bladder function with 2-thio-5-thiomethyl substituted imidazoles as TGR5 receptor agonists. Bioorg. Med. Chem. Lett., 2017, 27(8), 1760-1764.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.069]
[339]
Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole-1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(23), 5719-5723.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.057]
[340]
Chaudhry, F.; Choudhry, S.; Huma, R.; Ashraf, M.; Al-Rashida, M.; Munir, R.; Sohail, R.; Jahan, B.; Munawar, M.A.; Khan, M.A. Hetarylcoumarins: synthesis and biological evaluation as potent α-glucosidase inhibitors. Bioorg. Chem., 2017, 73, 1-9.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.009]
[341]
Naureen, S.; Chaudhry, F.; Munawar, M.A.; Ashraf, M.; Hamid, S.; Khan, M.A. Biological evaluation of new imidazole derivatives tethered with indole moiety as potent α-glucosidase inhibitors. Bioorg. Chem., 2018, 76, 365-369.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.014]
[342]
Khaliullin, F.; Valieva, A.; Spasov, A.; Kuznetsova, V.; Raschenko, A.; Babkov, D. Synthesis of potential agents for the therapy of type 2 diabetes mellitus based on thietane containing 2-bromoimidazole-4,5-dicarboxylic acid derivatives. Int. J. Pharm. Sci. Rev. Res., 2017, 42, 82-86.
[343]
Khaliullin, F.A.; Valieva, A.R.; Magadeeva, G.F. Hydrazinolysis of dimethyl 2-bromo-1-(thietan-3-yl)-1H-imidazole-4,5-dicarboxylates. Russ. J. Org. Chem., 2015, 51, 91-94.
[http://dx.doi.org/10.1134/S1070428015010157]
[344]
Pathak, R.; Bridgeman, M.B. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T, 2010, 35(9), 509-513.
[345]
Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.; Miwa, M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.; Hinuma, S.; Fujisawa, Y.; Fujino, M.A. G protein-coupled receptor responsive to bile acids. J. Biol. Chem., 2003, 278(11), 9435-9440.
[http://dx.doi.org/10.1074/jbc.M209706200]
[346]
Keitel, V.; Cupisti, K.; Ullmer, C.; Knoefel, W.T.; Kubitz, R.; Häussinger, D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology, 2009, 50(3), 861-870.
[http://dx.doi.org/10.1002/hep.23032]
[347]
Alemi, F.; Kwon, E.; Poole, D.P.; Lieu, T.; Lyo, V.; Cattaruzza, F.; Cevikbas, F.; Steinhoff, M.; Nassini, R.; Materazzi, S.; Guerrero-Alba, R.; Valdez-Morales, E.; Cottrell, G.S.; Schoonjans, K.; Geppetti, P.; Vanner, S.J.; Bunnett, N.W.; Corvera, C.U. The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest., 2013, 123(4), 1513-1530.
[http://dx.doi.org/10.1172/JCI64551]
[348]
Fryer, R.M.; Ng, K.J.; Nodop Mazurek, S.G.; Patnaude, L.; Skow, D.J.; Muthukumarana, A.; Gilpin, K.E.; Dinallo, R.M.; Kuzmich, D.; Lord, J.; Sanyal, S.; Yu, H.; Harcken, C.; Cerny, M.A.; Hickey, E.R.; Modis, L.K. Protein-coupled bile acid receptor, G. 1 stimulation mediates arterial vasodilation through a KCa1.1 (BKCa)-dependent Mechanism. J. Pharmacol. Exp. Ther., 2014, 348, 421-431.
[http://dx.doi.org/10.1124/jpet.113.210005]
[349]
Lasalle, M.; Hoguet, V.; Hennuyer, N.; Leroux, F.; Piveteau, C.; Belloy, L.; Lestavel, S.; Vallez, E.; Dorchies, E.; Duplan, I.; Sevin, E.; Culot, M.; Gosselet, F.; Boulahjar, R.; Herledan, A.; Staels, B.; Deprez, B.; Tailleux, A.; Charton, J. Topical intestinal aminoimidazole agonists of g-protein-coupled bile acid receptor 1 promote glucagon like peptide-1 secretion and improve glucose tolerance. J. Med. Chem., 2017, 60(10), 4185-4211.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01873]
[350]
Stockert, A.L.; Shinde, S.S.; Anderson, R.F.; Hille, R. The reaction mechanism of xanthine oxidase: evidence for two-electron chemistry rather than sequential one-electron steps. J. Am. Chem. Soc., 2002, 124(49), 14554-14555.
[http://dx.doi.org/10.1021/ja027388d]
[351]
Kelley, E.E.; Khoo, N.K.H.; Hundley, N.J.; Malik, U.Z.; Freeman, B.A.; Tarpey, M.M. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic. Biol. Med., 2010, 48(4), 493-498.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.012]
[352]
Kostić, D.A.; Dimitrijević, D.S.; Stojanović, G.S.; Palić, I.R.; Đorđević, A.S.; Ickovski, J.D. Xanthine oxidase: Isolation, assays of activity, and inhibition J. Chem, 2015, 2015, e294858/8.
[http://dx.doi.org/10.1155/2015/294858]
[353]
Ojha, R.; Singh, J.; Ojha, A.; Singh, H.; Sharma, S.; Nepali, K. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015). Expert Opin. Ther. Pat., 2017, 27(3), 311-345.
[http://dx.doi.org/10.1080/13543776.2017.1261111]
[354]
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.109]
[355]
Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev., 2006, 58(1), 87-114.
[http://dx.doi.org/10.1124/pr.58.1.6]
[356]
Baldwin, J.J.; Lumma, P.K.; Novello, F.C.; Ponticello, G.S.; Sprague, J.M.; Duggan, D.E. 2-Pyridylimidazoles as inhibitors of xanthine oxidase. J. Med. Chem., 1977, 20(9), 1189-1193.
[http://dx.doi.org/10.1021/jm00219a016]
[357]
Biagi, G.; Costantini, A.; Costantino, L.; Giorgi, I.; Livi, O.; Pecorari, P.; Rinaldi, M.; Scartoni, V. Synthesis and biological evaluation of new imidazole, pyrimidine, and purine derivatives and analogs as inhibitors of xanthine oxidase. J. Med. Chem., 1996, 39(13), 2529-2535.
[http://dx.doi.org/10.1021/jm950876u]
[358]
Chen, S.; Zhang, T.; Wang, J.; Wang, F.; Niu, H.; Wu, C.; Wang, S. Synthesis and evaluation of 1-hydroxy/methoxy-4-methyl-2-phenyl-1H-imidazole-5-carboxylic acid derivatives as non-purine xanthine oxidase inhibitors. Eur. J. Med. Chem., 2015, 103, 343-353.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.056]
[359]
Schumacher, H.R. Jr Febuxostat: a non-purine, selective inhibitor of xanthine oxidase for the management of hyperuricaemia in patients with gout. Expert Opin. Investig. Drugs, 2005, 14(7), 893-903.
[http://dx.doi.org/10.1517/13543784.14.7.893]
[360]
Desjeux, P. Leishmaniasis: current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004]
[361]
Mitropoulos, P.; Konidas, P.; Durkin-Konidas, M. New World cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J. Am. Acad. Dermatol., 2010, 63(2), 309-322.
[http://dx.doi.org/10.1016/j.jaad.2009.06.088]
[362]
Guerin, P.J.; Olliaro, P.; Sundar, S.; Boelaert, M.; Croft, S.L.; Desjeux, P.; Wasunna, M.K.; Bryceson, A.D.M. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect. Dis., 2002, 2(8), 494-501.
[http://dx.doi.org/10.1016/S1473-3099(02)00347-X]
[363]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006]
[364]
Monzote, L. Current treatment of leishmaniasis: A review. Open Antimicrob. Agents J, 2009, 1, 9-19.https://benthamopen.com/ABSTRACT/TOANTIMJ-1-9
[365]
Tiuman, T.S.; Santos, A.O.; Ueda-Nakamura, T.; Filho, B.P.D.; Nakamura, C.V. Recent advances in leishmaniasis treatment. Int. J. Infect. Dis., 2011, 15(8), e525-e532.
[http://dx.doi.org/10.1016/j.ijid.2011.03.021]
[366]
Pathak, D.; Yadav, M.; Siddiqui, N.; Kushawah, S. Antileishmanial agents: An updated review. Pharma Chem., 2011, 3, 239-249.
[367]
Khan, S.; Khan, I.; Chauhan, P.M.S. Antileishmanial chemotherapy: Present status and future perspectives. Chem. Biol. Interact., 2015, 5, 1-28.
[368]
Emami, S.; Tavangar, P.; Keighobadi, M. An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur. J. Med. Chem., 2017, 135, 241-259.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.044]
[369]
Loedige, M. Design and synthesis of novel antileishmanial compounds. Int. J. Med. Chem, 2015, 2015, e302723/21.
[http://dx.doi.org/10.1155/2015/302723]
[370]
Ferreira, S.B.; Costa, M.S.; Boechat, N.; Bezerra, R.J.S.; Genestra, M.S.; Canto-Cavalheiro, M.M.; Kover, W.B.; Ferreira, V.F. Synthesis and evaluation of new difluoromethyl azoles as antileishmanial agents. Eur. J. Med. Chem., 2007, 42(11-12), 1388-1395.
[http://dx.doi.org/10.1016/j.ejmech.2007.02.020]
[371]
Poorrajab, F.; Ardestani, S.K.; Emami, S.; Behrouzi-Fardmoghadam, M.; Shafiee, A.; Foroumadi, A. Nitroimidazolyl-1,3,4-thiadiazole-based anti-leishmanial agents: synthesis and in vitro biological evaluation. Eur. J. Med. Chem., 2009, 44(4), 1758-1762.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.039]
[372]
Srinivas, N.; Palne, S.; Gupta, S.; Bhandari, K. Aryloxy cyclohexyl imidazoles: a novel class of antileishmanial agents. Bioorg. Med. Chem. Lett., 2009, 19(2), 324-327.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.094]
[373]
Bhandari, K.; Srinivas, N.; Marrapu, V.K.; Verma, A.; Srivastava, S.; Gupta, S. Synthesis of substituted aryloxy alkyl and aryloxy aryl alkyl imidazoles as antileishmanial agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 291-293.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.117]
[374]
Verma, A.; Srivastava, S.; Sane, S.A.; Marrapu, V.K.; Srinivas, N.; Yadav, M.; Bhandari, K.; Gupta, S. Antileishmanial activity of benzocycloalkyl azole oximino ethers: the conformationally constraint analogues of oxiconazole. Acta Trop., 2011, 117(2), 157-160.
[http://dx.doi.org/10.1016/j.actatropica.2010.10.011]
[375]
Marrapu, V.K.; Mittal, M.; Shivahare, R.; Gupta, S.; Bhandari, K. Synthesis and evaluation of new furanyl and thiophenyl azoles as antileishmanial agents. Eur. J. Med. Chem., 2011, 46(5), 1694-1700.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.021]
[376]
Sánchez-Moreno, M.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; Olmo, F.; Sanz, A.M.; Campayo, L.; Cano, C.; Yunta, M.J.R. In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. J. Antimicrob. Chemother., 2012, 67(2), 387-397.
[http://dx.doi.org/10.1093/jac/dkr480]
[377]
Sousa, M.C.; Varandas, R.; Santos, R.C.; Santos-Rosa, M.; Alves, V.; Salvador, J.A.R. Antileishmanial activity of semisynthetic lupane triterpenoids betulin and betulinic acid derivatives: synergistic effects with miltefosine. PLoS One, 2014, 9(3), e89939/12.
[http://dx.doi.org/10.1371/journal.pone.0089939]
[378]
Shashiprabha; Najak, S.P.; Sundarraja Rao, K.; Nagarajan, K.; Shridhara, K.; Torreele, E.; Trunz, B.B. Nitroimidazooxazoles Part XXIV, search for antileishmanial agents: 2,3-dihydro-6-nitroimidazo[2,1-b]oxazoles as potential antileishmanial agents. Indian J. Pharm. Sci, 2014, 76, 92-95.http://www.ijpsonline.com/articles/nitroimidazooxazoles--part-xxiv-search-for-antileishmanial-agents-23dihydro6nitroimidazo21boxazoles-as-potential-antileishmanial-a.html
[379]
Mesquita, J.T.; da Costa-Silva, T.A.; Borborema, S.E.T.; Tempone, A.G. Activity of imidazole compounds on Leishmania (L.) infantum chagasi: reactive oxygen species induced by econazole. Mol. Cell. Biochem., 2014, 389(1-2), 293-300.
[http://dx.doi.org/10.1007/s11010-013-1954-6]
[380]
Koniordou, M.; Patterson, S.; Wyllie, S.; Seifert, K. Snapshot profiling of the antileishmanial potency of lead compounds and drug candidates against intracellular Leishmania donovani amastigotes, with a focus on human-derived host cells. Antimicrob. Agents Chemother, 2017, 61, e01228/16.
[http://dx.doi.org/10.1128/AAC.01228-16]
[381]
Pandey, R.K.; Sharma, D.; Bhatt, T.K.; Sundar, S.; Prajapati, V.K. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach. J. Biomol. Struct. Dyn., 2015, 33(12), 2541-2553.
[http://dx.doi.org/10.1080/07391102.2015.1085904]
[382]
Tovar, J.; Wilkinson, S.; Mottram, J.C.; Fairlamb, A.H. Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol. Microbiol., 1998, 29(2), 653-660.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00968.x]
[383]
Tovar, J.; Cunningham, M.L.; Smith, A.C.; Croft, S.L.; Fairlamb, A.H. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc. Natl. Acad. Sci. USA, 1998, 95(9), 5311-5316.
[http://dx.doi.org/10.1073/pnas.95.9.5311]
[384]
O’Sullivan, M.C.; Durham, T.B.; Valdes, H.E.; Dauer, K.L.; Karney, N.J.; Forrestel, A.C.; Bacchi, C.J.; Baker, J.F. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg. Med. Chem., 2015, 23(5), 996-1010.
[http://dx.doi.org/10.1016/j.bmc.2015.01.018]
[385]
Steiner, B.; Wolf, S.; Kempermann, G. Adult neurogenesis and neurodegenerative disease. Regen. Med., 2006, 1(1), 15-28.
[http://dx.doi.org/10.2217/17460751.1.1.15]
[386]
Zhao, B.; Zhong, M.; Jin, K. Neurogenesis and neurodegenerative diseases in human. Panminerva Med., 2008, 50(1), 55-64.
[387]
Halder, D.; Kim, G-H.; Shin, I. Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells. Mol. Biosyst., 2015, 11(10), 2727-2737.
[http://dx.doi.org/10.1039/C5MB00161G]
[388]
Williams, D.R.; Lee, M-R.; Song, Y-A.; Ko, S-K.; Kim, G-H.; Shin, I. Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. Soc., 2007, 129(30), 9258-9259.
[http://dx.doi.org/10.1021/ja072817z]
[389]
Kim, G-H.; Halder, D.; Park, J.; Namkung, W.; Shin, I. Imidazole-based small molecules that promote neurogenesis in pluripotent cells. Angew. Chem. Int. Ed. Engl., 2014, 53(35), 9271-9274.
[http://dx.doi.org/10.1002/anie.201404871]
[390]
Chitilian, H.V.; Eckenhoff, R.G.; Raines, D.E. Anesthetic drug development: Novel drugs and new approaches. Surg. Neurol. Int., 2013, 4(Suppl. 1), S2-S10.
[http://dx.doi.org/10.4103/2152-7806.109179]
[391]
Whiteside, J.B.; Wildsmith, J.A.W. Developments in local anaesthetic drugs. Br. J. Anaesth., 2001, 87(1), 27-35.
[http://dx.doi.org/10.1093/bja/87.1.27]
[392]
Gertler, R.; Brown, H.C.; Mitchell, D.H.; Silvius, E.N. Dexmedetomidine: a novel sedative-analgesic agent. Proc. Bayl. Univ. Med. Cent., 2001, 14(1), 13-21.
[http://dx.doi.org/10.1080/08998280.2001.11927725]
[393]
Forman, S.A. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707.
[http://dx.doi.org/10.1097/ALN.0b013e3181ff72b5]
[394]
Godefroi, E.F.; Janssen, P.A.J.; Vandereycken, C.A.M.; Vanheertum, A.H.M.T.; Niemegeers, C.J.E. DL-1-(1-Arylalkyl) imidazole-5-carboxylate esters. A novel type of hypnotic agents. J. Med. Chem., 1965, 8, 220-223.
[http://dx.doi.org/10.1021/jm00326a017]
[395]
Cotten, J.F.; Husain, S.S.; Forman, S.A.; Miller, K.W.; Kelly, E.W.; Nguyen, H.H.; Raines, D.E. Methoxycarbonyl-etomidate: a novel rapidly metabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression. Anesthesiology, 2009, 111(2), 240-249.
[http://dx.doi.org/10.1097/ALN.0b013e3181ae63d1]
[396]
Husain, S.S.; Pejo, E.; Ge, R.; Raines, D.E. Modifying methoxycarbonyl etomidate inter-ester spacer optimizes in vitro metabolic stability and in vivo hypnotic potency and duration of action. Anesthesiology, 2012, 117(5), 1027-1036.
[http://dx.doi.org/10.1097/ALN.0b013e31826d3bef]
[397]
Ran, Y.; Li, M.; Zhang, Z-Z. β-Cyclodextrin-propyl sulfonic acid catalysed one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles as local anesthetic agents. Molecules, 2015, 20(11), 20286-20296.
[http://dx.doi.org/10.3390/molecules201119696]
[398]
Goa, K.L.; Wagstaff, A.J. Losartan potassium: a review of its pharmacology, clinical efficacy and tolerability in the management of hypertension. Drugs, 1996, 51(5), 820-845.
[http://dx.doi.org/10.2165/00003495-199651050-00008]
[399]
Manoria, P.; Manoria, P.; Manoria, P. Olmesartan medoxomil: a clinical review. Indian Heart J., 2006, 58(3), 282-286.
[400]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K]
[401]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr; Liu, K.K.C.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2015. J. Med. Chem., 2017, 60(15), 6480-6515.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00010]
[402]
Gaber, H.M.; Bagley, M.C.; Muhammad, Z.A.; Gomha, S.M. Recent developments in chemical reactivity of N,N-dimethylenamino ketones as synthons for various heterocycles. RSC Advances, 2017, 7, 14562-14610.
[http://dx.doi.org/10.1039/C7RA00683G]
[403]
Dandia, A.; Ameta, K. Multicomponent Reactions: Synthesis of Bioactive Heterocycles; CRC Press: Boca Raton, 2017.
[404]
Caro-Diaz, E.J.E.; Urbano, M.; Buzard, D.J.; Jones, R.M. C-H activation reactions as useful tools for medicinal chemists. Bioorg. Med. Chem. Lett., 2016, 26(22), 5378-5383.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.036]
[405]
Mfuh, A.M.; Larionov, O.V. Heterocyclic N-oxides - an emerging class of therapeutic agents. Curr. Med. Chem., 2015, 22(24), 2819-2857.
[http://dx.doi.org/10.2174/0929867322666150619104007]
[406]
Baumann, M.; Baxendale, I.R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J. Org. Chem., 2015, 11, 1194-1219.
[http://dx.doi.org/10.3762/bjoc.11.134]
[407]
Fier, P.S.; Hartwig, J.F. Synthesis and late-stage functionalization of complex molecules through C-H fluorination and nucleophilic aromatic substitution. J. Am. Chem. Soc., 2014, 136(28), 10139-10147.
[http://dx.doi.org/10.1021/ja5049303]
[408]
Brahmachari, G. Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, 2015.
[409]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57]
[410]
Bellina, F.; Rossi, R. Regioselective functionalization of the imidazole ring via transition metal-catalyzed C-N and C-C bond forming reactions. Adv. Synth. Catal., 2010, 352, 1223-1276.
[http://dx.doi.org/10.1002/adsc.201000144]
[411]
Rossi, R.; Angelici, G.; Casotti, G.; Manzini, C.; Lessi, M. Catalytic synthesis of 1,2,4,5-tetrasubstituted 1H-Imidazole derivatives: state of the art. Adv. Synth. Catal., 2019, 361, 2737-2803.
[http://dx.doi.org/10.1002/adsc.201801381]