Role of Adenosine Kinase Inhibitor in Adenosine Augmentation Therapy for Epilepsy: A Potential Novel Drug for Epilepsy

Page: [252 - 257] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Epilepsy, an ancient disease, is defined as an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition. Antiepileptic drugs (AEDs) are currently used as first-line treatment for patients with epilepsy; however, around 36% of patients are diagnosed with refractory epilepsy, which means two or more AEDs have been considered as failed after sufficiently correct usage. Unfortunately, it is unlikely that the improvement of the efficacy of AEDs will be easily achieved, especially since no AEDs show efficacy in ceasing epileptogenesis. Consequently, several endogenous anticonvulsants attract investigators and epileptologists, such as galanin, cannabis, and adenosine.

Astrogliosis is a neuropathological hallmark of epilepsy, whatever the etiology is, and astrogliosis is frequently associated with overexpression of adenosine kinase, which means downregulation of synaptic levels of adenosine. Consequently, adenosine is negatively regulated by adenosine kinase through the astrocyte-based cycle. On the other hand, focal adenosine augmentation therapy, using adenosine kinase inhibitor, has been proved to be effective for reducing seizures in both animal models and in vitro human brain tissue resected from a variety of etiology of refractory epilepsy patients. In addition to reducing seizures, adenosine augmentation therapy can also palliate co-morbidities, like sleep, cognition, or depression. Of importance, transgenic mice with reduced ADK were resistant to epileptogenesis induced by acute brain injury. In terms of translation, based on findings of adenosinerelated epileptogenic mechanisms, the application into clinical practice seems to be feasible by molecular strategies that have been already experimentally implemented, including gene and RNA interference.

In the present review, we will focus on the evidence of ADK dysfunction in the epileptic brain from human beings and animals, and review the role of ADK inhibitor in adenosine augmentation therapy and the underlying mechanism of prevention of epileptogenesis.

Keywords: Epilepsy, epileptogenesis, adenosine, adenosine kinase, adenosine kinase inhibitor, cannabis.

[1]
Temkin O. The falling sickness: A history of epilepsy from the Greeks to the beginnings of modern neurology. JHU Press 1994.
[2]
Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol 2018; 75(3): 279-86.
[http://dx.doi.org/10.1001/jamaneurol.2017.3949] [PMID: 29279892]
[3]
Hauser WA. An unparalleled assessment of the global burden of epilepsy. Lancet Neurol 2019; 18(4): 322-4.
[http://dx.doi.org/10.1016/S1474-4422(19)30042-0] [PMID: 30773429]
[4]
Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med 2011; 365(10): 919-26.
[http://dx.doi.org/10.1056/NEJMra1004418] [PMID: 21899452]
[5]
Schmidt D, Löscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 2005; 46(6): 858-77.
[http://dx.doi.org/10.1111/j.1528-1167.2005.54904.x] [PMID: 15946327]
[6]
Boison D. Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 2006; 27(12): 652-8.
[http://dx.doi.org/10.1016/j.tips.2006.10.008] [PMID: 17056128]
[7]
Newby AC, Worku Y, Holmquist CA. Adenosine formation. Evidence for a direct biochemical link with energy metabolism. Adv Myocardiol 1985; 6: 273-84.
[PMID: 2986260]
[8]
Boison D, Chen JF, Fredholm BB. Adenosine signaling and function in glial cells. Cell Death Differ 2010; 17(7): 1071-82.
[http://dx.doi.org/10.1038/cdd.2009.131] [PMID: 19763139]
[9]
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol 2005; 63: 191-270.
[http://dx.doi.org/10.1016/S0074-7742(05)63007-3] [PMID: 15797469]
[10]
Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D. Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 2006; 200(1): 184-90.
[http://dx.doi.org/10.1016/j.expneurol.2006.02.133] [PMID: 16750195]
[11]
Chen F, He X, Luan G, Li T. Role of DNA Methylation and Adenosine in Ketogenic Diet for Pharmacoresistant Epilepsy: Focus on Epileptogenesis and Associated Comorbidities. Front Neurol 2019; 10: 119.
[http://dx.doi.org/10.3389/fneur.2019.00119] [PMID: 30863356]
[12]
Sebastião AM, Ribeiro JA. Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol 2009; 7(3): 180-94.
[http://dx.doi.org/10.2174/157015909789152128] [PMID: 20190960]
[13]
Magen I, Avraham Y, Ackerman Z, Vorobiev L, Mechoulam R, Berry EM. Cannabidiol ameliorates cognitive and motor impairments in mice with bile duct ligation. J Hepatol 2009; 51(3): 528-34.
[http://dx.doi.org/10.1016/j.jhep.2009.04.021] [PMID: 19596476]
[14]
Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013; 36(3): 174-84.
[http://dx.doi.org/10.1016/j.tins.2012.11.008] [PMID: 23298414]
[15]
Fedele DE, Gouder N, Güttinger M, et al. Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain 2005; 128(Pt 10): 2383-95.
[http://dx.doi.org/10.1093/brain/awh555] [PMID: 15930047]
[16]
Wang X, He X, Luan G. Comorbidities of refractory epilepsy and the update mechanism. neuropsychiatry (London) 2017; 1(S1): 45-8.
[http://dx.doi.org/10.4172/Neuropsychiatry.1000S1007]
[17]
Knake S, Hamer HM, Rosenow F. Status epilepticus: a critical review. Epilepsy Behav 2009; 15(1): 10-4.
[http://dx.doi.org/10.1016/j.yebeh.2009.02.027] [PMID: 19236943]
[18]
Gouder N, Scheurer L, Fritschy JM, Boison D. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 2004; 24(3): 692-701.
[http://dx.doi.org/10.1523/JNEUROSCI.4781-03.2004] [PMID: 14736855]
[19]
Li T, Lytle N, Lan JQ, Sandau US, Boison D. Local disruption of glial adenosine homeostasis in mice associates with focal electrographic seizures: a first step in epileptogenesis? Glia 2012; 60(1): 83-95.
[http://dx.doi.org/10.1002/glia.21250] [PMID: 21964979]
[20]
Lenkov DN, Volnova AB, Pope AR, Tsytsarev V. Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 2013; 212(2): 195-202.
[http://dx.doi.org/10.1016/j.jneumeth.2012.10.018] [PMID: 23137652]
[21]
Wang X, He X, Li T, Shu Y, Qi S, Luan G. Anti-epileptic effect of ifenprodil on neocortical pyramidal neurons in patients with malformations of cortical development. Exp Ther Med 2017; 14(6): 5757-66.
[http://dx.doi.org/10.3892/etm.2017.5311] [PMID: 29285118]
[22]
Sofroniew MV. Astrogliosis. Cold Spring Harb Perspect Biol 2014; 7(2)a020420
[http://dx.doi.org/10.1101/cshperspect.a020420] [PMID: 25380660]
[23]
Aronica E, Sandau US, Iyer A, Boison D. Glial adenosine kinase--a neuropathological marker of the epileptic brain. Neurochem Int 2013; 63(7): 688-95.
[http://dx.doi.org/10.1016/j.neuint.2013.01.028] [PMID: 23385089]
[24]
Aronica E, Zurolo E, Iyer A, et al. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 2011; 52(9): 1645-55.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03115.x] [PMID: 21635241]
[25]
Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci 2018; 21(1): 9-15.
[http://dx.doi.org/10.1038/s41593-017-0033-9] [PMID: 29269757]
[26]
Eid T, Williamson A, Lee TS, Petroff OA, de Lanerolle NC. Glutamate and astrocytes--key players in human mesial temporal lobe epilepsy? Epilepsia 2008; 49(Suppl. 2): 42-52.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01492.x] [PMID: 18226171]
[27]
Luan G, Gao Q, Guan Y, et al. Upregulation of adenosine kinase in Rasmussen encephalitis. J Neuropathol Exp Neurol 2013; 72(11): 1000-8.
[http://dx.doi.org/10.1097/01.jnen.0000435369.39388.5c] [PMID: 24128682]
[28]
Luan G, Wang X, Gao Q, et al. Upregulation of neuronal adenosine a1 receptor in human rasmussen encephalitis. J Neuropathol Exp Neurol 2017; 76(8): 720-31.
[http://dx.doi.org/10.1093/jnen/nlx053] [PMID: 28789481]
[29]
Shirley MD, Tang H, Gallione CJ, et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 2013; 368(21): 1971-9.
[http://dx.doi.org/10.1056/NEJMoa1213507] [PMID: 23656586]
[30]
Luan G, Wang X, Chen F, et al. Overexpression of adenosine kinase in patients with epilepsy associated with Sturge-Weber syndrome. Neuropsychiatry (London) 2018; 8(1): 261-8.
[http://dx.doi.org/10.4172/Neuropsychiatry.1000347]
[31]
Luan G, Gao Q, Zhai F, et al. Adenosine kinase expression in cortical dysplasia with balloon cells: analysis of developmental lineage of cell types. J Neuropathol Exp Neurol 2015; 74(2): 132-47.
[http://dx.doi.org/10.1097/NEN.0000000000000156] [PMID: 25575137]
[32]
Lamparello P, Baybis M, Pollard J, et al. Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 2007; 130(Pt 9): 2267-76.
[http://dx.doi.org/10.1093/brain/awm175] [PMID: 17711980]
[33]
Palmini A, Najm I, Avanzini G, et al. Terminology and classification of the cortical dysplasias. Neurology 2004; 62(6)(Suppl. 3): S2-8.
[http://dx.doi.org/10.1212/01.WNL.0000114507.30388.7E] [PMID: 15037671]
[34]
de Groot M, Iyer A, Zurolo E, et al. Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor-associated epilepsy. Epilepsia 2012; 53(1): 58-66.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03306.x] [PMID: 22092111]
[35]
Diamond ML, Ritter AC, Jackson EK, et al. Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia 2015; 56(8): 1198-206.
[http://dx.doi.org/10.1111/epi.13044] [PMID: 26040919]
[36]
Boison D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 2013; 65(3): 906-43.
[http://dx.doi.org/10.1124/pr.112.006361] [PMID: 23592612]
[37]
Li T, Lan JQ, Boison D. Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice. Neuron Glia Biol 2008; 4(2): 91-9.
[http://dx.doi.org/10.1017/S1740925X09990135] [PMID: 19674507]
[38]
Li T, Quan Lan J, Fredholm BB, Simon RP, Boison D. Adenosine dysfunction in astrogliosis: cause for seizure generation? Neuron Glia Biol 2007; 3(4): 353-66.
[http://dx.doi.org/10.1017/S1740925X0800015X] [PMID: 18634566]
[39]
Dubé CM, Brewster AL, Richichi C, Zha Q, Baram TZ. Fever, febrile seizures and epilepsy. Trends Neurosci 2007; 30(10): 490-6.
[http://dx.doi.org/10.1016/j.tins.2007.07.006] [PMID: 17897728]
[40]
Pardo CA, Nabbout R, Galanopoulou AS. Mechanisms of epileptogenesis in pediatric epileptic syndromes: Rasmussen encephalitis, infantile spasms, and febrile infection-related epilepsy syndrome (FIRES). Neurotherapeutics 2014; 11(2): 297-310.
[http://dx.doi.org/10.1007/s13311-014-0265-2] [PMID: 24639375]
[41]
Kwan J. Stroke: predicting the risk of poststroke epilepsy-why and how? Nat Rev Neurol 2010; 6(10): 532-3.
[http://dx.doi.org/10.1038/nrneurol.2010.140] [PMID: 20927053]
[42]
Maschio M. Brain tumor-related epilepsy. Curr Neuropharmacol 2012; 10(2): 124-33.
[http://dx.doi.org/10.2174/157015912800604470] [PMID: 23204982]
[43]
Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D. Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 1996; 29(1): 37-42.
[http://dx.doi.org/10.1016/0197-0186(95)00137-9] [PMID: 8808787]
[44]
Cunha RA. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 2005; 1(2): 111-34.
[http://dx.doi.org/10.1007/s11302-005-0649-1] [PMID: 18404497]
[45]
Pignataro G, Maysami S, Studer FE, Wilz A, Simon RP, Boison D. Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism. J Cereb Blood Flow Metab 2008; 28(1): 17-23.
[http://dx.doi.org/10.1038/sj.jcbfm.9600499] [PMID: 17457365]
[46]
During MJ, Spencer DD. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 1992; 32(5): 618-24.
[http://dx.doi.org/10.1002/ana.410320504] [PMID: 1449242]
[47]
Williams-Karnesky RL, Sandau US, Lusardi TA, et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest 2013; 123(8): 3552-63.
[http://dx.doi.org/10.1172/JCI65636] [PMID: 23863710]
[48]
Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011; 7(1): 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[49]
Li T, Steinbeck JA, Lusardi T, et al. Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 2007; 130(Pt 5): 1276-88.
[http://dx.doi.org/10.1093/brain/awm057] [PMID: 17472985]
[50]
Li T, Ren G, Lusardi T, et al. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 2008; 118(2): 571-82.
[http://dx.doi.org/10.1172/JCI33737] [PMID: 18172552]
[51]
Burke KJ Jr, Bender KJ. Modulation of Ion Channels in the Axon: Mechanisms and Function. Front Cell Neurosci 2019; 13: 221.
[http://dx.doi.org/10.3389/fncel.2019.00221] [PMID: 31156397]
[52]
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia 2018; 66(6): 1235-43.
[http://dx.doi.org/10.1002/glia.23247] [PMID: 29044647]
[53]
Ugarkar BG, Castellino AJ, DaRe JM, et al. Adenosine kinase inhibitors. 2. Synthesis, enzyme inhibition, and antiseizure activity of diaryltubercidin analogues. J Med Chem 2000; 43(15): 2894-905.
[http://dx.doi.org/10.1021/jm0000259] [PMID: 10956197]
[54]
Ugarkar BG, DaRe JM, Kopcho JJ, et al. Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chem 2000; 43(15): 2883-93.
[http://dx.doi.org/10.1021/jm000024g] [PMID: 10956196]
[55]
Erion MD, Ugarkar BG, DaRe J, et al. Design, synthesis and anticonvulsant activity of the potent adenosine kinase inhibitor GP3269. Nucleosides Nucleotides Nucleic Acids 1997; 16(7-9): 1013-21.
[http://dx.doi.org/10.1080/07328319708006124]
[56]
McGaraughty S, Cowart M, Jarvis MF, Berman RF. Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 2005; 5(1): 43-58.
[http://dx.doi.org/10.2174/1568026053386845] [PMID: 15638777]
[57]
Amtul Z. Nature’s Medicines to Treat Epileptic Seizures Studies in Natural Products Chemistry. Elsevier 2018; pp. 129-50.
[58]
Sandau US, Yahya M, Bigej R, Friedman JL, Saleumvong B, Boison D. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia 2019; 60(4): 615-25.
[http://dx.doi.org/10.1111/epi.14674] [PMID: 30815855]
[59]
Albasanz JL, Perez S, Barrachina M, Ferrer I, Martín M. Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. Brain Pathol 2008; 18(2): 211-9.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00112.x] [PMID: 18241242]
[60]
Bottini N, De Luca D, Saccucci P, et al. Autism: Evidence of association with adenosine deaminase genetic polymorphism. Neurogenetics 2001; 3(2): 111-3.
[http://dx.doi.org/10.1007/s100480000104] [PMID: 11354825]
[61]
Rahman A. The role of adenosine in Alzheimer’s disease. Curr Neuropharmacol 2009; 7(3): 207-16.
[http://dx.doi.org/10.2174/157015909789152119] [PMID: 20190962]
[62]
Bekar L, Libionka W, Tian G-F, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 2008; 14(1): 75-80.
[http://dx.doi.org/10.1038/nm1693] [PMID: 18157140]
[63]
Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circ Res 1987; 61(6): 779-86.
[http://dx.doi.org/10.1161/01.RES.61.6.779] [PMID: 3677336]
[64]
Jacobson KA. Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends Pharmacol Sci 1998; 19(5): 184-91.
[http://dx.doi.org/10.1016/S0165-6147(98)01203-6] [PMID: 9652191]
[65]
Nilsen KE, Cock HR. Focal treatment for refractory epilepsy: Hope for the future? Brain Res Brain Res Rev 2004; 44(2-3): 141-53.
[http://dx.doi.org/10.1016/j.brainresrev.2003.11.003] [PMID: 15003390]
[66]
Fedele DE, Koch P, Scheurer L, et al. Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett 2004; 370(2-3): 160-5.
[http://dx.doi.org/10.1016/j.neulet.2004.08.031] [PMID: 15488315]
[67]
Boison D. Inhibitory RNA in epilepsy: Research tools and therapeutic perspectives. Epilepsia 2010; 51(9): 1659-68.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02672.x] [PMID: 20633035]
[68]
Güttinger M, Fedele D, Koch P, et al. Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia 2005; 46(8): 1162-9.
[http://dx.doi.org/10.1111/j.1528-1167.2005.61804.x] [PMID: 16060924]
[69]
Boison D. Engineered adenosine-releasing cells for epilepsy therapy: Human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics 2009; 6(2): 278-83.
[http://dx.doi.org/10.1016/j.nurt.2008.12.001] [PMID: 19332320]
[70]
Ren G, Boison D. Engineering human mesenchymal stem cells to release adenosine using miRNA technology RNAi and microRNA-Mediated Gene Regulation in Stem Cells. Springer 2010; pp. 225-40.
[http://dx.doi.org/10.1007/978-1-60761-769-3_17]
[71]
Wilz A, Pritchard EM, Li T, Lan J-Q, Kaplan DL, Boison D. Silk polymer-based adenosine release: Therapeutic potential for epilepsy. Biomaterials 2008; 29(26): 3609-16.
[http://dx.doi.org/10.1016/j.biomaterials.2008.05.010] [PMID: 18514814]
[72]
Szybala C, Pritchard EM, Lusardi TA, et al. Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 2009; 219(1): 126-35.
[http://dx.doi.org/10.1016/j.expneurol.2009.05.018] [PMID: 19460372]
[73]
Pritchard EM, Szybala C, Boison D, Kaplan DL. Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J Control Release 2010; 144(2): 159-67.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.035] [PMID: 20138938]
[74]
Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials 2005; 26(17): 3385-93.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.020] [PMID: 15621227]
[75]
Huber A, Padrun V, Déglon N, Aebischer P, Möhler H, Boison D. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci USA 2001; 98(13): 7611-6.
[http://dx.doi.org/10.1073/pnas.131102898] [PMID: 11404469]
[76]
Boison D, Scheurer L, Tseng JL, Aebischer P, Mohler H. Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer. Exp Neurol 1999; 160(1): 164-74.
[http://dx.doi.org/10.1006/exnr.1999.7209] [PMID: 10630201]
[77]
Anschel DJ, Ortega EL, Kraus AC, Fisher RS. Focally injected adenosine prevents seizures in the rat. Exp Neurol 2004; 190(2): 544-7.
[http://dx.doi.org/10.1016/j.expneurol.2004.07.017] [PMID: 15530893]
[78]
Kobow K, Blümcke I. The methylation hypothesis: Do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia 2011; 52(Suppl. 4): 15-9.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03145.x] [PMID: 21732935]
[79]
Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21(35): 5483-95.
[http://dx.doi.org/10.1038/sj.onc.1205699] [PMID: 12154409]
[80]
Bootsma HP, Ricker L, Hekster YA, et al. The impact of side effects on long-term retention in three new antiepileptic drugs. Seizure 2009; 18(5): 327-31.
[http://dx.doi.org/10.1016/j.seizure.2008.11.006] [PMID: 19110447]
[81]
Wang X, Gao Q, Zhou J, et al. The neuropsychological efficacy of vagus nerve stimulation in 56 children with catastrophic epilepsy. Neuropsychiatry (London) 2017; 7(4): 387-92.
[82]
Shahwan A, Bailey C, Maxiner W, Harvey AS. Vagus nerve stimulation for refractory epilepsy in children: More to VNS than seizure frequency reduction. Epilepsia 2009; 50(5): 1220-8.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01940.x] [PMID: 19170732]
[83]
Amtul Z, Aziz AA. Microbial proteins as novel industrial biotechnology hosts to treat epilepsy. Mol Neurobiol 2017; 54(10): 8211-24.
[http://dx.doi.org/10.1007/s12035-016-0279-3] [PMID: 27905012]