Synthesis and Biological Activity of Hydrazones and Derivatives: A Review

Page: [342 - 368] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Hydrazones and their derivatives are very important compounds in medicinal chemistry due to their reported biological activity for the treatment of several diseases, like Alzheimer’s, cancer, inflammation, and leishmaniasis. However, most of the investigations on hydrazones available in literature today are directed to the synthesis of these molecules with little discussion available on their biological activities. With the purpose of bringing lights into this issue, we performed a revision of the literature and wrote this review based on some of the most current research reports of hydrazones and derivatives, making it clear that the synthesis of these molecules can lead to new drug prototypes. Our goal is to encourage more studies focused on the synthesis and evaluation of new hydrazones, as a contribution to the development of potential new drugs for the treatment of various diseases.

Keywords: Hydrazones, guanylhydrazones, biologic activity, medicinal chemistry, Alzheimer's, cancer, leishmaniasis.

Graphical Abstract

[1]
Terzioglu, N.; Gürsoy, A. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-b][1,3,4]thiadiazole-5-carbohydrazide. Eur. J. Med. Chem., 2003, 38(7-8), 781-786.
[http://dx.doi.org/10.1016/S0223-5234(03)00138-7] [PMID: 12932910]
[2]
Savini, L.; Chiasserini, L.; Travagli, V.; Pellerano, C.; Novellino, E.; Cosentino, S.; Pisano, M.B. bNew alpha-(N)-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity. Eur. J. Med. Chem., 2004, 39(2), 113-122.
[http://dx.doi.org/10.1016/j.ejmech.2003.09.012] [PMID: 14987820]
[3]
Yang, J.; Lu, W.; Xiao, J.; Zong, Q.; Xu, H.; Yin, Y.; Hong, H.; Xu, W. A positron emission tomography image-guidable unimolecular micelle nanoplatform for cancer theranostic applications. Acta Biomater., 2018, 79, 306-316.
[http://dx.doi.org/10.1016/j.actbio.2018.08.036] [PMID: 30172067]
[4]
Melnyk, P.; Leroux, V.; Sergheraert, C.; Grellier, P. Design, synthesis and in vitro antimalarial activity of an acylhydrazone library. Bioorg. Med. Chem. Lett., 2006, 16(1), 31-35.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.058] [PMID: 16263280]
[5]
Costa, L.B.; Cardoso, M.V.O.; de Oliveira Filho, G.B.; de Moraes Gomes, P.A.; Espíndola, J.W.P.; de Jesus Silva, T.G.; Torres, P.H.M.; Silva, Junior, F.P.; Martin, J.; de Figueiredo, R.C.B.Q.; Leite, A.C.L. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(8), 1608-1618.
[http://dx.doi.org/10.1016/j.bmc.2016.02.027] [PMID: 26964673]
[6]
Coa, J.C.; Garcia, E.; Carda, M.; Agut, R.; Velez, I.D.; Munoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26, 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[7]
Sola, I.; Artigas, A.; Taylor, M.C.; Pérez-Areales, F.J.; Viayna, E.; Clos, M.V.; Pérez, B.; Wright, C.W.; Kelly, J.M.; Muñoz-Torrero, D. Synthesis and biological evaluation of N-cyanoalkyl-, N-aminoalkyl-, and N-guanidinoalkyl-substituted 4-aminoquinoline derivatives as potent, selective, brain permeable antitrypanosomal agents. Bioorg. Med. Chem., 2016, 24(21), 5162-5171.
[http://dx.doi.org/10.1016/j.bmc.2016.08.036] [PMID: 27591008]
[8]
Abdel-Aal, M.T.; El-Sayed, W.A.; El-Ashry, S.H. Synthesis and antiviral evaluation of some sugar arylglycinoylhydrazones and their oxadiazoline derivatives. Arch. Pharm. (Weinheim), 2006, 339(12), 656-663.
[http://dx.doi.org/10.1002/ardp.200600100] [PMID: 17149795]
[9]
Soares, R.R.; Antinarelli, L.; Souza, I.; Lopes, F.V.; Gorza Scopel, K.K.; Coimbra, E.S.; da Silva, A.D. Abramo, Clarice. In vivo antimalarial and in vitro antileishmanial activity of 4-aminoquinoline derivatives hybridized to isoniazid or sulfa or hydrazine groups. Lett. Drug Des. Discov., 2017, 14, 1-8.
[http://dx.doi.org/10.2174/1570180813666160927113743]
[10]
Palanimuthu, D.; Wu, Z.; Jansson, P.J.; Braidy, N.; Bernhardt, P.V.; Richardson, D.R.; Kalinowski, D.S. Novel chelators based on adamantane-derived semicarbazones and hydrazones that target multiple hallmarks of Alzheimer’s disease. Dalton Trans., 2018, 47(21), 7190-7205.
[http://dx.doi.org/10.1039/C8DT01099D] [PMID: 29749416]
[11]
Küçükgüzel, S.G.; Mazi, A.; Sahin, F.; Oztürk, S.; Stables, J. Synthesis and biological activities of diflunisal hydrazide-hydrazones. Eur. J. Med. Chem., 2003, 38(11-12), 1005-1013.
[http://dx.doi.org/10.1016/j.ejmech.2003.08.004] [PMID: 14642333]
[12]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Ozalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[13]
Vicini, P.; Incerti, M.; Doytchinova, I.A.; La Colla, P.; Busonera, B.; Loddo, R. Synthesis and antiproliferative activity of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem., 2006, 41(5), 624-632.
[http://dx.doi.org/10.1016/j.ejmech.2006.01.010] [PMID: 16540208]
[14]
Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 83(1), 297-303.
[http://dx.doi.org/10.1016/j.saa.2011.08.033] [PMID: 21924947]
[15]
Guimarães, D.G.; Rolim, L.A.; Gonsalves, A.A.; Araújo, C.R.M. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications. Rev. Virtual Quim., 2017, 9(6), 2551-2592.
[16]
Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford University Press: Oxford, 2000.
[17]
Barton, D.H.R.; Ives, D.A.J.; Thomas, B.R. A Wolff-Kishner reduction procedure for sterically hindered carbonyl groups. J. Chem. Soc., 1955, 2056.
[18]
Chamberlin, A.R.; Bond, F.T. Leaving-group variation in aprotic Bamford-Stevens carbene generation. Org. Chem. Soc., 1978, 43, 154-155.
[http://dx.doi.org/10.1021/jo00395a034]
[19]
Evans, D.A.; Nelson, J.V. A stereochemical study of the [3,3]-sigmatropic rearrangement of 1,5-diene-3-alkoxides. Applications to the stereoselective synthesis of (.+-.)-juvabione. J. Am. Chem. Soc., 1980, 102, 774-782.
[http://dx.doi.org/10.1021/ja00522a056]
[20]
Myers, A.G.; Kukkola, P.J. Stereoselective synthesis of olefins from silylated sulfonylhydrazones. J. Am. Chem. Soc., 1990, 112, 8208-8210.
[http://dx.doi.org/10.1021/ja00178a078]
[21]
Aggarwal, V.K.; de Vicente, J.; Bonnert, R.V. A novel one-pot method for the preparation of pyrazoles by 1,3-dipolar cycloadditions of diazo compounds generated in situ. J. Org. Chem., 2003, 68(13), 5381-5383.
[http://dx.doi.org/10.1021/jo0268409] [PMID: 12816503]
[22]
Storck, G.; Willard, P.G. Five- and six-membered-ring formation from olefinic α-, β-epoxy ketones and hydrazine. J. Am. Chem. Soc., 1977, 99, 7067-7068.
[http://dx.doi.org/10.1021/ja00463a053]
[23]
Caglioti, L.; Magi, M. The reaction of tosylhydrazones with lithium aluminium hydride. Tetrahedron, 1963, 19, 1127-1131.
[http://dx.doi.org/10.1016/S0040-4020(01)98571-0]
[24]
Groselj, U.; Bevk, D.; Jakse, R.; Meden, A.; Stanovnik, B.; Svete, J. Synthesis of (1R,4E,5S)-4-[(E)-(azinyl)diazenyl]methylidene-1,8,8-trimethyl-2-oxabicyclo[3.2.1]octan-3-ones and (1R,4R,5R)-4-([1,2,4]triazolo[4,3-x]azin-3-yl)-1,8,8-trimethyl-2-oxabicyclo[3.2.1] octan-3-ones. Tetrahedron Asymmetry, 2005, 16, 2927-2945.
[http://dx.doi.org/10.1016/j.tetasy.2005.07.032]
[25]
Holzer, H.; Györgydéak, Z. NMR spectroscopic investigations with isatin guanylhydrazones. J. Heterocycl. Chem., 1996, 33, 675-680.
[http://dx.doi.org/10.1002/jhet.5570330326]
[26]
Walzer, P.D.; Foy, J.; Runck, J.; Steele, P.; White, M.; Klein, R.S.; Otter, B.A.; Sundberg, R.J. Guanylhydrazones in therapy of Pneumocystis carinii pneumonia in immunosuppressed rats. Antimicrob. Agents Chemother., 1994, 38(11), 2572-2576.
[http://dx.doi.org/10.1128/AAC.38.11.2572] [PMID: 7872750]
[27]
Mitchell, B.A.; Brown, M.H.; Skurray, R.A. QacA multidrug efflux pump from Staphylococcus aureus: Comparative analysis of resistance to diamidines, biguanidines, and guanylhydrazones. Antimicrob. Agents Chemother., 1998, 42(2), 475-477.
[PMID: 9527814]
[28]
Kashaw, S.K.; Kashaw, V.; Mishra, P.; Jain, N.K.; Stables, J.P. Synthesis, anticonvulsant and CNS depressant activity of some new bioactive 1-(4-substituted-phenyl)-3-(4-oxo-2-phenyl/ethyl-4H-quinazolin-3-yl)-urea. Eur. J. Med. Chem., 2009, 44(11), 4335-4343.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.008] [PMID: 19674817]
[29]
Holmes, B.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S.; Guanabenz, G.S. A review of its pharmacodynamic properties and therapeutic efficacy in hypertension. Drugs, 1983, 26(3), 212-229.
[http://dx.doi.org/10.2165/00003495-198326030-00003] [PMID: 6352237]
[30]
Foye, W.O.; Almassian, B.; Eisenberg, M.S.; Maher, T.J. Synthesis and biological activity of guanylhydrazones of 2- and 4-pyridine and 4-quinoline carboxaldehydes. J. Pharm. Sci., 1990, 79(6), 527-530.
[http://dx.doi.org/10.1002/jps.2600790615] [PMID: 2395098]
[31]
Fraga, A.G.M.; Rodrigues, C.R.; de Miranda, A.L.; Barreiro, E.J.; Fraga, C.A.M. Synthesis and pharmacological evaluation of novel heterotricyclic acylhydrazone derivatives, designed as PAF antagonists. Eur. J. Pharm. Sci., 2000, 11(4), 285-290.
[http://dx.doi.org/10.1016/S0928-0987(00)00102-0] [PMID: 11033071]
[32]
Silva, G.A.; Costa, L.M.M.; Brito, F.C.F.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A.M. New class of potent antinociceptive and antiplatelet 10H-phenothiazine-1-acylhydrazone derivatives. Bioorg. Med. Chem., 2004, 12(12), 3149-3158.
[http://dx.doi.org/10.1016/j.bmc.2004.04.009] [PMID: 15158783]
[33]
Andreani, A.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Recanatini, M.; Garaliene, V. Potential antitumor agents. Part 29(1): Synthesis and potential coanthracyclinic activity of imidazo[2,1-b]thiazole guanylhydrazones. Bioorg. Med. Chem., 2000, 8(9), 2359-2366.
[http://dx.doi.org/10.1016/S0968-0896(00)00165-6] [PMID: 11026549]
[34]
Shen, Z-H.; Sun, Z-H.; James, J. Becnel; Alden, E.; David, E.; Wedge; Cheng-Xia, T.; Jian-Quan, W.; Liang, H.; Xing-Hai, L. Synthesis and mosquiticidal activity of novel hydrazone containing pyrimidine derivatives against aedes aegypti. Lett. Drug Des. Discov., 2018, 15, 951-956.
[http://dx.doi.org/10.2174/1570180815666180102141640]
[35]
Gadad, A.K.; Mahajanshetti, C.S.; Nimbalkar, S.; Raichurkar, A. Synthesis and antibacterial activity of some 5-guanylhydrazone/thiocyanato-6-arylimidazo[2,1-b]-1,3, 4-thiadiazole-2-sulfonamide derivatives. Eur. J. Med. Chem., 2000, 35(9), 853-857.
[http://dx.doi.org/10.1016/S0223-5234(00)00166-5] [PMID: 11006486]
[36]
Ruiz, R.; Aviado, M. Pharmacology of new antimalarial drugs: Three guanylhydrazones. Pharmacology, 1970, 4(1), 45-62.
[http://dx.doi.org/10.1159/000136122] [PMID: 5431772]
[37]
Santos-Filho, O.A.; Figueroa-Villar, J.D.; Araújo, M.T. Molecular modeling of the interaction of trypanocide guanyl hydrazones with B-DNA. Bioorg. Med. Chem. Lett., 1997, 7, 1797-1802.
[http://dx.doi.org/10.1016/S0960-894X(97)00312-0]
[38]
Papanastasiou, I.; Tsotinis, A.; Zoidis, G.; Kolocouris, N.; Prathalingam, S.R.; Kelly, J.M. Design and synthesis of Trypanosoma brucei active 1-alkyloxy and 1-benzyloxyadamantano 2-guanylhydrazones. ChemMedChem, 2009, 4(7), 1059-1062.
[http://dx.doi.org/10.1002/cmdc.200900019] [PMID: 19422003]
[39]
Kelly, J.M.; Quack, G.; Miles, M.M. In vitro and in vivo activities of aminoadamantane and aminoalkylcyclohexane derivatives against Trypanosoma brucei. Antimicrob. Agents Chemother., 2001, 45(5), 1360-1366.
[http://dx.doi.org/10.1128/AAC.45.5.1360-1366.2001] [PMID: 11302796]
[40]
Martins, T.L.C.; França, T.C.C.; Ramalho, T.C.; Figueroa-Villar, J.D. Synthesis of guanylhydrazones under microwave irradiation. Synth. Commun., 2004, 34(21), 3891-3899.
[http://dx.doi.org/10.1081/SCC-200034774]
[41]
Pinhatti, V.R.; da Silva, J.; Martins, T.L.C.; Moura, D.J.; Rosa, R.M.; Villela, I.; Stopiglia, C.D.O.; da Silva Santos, S.; Scroferneker, M.L.; Machado, C.R.; Saffi, J.; Henriques, J.A.P. Cytotoxic, mutagenicity, and genotoxicity effects of guanylhydrazone derivatives. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 806, 1-10.
[http://dx.doi.org/10.1016/j.mrgentox.2016.06.001] [PMID: 27476330]
[42]
Sugiura, M.; Kobayashi, S. N-acylhydrazones as versatile electrophiles for the synthesis of nitrogen-containing compounds. Angew. Chem. Int. Ed. Engl., 2005, 44(33), 5176-5186.
[http://dx.doi.org/10.1002/anie.200500691] [PMID: 16059954]
[43]
Rollas, S.; Küçükgüzel, Ş.G. Biological activities of hydrazone derivatives. Molecules, 2007, 12(8), 1910-1939.
[http://dx.doi.org/10.3390/12081910] [PMID: 17960096]
[44]
Dimmock, J.R.; Vashishtha, S.C.; Stables, J.P. Anticonvulsant properties of various acetylhydrazones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds. Eur. J. Med. Chem., 2000, 35(2), 241-248.
[http://dx.doi.org/10.1016/S0223-5234(00)00123-9] [PMID: 10758285]
[45]
Çakır, B.; Dağ, Ö.; Yıldırım, E.; Erol, K.; Şahin, M.F. Synthesis and anticonvulsant activity of some hydrazones of 2-[(3H)-oxobenzoxazolin-3-yl-aceto]hydrazide. J. Fac. Pharm. Gazi., 2001, 18, 99-106.
[46]
Ragavendran, J.V.; Sriram, D.; Patel, S.K.; Reddy, I.V.; Bharathwajan, N.; Stables, J.; Yogeeswari, P. Design and synthesis of anticonvulsants from a combined phthalimide-GABA-anilide and hydrazone pharmacophore. Eur. J. Med. Chem., 2007, 42(2), 146-151.
[http://dx.doi.org/10.1016/j.ejmech.2006.08.010] [PMID: 17011080]
[47]
Ergenç, N.; Günay, N.S. Synthesis and antidepressant evaluation of new 3-phenyl-5-sulfonamidoindole derivatives. Eur. J. Med. Chem., 1998, 33, 143-148.
[http://dx.doi.org/10.1016/S0223-5234(98)80039-1]
[48]
Abadi, A.H.; Eissa, A.A.H.; Hassan, G.S. Synthesis of novel 1,3,4-trisubstituted pyrazole derivatives and their evaluation as antitumor and antiangiogenic agents. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 838-844.
[http://dx.doi.org/10.1248/cpb.51.838] [PMID: 12843591]
[49]
Terzioğlu, N.; Gürsoy, A. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-b]-[1,3,4]thiadiazole-5-carbohydrazide. Eur. J. Med. Chem., 2003, 38, 781-786.
[http://dx.doi.org/10.1016/S0223-5234(03)00138-7] [PMID: 12932910]
[50]
Gürsoy, A.; Karali, N. Synthesis and primary cytotoxicity evaluation of 3-[[(3-phenyl-4(3H)-quinazolinone-2-yl)mercaptoacetyl]-hydrazono]-1H-2-indolinones. Eur. J. Med. Chem., 2003, 38(6), 633-643.
[http://dx.doi.org/10.1016/S0223-5234(03)00085-0] [PMID: 12832136]
[51]
Lima, P.C.; Lima, L.M.; da Silva, K.C.; Léda, P.H.; de Miranda, A.L.; Fraga, C.A.M.; Barreiro, E.J. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur. J. Med. Chem., 2000, 35(2), 187-203.
[http://dx.doi.org/10.1016/S0223-5234(00)00120-3] [PMID: 10758281]
[52]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[53]
Duarte, C.D.; Tributino, J.L.M.; Lacerda, D.I.; Martins, M.V.; Alexandre-Moreira, M.S.; Dutra, F.; Bechara, E.J.H.; De-Paula, F.S.; Goulart, M.O.F.; Ferreira, J.; Calixto, J.B.; Nunes, M.P.; Bertho, A.L.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A.M. Synthesis, pharmacological evaluation and electrochemical studies of novel 6-nitro-3,4-methylenedioxyphenyl-N-acylhydrazone derivatives: Discovery of LASSBio-881, a new ligand of cannabinoid receptors. Bioorg. Med. Chem., 2007, 15(6), 2421-2433.
[http://dx.doi.org/10.1016/j.bmc.2007.01.013] [PMID: 17275312]
[54]
Silva, A.G.; Zapata-Sudo, G.; Kummerle, A.E.; Fraga, C.A.M.; Barreiro, E.J.; Sudo, R.T. Synthesis and vasodilatory activity of new N-acylhydrazone derivatives, designed as LASSBio-294 analogues. Bioorg. Med. Chem., 2005, 13(10), 3431-3437.
[http://dx.doi.org/10.1016/j.bmc.2005.03.003] [PMID: 15848755]
[55]
Bernardino, A.M.; Gomes, A.O.; Charret, K.S.; Freitas, A.C.; Machado, G.M.; Canto-Cavalheiro, M.M.; Leon, L.L.; Amaral, V.F. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N′-[(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides. Eur. J. Med. Chem., 2006, 41(1), 80-87.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.007] [PMID: 16300859]
[56]
Walcourt, A.; Loyevsky, M.; Lovejoy, D.B.; Gordeuk, V.R.; Richardson, D.R. Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites. Int. J. Biochem. Cell Biol., 2004, 36(3), 401-407.
[http://dx.doi.org/10.1016/S1357-2725(03)00248-6] [PMID: 14687919]
[57]
Gemma, S.; Kukreja, G.; Fattorusso, C.; Persico, M.; Romano, M.P.; Altarelli, M.; Savini, L.; Campiani, G.; Fattorusso, E.; Basilico, N.; Taramelli, D.; Yardley, V.; Butini, S. Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorg. Med. Chem. Lett., 2006, 16(20), 5384-5388.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.060] [PMID: 16890433]
[58]
Tavares, L.C.; Chisté, J.J.; Santos, M.G.B.; Penna, T.C.V. Synthesis and biological activity of nifuroxazide and analogs. II. Boll. Chim. Farm., 1999, 138(8), 432-436.
[PMID: 10622109]
[59]
Ulusoy, N.; Çapan, G.; Otük, G.; Kiraz, M. Synthesis and antimicrobial activity of new 6-phenylimidazo[2,1-b]thiazole derivatives. Boll. Chim. Farm., 2000, 139(4), 167-172.
[PMID: 11059099]
[60]
Turan-Zitouni, G.; Blache, Y.; Güven, K. Synthesis and antimicrobial activity of some imidazo-[1,2-a]pyridine-2- carboxylic acid arylidenehydrazide derivatives. Boll. Chim. Farm., 2001, 140(6), 397-400.
[PMID: 11822228]
[61]
Bukowski, L.; Janowiec, M. 1-Methyl-1H-2-imidazo[4,5-b]pyri-dinecarboxylic acid and some of its derivatives with suspected antituberculotic activity. Pharmazie, 1996, 51(1), 27-30.
[http://dx.doi.org/10.1002/chin.199630179] [PMID: 8999430]
[62]
Cocco, M.T.; Congiu, C.; Onnis, V.; Pusceddo, M.C.; Schivo, M.L.; De Logu, A. Synthesis andantimycobacterial activity of some isonicotinoylhydrazones. Eur. J. Med. Chem., 1999, 34, 1071-1076.
[http://dx.doi.org/10.1016/S0223-5234(99)00124-5]
[63]
Purandara, H.; Raghavendra, S.; Foro, S.; Patil, P.; Gowda, P.B.T.; Dharmaprakash, S.M.; Vishwanatha, P. Synthesis, spectroscopic characterization, crystal structure, Hirshfeld surface analysis and third-order nonlinear optical properties of 2-(4-chlorophenoxy)-N′-[(1E)-1-(4-methylphenyl)ethylidene]acetohydrazide. J. Mol. Struct., 2019, 1185, 205-211.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.079]
[64]
Imane, H.F. Marwa; A., Rym; B-S., Thouraya. Synthesis, characterization and conformational study of new α,β-unsaturated acylhydrazones based on calix[4]arene backbone. J. Mol. Struct., 2019, 1185, 78-84.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.047]
[65]
Ershov, A.Y.; Martynenkov, A.A.; Lagoda, I.V.; Yakimansky, A.V.A.V. Synthesis of mono- and disaccharide 4-[(ω sulfanylalkyl)oxy]benzoylhydrazones as potential glycoligands for noble metal nanoparticles. Russ. J. Gen. Chem., 2019, 89(2), 292-299.
[http://dx.doi.org/10.1134/S1070363219020208]
[66]
Ershov, A.Y.; Vasilyeva, M.Y.; Levit, M.L.; Lagoda, I.V.; Baygildin, V.A.; Shabsels, B.M.; Martynenkov, A.A.; Yakimansky, A.V. Synthesis of gold glyconanoparticles based on thiol-containing D-hexose acylhydrazones and their modification by thiolated poly(2-deoxy-2-methacryloylamino-D-glucose. Russ. J. Gen. Chem., 2019, 89(2), 300-308.
[http://dx.doi.org/10.1134/S107036321902021X]
[67]
Zhang, H.; Wang, K-H.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. N-Arylations of trifluoromethylated N-acylhydrazones with diaryliodonium salts as arylation reagents. Org. Biomol. Chem., 2019, 17(11), 2940-2947.
[http://dx.doi.org/10.1039/C9OB00236G] [PMID: 30801598]
[68]
Borcea, A-M.; Marc, G.; Ionuț, I.; Vodnar, D.C.; Vlase, L.; Gligor, F.; Pricopie, A.; Pîrnău, A.; Tiperciuc, B.; Oniga, O. A novel series of acylhydrazones as potential anti-Candida agents: Design, synthesis, biological evaluation and in silico studies. Molecules, 2019, 24(1), 184-198.
[http://dx.doi.org/10.3390/molecules24010184] [PMID: 30621322]
[69]
Guilherme, F.D.; Simonetti, J.É.; Folquitto, L.R.S.; Reis, A.C.C.; Oliver, J.C.; Dias, A.L.T.; Dias, D.F.; Carvalho, D.T.; Brandão, G.C.; de Souza, T.B. Synthesis, chemical characterization and antimicrobial activity of new acylhydrazones derived from carbohydrates. J. Mol. Struct., 2019, 1184, 349-356.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.045]
[70]
Yao, Q.; Qi, J.; Zheng, Y.; Qian, K.; Wei, L.; Maimaitiyiming, M.; Cheng, Z.; Wang, Y. Synthesis, anticancer activity and mechanism of iron chelator derived from 2,6-diacetylpyridine bis(acylhydrazones). J. Inorg. Biochem., 2019, 193, 1-8.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.01.003] [PMID: 30654208]
[71]
Lazić, J.; Ajdačić, V.; Vojnovic, S.; Zlatović, M.; Pekmezovic, M.; Mogavero, S.; Opsenica, I.; Nikodinovic-Runic, J. Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction. Appl. Microbiol. Biotechnol., 2018, 102(4), 1889-1901.
[http://dx.doi.org/10.1007/s00253-018-8749-3] [PMID: 29330691]
[72]
Chourasiya, S.S.; Kathuria, D.; Nikam, S.S.; Ramakrishnan, A.; Khullar, S.; Mandal, S.K.; Chakraborti, A.K.; Bharatam, P.V. Azine-hydrazone tautomerism of guanylhydrazones: Evidence for the preference toward the azine tautomer. J. Org. Chem., 2016, 81(17), 7574-7583.
[http://dx.doi.org/10.1021/acs.joc.6b01258] [PMID: 27494613]
[73]
França, P.H.; Da Silva-Júnior, E.F.; Aquino, P.G.V.; Santana, A.E.G.; Ferro, J.N.S.; De Oliveira Barreto, E.; Do Ó Pessoa, C.; Meira, A.S.; De Aquino, T.M.; Alexandre-Moreira, M.S.; Schmitt, M.; De Araújo-Júnior, J.X. Preliminary in vitro evaluation of the anti-proliferative activity of guanylhydrazone derivatives. Acta Pharm., 2016, 66(1), 129-137.
[http://dx.doi.org/10.1515/acph-2016-0015] [PMID: 26959549]
[74]
Petronilho, Eda. C. Rennó, Mdo.N.; Castro, N.G.; da Silva, F.M.R.; Pinto, Ada.C.; Figueroa-Villar, J.D. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1069-1078.
[http://dx.doi.org/10.3109/14756366.2015.1094468] [PMID: 26558640]
[75]
Ajdačić, V.; Senerovic, L.; Vranić, M.; Pekmezovic, M.; Arsic-Arsnijevic, V.; Veselinovic, A.; Veselinovic, J.; Šolaja, B.A.; Nikodinovic-Runic, J.; Opsenica, I.M. Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates. Bioorg. Med. Chem., 2016, 24(6), 1277-1291.
[http://dx.doi.org/10.1016/j.bmc.2016.01.058] [PMID: 26867487]
[76]
Ajdačić, V.; Lazić, J.; Mojićević, M.; Šegan, S.; Nikodinovic-Runic, J.; Opsenica, I.M. Antibacterial and antifungal properties of guanylhydrazones. J. Serb. Chem. Soc., 2017, 82(6), 641-649.
[http://dx.doi.org/10.2298/JSC170213033A]
[77]
Mamta; Aggarwala, R.; Sadana, R.; Ilag, J.; Sumran, G. Synthesis and bioevaluation of 6-chloropyridazin-3-yl hydrazones and 6-chloro-3-substituted [1,2,4]triazolo[4,3-b]pyridazines as cytotoxic agentes. Bioorg. Chem., 2019, 86, 288-295.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.049] [PMID: 30735849]
[78]
Tripathi, K.; Rai, A.; Sonkar, A.K.; Yashaswee, S.; Trigun, S.K.; Mishra, L. Synthesis, photo-physical, computational and invitro cytotoxic studies of 4-((E)-2-benzylidenehydrazinyl)benzonitrile derivatives. J. Photochem. Photobiol. Chem., 2019, 375, 252-260.
[http://dx.doi.org/10.1016/j.jphotochem.2019.02.013]
[79]
Gurer-Orhan, H.; Karaaslan, C.; Ozcan, S.; Firuzi, O.; Tavakkoli, M.; Saso, L.; Suzen, S. Novel indole-based melatonin analogues: Evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg. Med. Chem., 2016, 24, 1658-1664. b. Haghighijoo, Z.; Firuzi, O.; Hemmateenejad, B.; Emami, S.; Edraki, N.; Miri, R. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease. Bioorg. Chem., 2017, 74, 126-133.
[80]
Pisani, L.; De Palma, A.; Giangregorio, N.; Miniero, D.V.; Pesce, P.; Nicolotti, O.; Campagna, F.; Altomare, C.D.; Catto, M. Mannich base approach to 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone: A water-soluble prodrug for a multitarget inhibition of cholinesterases, beta-amyloid fibrillization and oligomer-induced cytotoxicity. Eur. J. Pharm. Sci., 2017, 109, 381-388.
[http://dx.doi.org/10.1016/j.ejps.2017.08.004] [PMID: 28801274]
[81]
Prinz, M.; Parlar, S.; Bayraktar, G.; Alptüzün, V.; Erciyas, E.; Fallarero, A.; Karlsson, D.; Vuorela, P.; Burek, M.; Förster, C.; Turunc, E.; Armagan, G.; Yalcin, A.; Schiller, C.; Leuner, K.; Krug, M.; Sotriffer, C.A.; Holzgrabe, U. 1,4-Substituted 4-(1H)-pyridylene-hydrazone-type inhibitors of AChE, BuChE, and amyloid-β aggregation crossing the blood-brain barrier. Eur. J. Pharm. Sci., 2013, 49(4), 603-613.
[http://dx.doi.org/10.1016/j.ejps.2013.04.024] [PMID: 23643737]
[82]
Hauser-Davis, R.A.; de Freitas, L.V.; Cukierman, D.S.; Cruz, W.S.; Miotto, M.C.; Landeira-Fernandez, J.; Valiente-Gabioud, A.A.; Fernández, C.O.; Rey, N.A. Disruption of zinc and copper interactions with Aβ(1-40) by a non-toxic, isoniazid-derived, hydrazone: A novel biometal homeostasis restoring agent in Alzheimer’s disease therapy? Metallomics, 2015, 7(5), 743-747.
[http://dx.doi.org/10.1039/C5MT00003C] [PMID: 25860559]
[83]
Özturan Özer, E.; Tan, O.U.; Ozadali, K.; Küçükkılınç, T.; Balkan, A.; Uçar, G. Synthesis, molecular modeling and evaluation of novel N′-2-(4-benzylpiperidin-/piperazin-1-yl)acylhydrazone derivatives as dual inhibitors for cholinesterases and Aβ aggregation. Bioorg. Med. Chem. Lett., 2013, 23(2), 440-443.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.064] [PMID: 23273219]
[84]
Ferreira Neto, D.C.; Ferreira, M.S.; Petronilho, E.C.; Lima, J.A.; de Azeredo, S.O.F.; Brum, J.O.C.; Nascimento, C.J.; Figueroa-Villar, J.D. A new guanylhydrazone derivative as a potential acetylcholinesterase inhibitor for Alzheimer’s disease: Synthesis, molecular docking, biological evaluation and kinetic studies by nuclear magnetic resonance. RSC Advances, 2017, 7, 33944-33952.
[http://dx.doi.org/10.1039/C7RA04180B]
[85]
Dias Viegas, F.P.; de Freitas Silva, M.; Divino da Rocha, M.; Castelli, M.R.; Riquiel, M.M.; Machado, R.P.; Vaz, S.M.; Simões de Lima, L.M.; Mancini, K.C.; Marques de Oliveira, P.C.; Morais, E.P.; Gontijo, V.S.; da Silva, F.M.R.; D’Alincourt da Fonseca Peçanha, D.; Castro, N.G.; Neves, G.A.; Giusti-Paiva, A.; Vilela, F.C.; Orlandi, L.; Camps, I.; Veloso, M.P.; Leomil Coelho, L.F.; Ionta, M.; Ferreira-Silva, G.A.; Pereira, R.M.; Dardenne, L.E.; Guedes, I.A.; de Oliveira Carneiro, Junior, W.; Quaglio Bellozi, P.M.; Pinheiro de Oliveira, A.C.; Ferreira, F.F.; Pruccoli, L.; Tarozzi, A.; Viegas, C. Jr Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur. J. Med. Chem., 2018, 147, 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[86]
Rudrapal, M.; Satyanandam, R.S.; Swaroopini, T.S.; Lakshmi, T.N. KamarJaha, S. K.; Zaheera, S. Synthesis and antibacterial activity of some new hydrazones. Med. Chem. Res., 2013, 22, 2840-2846.
[http://dx.doi.org/10.1007/s00044-012-0278-5]
[87]
Xaiver, J.J.F.; Krishnasamy, K.; Sankar, C. Synthesis and antibacterial, antifungal activities of some 2r,4c-diaryl-3 azabicyclo[3.3.1]nonan-9-one-4-aminobenzoyl hydrazones. Med. Chem. Res., 2012, 21, 345-350.
[http://dx.doi.org/10.1007/s00044-010-9528-6]
[88]
Dehestani, L.; Ahangar, N.; Hashemi, S.M.; Irannejad, H.; Honarchian Masihi, P.; Shakiba, A.; Emami, S. Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorg. Chem., 2018, 78, 119-129.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.001] [PMID: 29550532]
[89]
Angelova, V.; Karabeliov, V.; Andreeva-Gateva, P.A.; Tchekalarova, J. Recent developments of hydrazide/hydrazone derivatives and their analogs as anticonvulsant agents in animal models. Drug Dev. Res., 2016, 77(7), 379-392.
[http://dx.doi.org/10.1002/ddr.21329] [PMID: 27775155]
[90]
Amir, M.; Ali, I.; Hassan, M.Z.; Mulakayala, N. Design, synthesis, and biological evaluation of hydrazone incorporated 1,2,4-triazines as anticonvulsant agents. Arch. Pharm. (Weinheim), 2014, 347(12), 958-968.
[http://dx.doi.org/10.1002/ardp.201400045] [PMID: 25251582]
[91]
Ulloora, S.; Shabaraya, R.; Ranganathan, R.; Adhikari, A.V. Synthesis, anticonvulsant and anti-inflammatory studies of new 1,4-dihydropyridin-4-yl-phenoxyacetohydrazones. Eur. J. Med. Chem., 2013, 70, 341-349.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.010] [PMID: 24177360]
[92]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[93]
Mohareb, R.M.; Fleita, D.H.; Sakka, O.K. Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumor activity. Molecules, 2010, 16(1), 16-27.
[http://dx.doi.org/10.3390/molecules16010016] [PMID: 21187814]
[94]
Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem., 2014, 76, 539-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.026] [PMID: 24607878]
[95]
Lindgren, E.B.; de Brito, M.A.; Vasconcelos, T.R.A.; de Moraes, M.O.; Montenegro, R.C.; Yoneda, J.D.; Leal, K.Z. Synthesis and anticancer activity of (E)-2-benzothiazole hydrazones. Eur. J. Med. Chem., 2014, 86, 12-16.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.039] [PMID: 25147145]
[96]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Zini, M.; Stefanelli, C.; Masotti, L.; Radin, N.S.; Shoemaker, R.H. New antitumor imidazo[2,1-b]thiazole guanylhydrazones and analogues. J. Med. Chem., 2008, 51(4), 809-816.
[http://dx.doi.org/10.1021/jm701246g] [PMID: 18251494]
[97]
Parlar, S.; Erzurumlu, Y.; Ilhan, R.; Ballar Kırmızıbayrak, P.; Alptüzün, V.; Erciyas, E. Synthesis and evaluation of pyridinium-hydrazone derivatives as potential antitumoral agents. Chem. Biol. Drug Des., 2018, 92(1), 1198-1205.
[http://dx.doi.org/10.1111/cbdd.13177] [PMID: 29415336]
[98]
Navarro, M.; Marchán, E.; Maldonado, A.; Simoni, Z.; Veláquez, M.; Herrera, L.; Visbal, G. Anti-trypanosomatid activity of platinum-sterol hydrazone imidazoline complexes. Transit. Metal Chem., 2015, 40, 707-713.
[http://dx.doi.org/10.1007/s11243-015-9965-7]
[99]
Carvalho, S.A.; Feitosa, L.O.; Soares, M.; Costa, T.E.M.M.; Henriques, M.G.; Salomão, K.; de Castro, S.L.; Kaiser, M.; Brun, R.; Wardell, J.L.; Wardell, S.M.S.V.; Trossini, G.H.G.; Andricopulo, A.D.; da Silva, E.F.; Fraga, C.A.M. Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents. Eur. J. Med. Chem., 2012, 54, 512-521.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.041] [PMID: 22727447]
[100]
Messeder, J.C.; Tinoco, L.W.; Figueroa-Villar, J.D. Aromatic guanylhydrazones: Synthesis, structural studies and in vitro activity against Trypanosoma cruzi. Bioorg. Med. Chem. Lett., 1995, 5, 3079-3084.
[http://dx.doi.org/10.1016/0960-894X(95)00541-5]
[101]
Borges, M.N.; Messeder, J.C.; Figueroa-Villar, J.D. Synthesis, anti-Trypanosoma cruzi activity and micelle interaction studies of bisguanylhydrazones analogous to pentamidine. Eur. J. Med. Chem., 2004, 39(11), 925-929.
[http://dx.doi.org/10.1016/j.ejmech.2004.07.001] [PMID: 15501541]
[102]
Foscolos, A-S.; Papanastasiou, I.; Foscolos, G.B.; Tsotinis, A.; Kellici, T.F.; Mavromoustakos, T.; Taylor, M.C.; Kelly, J.M. New hydrazones of 5-nitro-2-furaldehyde with adamantanealkanohydrazides: Synthesis and in vitro trypanocidal activity. MedChemComm, 2016, 7, 1229-1236.
[http://dx.doi.org/10.1039/C6MD00035E]
[103]
Moldovan, C.M.; Oniga, O.; Pârvu, A.; Tiperciuc, B.; Verite, P.; Pîrnău, A.; Crişan, O.; Bojiţă, M.; Pop, R. Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur. J. Med. Chem., 2011, 46(2), 526-534.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.032] [PMID: 21163557]
[104]
Kumar, N.; Chauhan, L.S.; Sharma, C.S.; Dashora, N.; Bera, R. Synthesis, analgesic and anti-inflammatory activities of chalconyl-incorporated hydrazone derivatives of mefenamic acid. Med. Chem. Res., 2015, 24, 2580-2590.
[http://dx.doi.org/10.1007/s00044-015-1318-8]
[105]
Abdelgawad, M.A.; Labib, M.B.; Abdel-Latif, M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorg. Chem., 2017, 74, 212-220.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.014] [PMID: 28865292]
[106]
Meira, C.S.; Dos Santos Filho, J.M.; Sousa, C.C.; Anjos, P.S.; Cerqueira, J.V.; Dias Neto, H.A.; da Silveira, R.G.; Russo, H.M.; Wolfender, J-L.; Queiroz, E.F.; Moreira, D.R.M.; Soares, M.B.P. Structural design, synthesis and substituent effect of hydrazone-N-acylhydrazones reveal potent immunomodulatory agents. Bioorg. Med. Chem., 2018, 26(8), 1971-1985.
[http://dx.doi.org/10.1016/j.bmc.2018.02.047] [PMID: 29523468]
[107]
Coimbra, E.S.; Antinarelli, L.M.R.; da Silva, A.D.; Bispo, M.L.F.; Kaiser, C.R.; de Souza, M.V.N. 7-Chloro-4-quinolinyl hydrazones: A promising and potent class of antileishmanial compounds. Chem. Biol. Drug Des., 2013, 81(5), 658-665.
[http://dx.doi.org/10.1111/cbdd.12112] [PMID: 23350797]
[108]
Alptuzun, V.; Cakiroglu, G.; Limoncu, M.E.; Erac, B.; Hosgor-Limoncu, M.; Erciyas, E. Synthesis and antileishmanial activity of novel pyridinium-hydrazone derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 960-967.
[http://dx.doi.org/10.3109/14756366.2012.697058] [PMID: 22803671]
[109]
Vargas, E.; Echeverri, F.; Upegui, Y.A.; Robledo, S.M.; Quiñones, W. Hydrazone derivatives enhance antileishmanial activity of thiochroman-4-ones. Molecules, 2017, 23(1), 70-81.
[http://dx.doi.org/10.3390/molecules23010070] [PMID: 29286346]
[110]
Sharma, M.; Chauhan, K.; Srivastava, R.K.; Singh, S.V.; Srivastava, K.; Saxena, J.K.; Puri, S.K.; Chauhan, P.M.S. Design and synthesis of a new class of 4-aminoquinolinyl- and 9-anilinoacridinyl Schiff base hydrazones as potent antimalarial agents. Chem. Biol. Drug Des., 2014, 84(2), 175-181.
[http://dx.doi.org/10.1111/cbdd.12289] [PMID: 24444074]
[111]
Walcourt, A.; Kurantsin-Mills, J.; Kwagyan, J.; Adenuga, B.B.; Kalinowski, D.S.; Lovejoy, D.B.; Lane, D.J.R.; Richardson, D.R. Anti-plasmodial activity of aroylhydrazone and thiosemicarbazone iron chelators: Effect on erythrocyte membrane integrity, parasite development and the intracellular labile iron pool. J. Inorg. Biochem., 2013, 129, 43-51.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.08.007] [PMID: 24028863]
[112]
Barteselli, A.; Parapini, S.; Basilico, N.; Mommo, D.; Sparatore, A. Synthesis and evaluation of the antiplasmodial activity of novel indeno[2,1-c]quinoline derivatives. Bioorg. Med. Chem., 2014, 22(21), 5757-5765.
[http://dx.doi.org/10.1016/j.bmc.2014.09.040] [PMID: 25311562]
[113]
Van Laar, V.S.; Arnold, B.; Cassady, S.J.; Chu, C.T.; Burton, E.A.; Berman, S.B. Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum. Mol. Genet., 2011, 20(5), 927-940.
[http://dx.doi.org/10.1093/hmg/ddq531] [PMID: 21147754]
[114]
Suzen, S. Melatonin and synthetic analogs as antioxidants. Curr. Drug Deliv., 2013, 10(1), 71-75.
[http://dx.doi.org/10.2174/1567201811310010013] [PMID: 22998047]
[115]
Aguileta, M.A.; Korac, J.; Durcan, T.M.; Trempe, J-F.; Haber, M.; Gehring, K.; Elsasser, S.; Waidmann, O.; Fon, E.A.; Husnjak, K. The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J. Biol. Chem., 2015, 290(12), 7492-7505.
[http://dx.doi.org/10.1074/jbc.M114.614925] [PMID: 25666615]
[116]
Cukierman, D.S.; Pinheiro, A.B.; Castiñeiras-Filho, S.L.P.; da Silva, A.S.P.; Miotto, M.C.; De Falco, A. de P Ribeiro, T.; Maisonette, S.; da Cunha, A.L.M.C.; Hauser-Davis, R.A.; Landeira-Fernandez, J.; Aucélio, R.Q.; Outeiro, T.F.; Pereira, M.D.; Fernández, C.O.; Rey, N.A. A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson’s disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J. Inorg. Biochem., 2017, 170, 160-168.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.02.020] [PMID: 28249224]
[117]
Turan-Zitouni, G.; Hussein, W.; Sağlık, B.N.; Tabbi, A.; Korkut, B. Design, synthesis and biological evaluation of novel N-pyridyl-hydrazone derivatives as potential monoamine oxidase (MAO) inhibitors. Molecules, 2018, 23(1), 113.
[http://dx.doi.org/10.3390/molecules23010113] [PMID: 29316677]
[118]
Jin, Y.; Tan, Z.; He, M.; Tian, B.; Tang, S.; Hewlett, I.; Yang, M. SAR and molecular mechanism study of novel acylhydrazone compounds targeting HIV-1 CA. Bioorg. Med. Chem., 2010, 18(6), 2135-2140.
[http://dx.doi.org/10.1016/j.bmc.2010.02.003] [PMID: 20188575]
[119]
Khalifa, N.M.; Al-Omar, M.A. Amr, Ael-G.; Haiba, M.E. HIV-1 and HSV-1 virus activities of some new polycyclic nucleoside pyrene candidates. Int. J. Biol. Macromol., 2013, 54, 51-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.015] [PMID: 23178400]
[120]
Carcelli, M.; Rogolino, D.; Gatti, A.; Pala, N.; Corona, A.; Caredda, A.; Tramontano, E.; Pannecouque, C.; Naesens, L.; Esposito, F. Chelation motifs affecting metal-dependent viral enzymes: N′-acylhydrazone ligands as dual target inhibitors of HIV-1 integrase and reverse transcriptase ribonuclease H domain. Front. Microbiol., 2017, 8, 440.
[http://dx.doi.org/10.3389/fmicb.2017.00440] [PMID: 28373864]