Recent Advances in the Drug Discovery and Development of Dualsteric/ Bitopic Activators of G Protein-Coupled Receptors

Page: [2378 - 2392] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

G protein-coupled receptors (GPCRs) represent the largest family of proteins targeted by drug design and discovery efforts. Of these efforts, the development of GPCR agonists is highly desirable, due to their therapeutic robust utility in treating diseases caused by deficient receptor signaling. One of the challenges in designing potent and selective GPCR agonists lies in the inability to achieve combined high binding affinity and subtype selectivity, due to the high homology between orthosteric sites among GPCR subtypes. To combat this difficulty, researchers have begun to explore the utility of targeting topographically distinct and less conserved binding sites, namely “allosteric” sites. Pursuing these sites offers the benefit of achieving high subtype selectivity, however, it also can result in a decreased binding affinity and potency as compared to orthosteric agonists. Therefore, bitopic ligands comprised of an orthosteric agonist and an allosteric modulator connected by a spacer and allowing binding with both the orthosteric and allosteric sites within one receptor, have been developed. It may combine the high subtype selectivity of an allosteric modulator with the high binding affinity of an orthosteric agonist and provides desired advantages over orthosteric agonists or allosteric modulators alone. Herein, we review the recent advances in the development of bitopic agonists/activators for various GPCR targets and their novel therapeutic potentials.

Keywords: G protein-coupled receptors, Orthosteric site, Allosteric site, Binding affinity, Subtype selectivity, Bitopic activator.

Graphical Abstract

[1]
Rosenbaum, D.M.; Rasmussen, S.G.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 2009, 459(7245), 356-363.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]
[2]
Luttrell, L.M. Transmembrane signaling by G protein-coupled receptors. Methods Mol. Biol., 2006, 332, 3-49.
[PMID: 16878684]
[3]
Kroeze, W.K.; Sheffler, D.J.; Roth, B.L. G-protein-coupled receptors at a glance. J. Cell Sci., 2003, 116(Pt 24), 4867-4869.
[http://dx.doi.org/10.1242/jcs.00902] [PMID: 14625380]
[4]
Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta, 2007, 1768(4), 794-807.
[http://dx.doi.org/10.1016/j.bbamem.2006.10.021] [PMID: 17188232]
[5]
Tuteja, N. Signaling through G protein coupled receptors. Plant Signal. Behav., 2009, 4(10), 942-947.
[http://dx.doi.org/10.4161/psb.4.10.9530] [PMID: 19826234]
[6]
Sriram, K.; Insel, P.A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol., 2018, 93(4), 251-258.
[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[7]
Cook, J.L. G protein-coupled receptors as disease targets: emerging paradigms. Ochsner J., 2010, 10(1), 2-7.
[PMID: 21603346]
[8]
Heng, B.C.; Aubel, D.; Fussenegger, M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol. Adv., 2013, 31(8), 1676-1694.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.017] [PMID: 23999358]
[9]
Hauser, A.S.; Chavali, S.; Masuho, I.; Jahn, L.J.; Martemyanov, K.A.; Gloriam, D.E.; Babu, M.M. Pharmacogenomics of GPCR drug targets. Cell, 2018, 172(1-2), 41-54.e19.
[http://dx.doi.org/10.1016/j.cell.2017.11.033] [PMID: 29249361]
[10]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[11]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[12]
Garland, S.L. Are GPCRs still a source of new targets? J. Biomol. Screen., 2013, 18(9), 947-966.
[http://dx.doi.org/10.1177/1087057113498418] [PMID: 23945874]
[13]
Tao, Y.X. Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol. Ther., 2008, 120(2), 129-148.
[http://dx.doi.org/10.1016/j.pharmthera.2008.07.005] [PMID: 18768149]
[14]
Stoy, H.; Gurevich, V.V. How genetic errors in GPCRs affect their function: possible therapeutic strategies. Genes Dis., 2015, 2(2), 108-132.
[http://dx.doi.org/10.1016/j.gendis.2015.02.005] [PMID: 26229975]
[15]
Wacker, D.; Stevens, R.C.; Roth, B.L. How ligands illuminate GPCR molecular pharmacology. Cell, 2017, 170(3), 414-427.
[http://dx.doi.org/10.1016/j.cell.2017.07.009] [PMID: 28753422]
[16]
Tyndall, J.D.; Sandilya, R. GPCR agonists and antagonists in the clinic. Med. Chem., 2005, 1(4), 405-421.
[http://dx.doi.org/10.2174/1573406054368675] [PMID: 16789897]
[17]
Clark, R.B.; Knoll, B.J.; Barber, R. Partial agonists and G protein-coupled receptor desensitization. Trends Pharmacol. Sci., 1999, 20(7), 279-286.
[http://dx.doi.org/10.1016/S0165-6147(99)01351-6] [PMID: 10390646]
[18]
Khilnani, G.; Khilnani, A.K. Inverse agonism and its therapeutic significance. Indian J. Pharmacol., 2011, 43(5), 492-501.
[http://dx.doi.org/10.4103/0253-7613.84947] [PMID: 22021988]
[19]
Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov., 2009, 8(1), 41-54.
[http://dx.doi.org/10.1038/nrd2760] [PMID: 19116626]
[20]
Foster, D.J.; Conn, P.J. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron, 2017, 94(3), 431-446.
[http://dx.doi.org/10.1016/j.neuron.2017.03.016] [PMID: 28472649]
[21]
May, L.T.; Leach, K.; Sexton, P.M.; Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 1-51.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105159] [PMID: 17009927]
[22]
Changeux, J.P.; Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes. Metab., 2017, 19(Suppl. 1), 4-21.
[http://dx.doi.org/10.1111/dom.12959] [PMID: 28880476]
[23]
Wenthur, C.J.; Gentry, P.R.; Mathews, T.P.; Lindsley, C.W. Drugs for allosteric sites on receptors. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 165-184.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134525] [PMID: 24111540]
[24]
Jensen, A.A.; Bräuner-Osborne, H. Allosteric modulation of the calcium-sensing receptor. Curr. Neuropharmacol., 2007, 5(3), 180-186.
[http://dx.doi.org/10.2174/157015907781695982] [PMID: 19305800]
[25]
Byrnes, C.A.; Shepler, B.M. Cinacalcet: A new treatment for secondary hyperparathyroidism in patients receiving hemodialysis. Pharmacotherapy, 2005, 25(5), 709-716.
[http://dx.doi.org/10.1592/phco.25.5.709.63595] [PMID: 15899733]
[26]
Fronik, P.; Gaiser, B.I.; Sejer Pedersen, D. Bitopic ligands and metastable binding sites: opportunities for G protein-coupled receptor (GPCR) medicinal chemistry. J. Med. Chem., 2017, 60(10), 4126-4134.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01601] [PMID: 28140580]
[27]
Valant, C.; Robert Lane, J.; Sexton, P.M.; Christopoulos, A. The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 153-178.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134514] [PMID: 21910627]
[28]
Lane, J.R.; Sexton, P.M.; Christopoulos, A. Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol. Sci., 2013, 34(1), 59-66.
[http://dx.doi.org/10.1016/j.tips.2012.10.003] [PMID: 23177916]
[29]
G protein-coupled receptors.. IUPHAR/BPS Guide to PHARMACOLOGY, 2017. (Accessed http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=694)
[30]
Hu, G.M.; Mai, T.L.; Chen, C.M. Visualizing the GPCR Network. Sci. Rep., 2017, 7(1), 15495.
[http://dx.doi.org/10.1038/s41598-017-15707-9] [PMID: 29138525]
[31]
Gether, U.; Kobilka, B.K. G protein-coupled receptors. II. Mechanism of agonist activation. J. Biol. Chem., 1998, 273(29), 17979-17982.
[http://dx.doi.org/10.1074/jbc.273.29.17979] [PMID: 9660746]
[32]
Lagerström, M.C.; Schiöth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov., 2008, 7(4), 339-357.
[http://dx.doi.org/10.1038/nrd2518] [PMID: 18382464]
[33]
Munk, C.; Mutt, E.; Isberg, V.; Nikolajsen, L.F.; Bibbe, J.M.; Flock, T.; Hanson, M.A.; Stevens, R.C.; Deupi, X.; Gloriam, D.E. An online resource for GPCR structure determination and analysis. Nat. Methods, 2019, 16(2), 151-162.
[http://dx.doi.org/10.1038/s41592-018-0302-x] [PMID: 30664776]
[34]
Zhang, D.; Zhao, Q.; Wu, B. Structural studies of G protein-coupled receptors. Mol. Cells, 2015, 38(10), 836-842.
[http://dx.doi.org/10.14348/molcells.2015.0263] [PMID: 26467290]
[35]
van der Westhuizen, E.T.; Valant, C.; Sexton, P.M.; Christopoulos, A. Endogenous allosteric modulators of G protein-coupled receptors. J. Pharmacol. Exp. Ther., 2015, 353(2), 246-260.
[http://dx.doi.org/10.1124/jpet.114.221606] [PMID: 25650376]
[36]
Stewart, G.; Kniazeff, J.; Prézeau, L.; Rondard, P.; Pin, J-P.; Goudet, C. Metabotropic Receptors for Glutamate and GABA. Pharmacology; IntechOpen, 2012.
[http://dx.doi.org/10.5772/32481]
[37]
Allen, S.J.; Crown, S.E.; Handel, T.M. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol., 2007, 25, 787-820.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090529] [PMID: 17291188]
[38]
Sudo, S.; Kumagai, J.; Nishi, S.; Layfield, S.; Ferraro, T.; Bathgate, R.A.; Hsueh, A.J. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J. Biol. Chem., 2003, 278(10), 7855-7862.
[http://dx.doi.org/10.1074/jbc.M212457200] [PMID: 12506116]
[39]
Hoare, S.R. Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov. Today, 2005, 10(6), 417-427.
[http://dx.doi.org/10.1016/S1359-6446(05)03370-2] [PMID: 15808821]
[40]
Hollenstein, K.; de Graaf, C.; Bortolato, A.; Wang, M.W.; Marshall, F.H.; Stevens, R.C. Insights into the structure of class B GPCRs. Trends Pharmacol. Sci., 2014, 35(1), 12-22.
[http://dx.doi.org/10.1016/j.tips.2013.11.001] [PMID: 24359917]
[41]
de Graaf, C.; Song, G.; Cao, C.; Zhao, Q.; Wang, M.W.; Wu, B.; Stevens, R.C. Extending the structural view of class B GPCRs. Trends Biochem. Sci., 2017, 42(12), 946-960.
[http://dx.doi.org/10.1016/j.tibs.2017.10.003] [PMID: 29132948]
[42]
Pin, J.P.; Kniazeff, J.; Goudet, C.; Bessis, A.S.; Liu, J.; Galvez, T.; Acher, F.; Rondard, P.; Prézeau, L. The activation mechanism of class-C G-protein coupled receptors. Biol. Cell, 2004, 96(5), 335-342.
[http://dx.doi.org/10.1111/j.1768-322X.2004.tb01423.x] [PMID: 15207901]
[43]
Chun, L.; Zhang, W.H.; Liu, J.F. Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin., 2012, 33(3), 312-323.
[http://dx.doi.org/10.1038/aps.2011.186] [PMID: 22286915]
[44]
Basith, S.; Cui, M.; Macalino, S.J.Y.; Park, J.; Clavio, N.A.B.; Kang, S.; Choi, S. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front. Pharmacol., 2018, 9, 128.
[http://dx.doi.org/10.3389/fphar.2018.00128] [PMID: 29593527]
[45]
Wang, H.; Shi, H.; Lu, Y.; Yang, B.; Wang, Z. Pilocarpine modulates the cellular electrical properties of mammalian hearts by activating a cardiac M3 receptor and a K+ current. Br. J. Pharmacol., 1999, 126(8), 1725-1734.
[http://dx.doi.org/10.1038/sj.bjp.0702486] [PMID: 10372814]
[46]
Lutfy, K.; Cowan, A. Buprenorphine: a unique drug with complex pharmacology. Curr. Neuropharmacol., 2004, 2(4), 395-402.
[http://dx.doi.org/10.2174/1570159043359477] [PMID: 18997874]
[47]
Virk, M.S.; Arttamangkul, S.; Birdsong, W.T.; Williams, J.T. Buprenorphine is a weak partial agonist that inhibits opioid receptor desensitization. J. Neurosci., 2009, 29(22), 7341-7348.
[http://dx.doi.org/10.1523/JNEUROSCI.3723-08.2009] [PMID: 19494155]
[48]
Dalton, J.A.; Gómez-Santacana, X.; Llebaria, A.; Giraldo, J. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation. J. Chem. Inf. Model., 2014, 54(5), 1476-1487.
[http://dx.doi.org/10.1021/ci500127c] [PMID: 24793143]
[49]
Burford, N.T.; Watson, J.; Bertekap, R.; Alt, A. Strategies for the identification of allosteric modulators of G-protein-coupled receptors. Biochem. Pharmacol., 2011, 81(6), 691-702.
[http://dx.doi.org/10.1016/j.bcp.2010.12.012] [PMID: 21184747]
[50]
Chan, H.C.S.; Wang, J.; Palczewski, K.; Filipek, S.; Vogel, H.; Liu, Z-J.; Yuan, S. Exploring a new ligand binding site of G protein-coupled receptors. Chem. Sci. (Camb.), 2018, 9(31), 6480-6489.
[http://dx.doi.org/10.1039/C8SC01680A] [PMID: 30310578]
[51]
Chan, H.C.S.; Li, Y.; Dahoun, T.; Vogel, H.; Yuan, S. New binding sites, new opportunities for GPCR drug discovery. Trends Biochem. Sci., 2019, 44(4), 312-330.
[http://dx.doi.org/10.1016/j.tibs.2018.11.011] [PMID: 30612897]
[52]
Lu, S.; Zhang, J. Small molecule allosteric modulators of G-protein-coupled receptors: drug–target interactions. J. Med. Chem., 2019, 62(1), 24-45.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01844] [PMID: 29457894]
[53]
Dasse, O.; Evans, J.; Zhai, H-X.; Zou, D.; Kintigh, J.; Chan, F.; Hamilton, K.; Hill, E.; Eckman, J.; Higgins, P. Novel, acidic CCR2 receptor antagonists: lead optimization. Lett. Drug Des. Discov., 2007, 4(4), 263-271.
[http://dx.doi.org/10.2174/157018007784619989]
[54]
Zheng, Y.; Qin, L.; Zacarías, N.V.; de Vries, H.; Han, G.W.; Gustavsson, M.; Dabros, M.; Zhao, C.; Cherney, R.J.; Carter, P.; Stamos, D.; Abagyan, R.; Cherezov, V.; Stevens, R.C.; IJzerman, A.P.; Heitman, L.H.; Tebben, A.; Kufareva, I.; Handel, T.M. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540(7633), 458-461.
[http://dx.doi.org/10.1038/nature20605] [PMID: 27926736]
[55]
Feng, Z.; Hu, G.; Ma, S.; Xie, X-Q. Computational advances for the development of allosteric modulators and bitopic ligands in G protein-coupled receptors. AAPS J., 2015, 17(5), 1080-1095.
[http://dx.doi.org/10.1208/s12248-015-9776-y] [PMID: 25940084]
[56]
Liu, W.; Chun, E.; Thompson, A.A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G.W.; Roth, C.B.; Heitman, L.H.; IJzerman, A.P.; Cherezov, V.; Stevens, R.C. Structural basis for allosteric regulation of GPCRs by sodium ions. Science, 2012, 337(6091), 232-236.
[http://dx.doi.org/10.1126/science.1219218] [PMID: 22798613]
[57]
Teşileanu, T.; Colwell, L.J.; Leibler, S. Protein sectors: statistical coupling analysis versus conservation. PLOS Comput. Biol., 2015, 11(2)e1004091
[http://dx.doi.org/10.1371/journal.pcbi.1004091] [PMID: 25723535]
[58]
Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng., 1993, 6(1), 37-40.
[http://dx.doi.org/10.1093/protein/6.1.37] [PMID: 8433969]
[59]
Jung, S.W.; Cho, A.E.; Yu, W. Exploring the ligand efficacy of cannabinoid receptor 1 (CB1) using molecular dynamics simulations. Sci. Rep., 2018, 8(1), 13787.
[http://dx.doi.org/10.1038/s41598-018-31749-z] [PMID: 30213978]
[60]
Shore, D.M.; Baillie, G.L.; Hurst, D.H.; Navas, F., III; Seltzman, H.H.; Marcu, J.P.; Abood, M.E.; Ross, R.A.; Reggio, P.H. Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. J. Biol. Chem., 2014, 289(9), 5828-5845.
[http://dx.doi.org/10.1074/jbc.M113.478495] [PMID: 24366865]
[61]
Chien, E.Y.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; Stevens, R.C. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science, 2010, 330(6007), 1091-1095.
[http://dx.doi.org/10.1126/science.1197410] [PMID: 21097933]
[62]
Marmolejo-Valencia, A.F.; Martínez-Mayorga, K. Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J. Comput. Aided Mol. Des., 2017, 31(5), 467-482.
[http://dx.doi.org/10.1007/s10822-017-0016-7] [PMID: 28364251]
[63]
Huang, W.; Manglik, A.; Venkatakrishnan, A.J.; Laeremans, T.; Feinberg, E.N.; Sanborn, A.L.; Kato, H.E.; Livingston, K.E.; Thorsen, T.S.; Kling, R.C.; Granier, S.; Gmeiner, P.; Husbands, S.M.; Traynor, J.R.; Weis, W.I.; Steyaert, J.; Dror, R.O.; Kobilka, B.K. Structural insights into µ-opioid receptor activation. Nature, 2015, 524(7565), 315-321.
[http://dx.doi.org/10.1038/nature14886] [PMID: 26245379]
[64]
Liu, X.; Ahn, S.; Kahsai, A.W.; Meng, K-C.; Latorraca, N.R.; Pani, B.; Venkatakrishnan, A.J.; Masoudi, A.; Weis, W.I.; Dror, R.O.; Chen, X.; Lefkowitz, R.J.; Kobilka, B.K. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548(7668), 480-484.
[http://dx.doi.org/10.1038/nature23652] [PMID: 28813418]
[65]
Cherezov, V.; Rosenbaum, D.M.; Hanson, M.A.; Rasmussen, S.G.; Thian, F.S.; Kobilka, T.S.; Choi, H.J.; Kuhn, P.; Weis, W.I.; Kobilka, B.K.; Stevens, R.C. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 2007, 318(5854), 1258-1265.
[http://dx.doi.org/10.1126/science.1150577] [PMID: 17962520]
[66]
Cheng, R.K.Y.; Fiez-Vandal, C.; Schlenker, O.; Edman, K.; Aggeler, B.; Brown, D.G.; Brown, G.A.; Cooke, R.M.; Dumelin, C.E.; Doré, A.S.; Geschwindner, S.; Grebner, C.; Hermansson, N.O.; Jazayeri, A.; Johansson, P.; Leong, L.; Prihandoko, R.; Rappas, M.; Soutter, H.; Snijder, A.; Sundström, L.; Tehan, B.; Thornton, P.; Troast, D.; Wiggin, G.; Zhukov, A.; Marshall, F.H.; Dekker, N. Structural insight into allosteric modulation of protease-activated receptor 2. Nature, 2017, 545(7652), 112-115.
[http://dx.doi.org/10.1038/nature22309] [PMID: 28445455]
[67]
Suen, J.Y.; Adams, M.N.; Lim, J.; Madala, P.K.; Xu, W.; Cotterell, A.J.; He, Y.; Yau, M.K.; Hooper, J.D.; Fairlie, D.P. Mapping transmembrane residues of proteinase activated receptor 2 (PAR2) that influence ligand-modulated calcium signaling. Pharmacol. Res., 2017, 117, 328-342.
[http://dx.doi.org/10.1016/j.phrs.2016.12.020] [PMID: 27993717]
[68]
Garcia-Perez, J.; Rueda, P.; Alcami, J.; Rognan, D.; Arenzana-Seisdedos, F.; Lagane, B.; Kellenberger, E. Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J. Biol. Chem., 2011, 286(38), 33409-33421.
[http://dx.doi.org/10.1074/jbc.M111.279596] [PMID: 21775441]
[69]
Zhu, Y.; Zhao, Y.L.; Li, J.; Liu, H.; Zhao, Q.; Wu, B.L.; Yang, Z.L. Molecular binding mode of PF-232798, a clinical anti-HIV candidate, at chemokine receptor CCR5. Acta Pharmacol. Sin., 2019, 40(4), 563-568.
[http://dx.doi.org/10.1038/s41401-018-0054-2] [PMID: 29941870]
[70]
Glukhova, A.; Thal, D.M.; Nguyen, A.T.; Vecchio, E.A.; Jörg, M.; Scammells, P.J.; May, L.T.; Sexton, P.M.; Christopoulos, A. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell, 2017, 168(5), 867-877.
[http://dx.doi.org/10.1016/j.cell.2017.01.042] [PMID: 28235198]
[71]
Wu, B.; Chien, E.Y.; Mol, C.D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F.C.; Hamel, D.J.; Kuhn, P.; Handel, T.M.; Cherezov, V.; Stevens, R.C. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science, 2010, 330(6007), 1066-1071.
[http://dx.doi.org/10.1126/science.1194396] [PMID: 20929726]
[72]
Arimont, M.; Sun, S.L.; Leurs, R.; Smit, M.; de Esch, I.J.P.; de Graaf, C. Structural analysis of chemokine receptor-ligand interactions. J. Med. Chem., 2017, 60(12), 4735-4779.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01309] [PMID: 28165741]
[73]
Kruse, A.C.; Ring, A.M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hübner, H.; Pardon, E.; Valant, C.; Sexton, P.M.; Christopoulos, A.; Felder, C.C.; Gmeiner, P.; Steyaert, J.; Weis, W.I.; Garcia, K.C.; Wess, J.; Kobilka, B.K. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504(7478), 101-106.
[http://dx.doi.org/10.1038/nature12735] [PMID: 24256733]
[74]
Radu, B.M.; Osculati, A.M.M.; Suku, E.; Banciu, A.; Tsenov, G.; Merigo, F.; Di Chio, M.; Banciu, D.D.; Tognoli, C.; Kacer, P.; Giorgetti, A.; Radu, M. All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Sci. Rep., 2017, 7(1), 5083.
[http://dx.doi.org/10.1038/s41598-017-05384-z] [PMID: 28698560]
[75]
Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci., 1995, 25, 366-428.
[http://dx.doi.org/10.1016/S1043-9471(05)80049-7]
[76]
Kamal, M.; Jockers, R. Bitopic ligands: all-in-one orthosteric and allosteric. F1000 Biol. Rep., 2009, 1, 77.
[http://dx.doi.org/10.3410/B1-77] [PMID: 20948611]
[77]
Volpato, D.; Holzgrabe, U. Designing hybrids targeting the cholinergic system by modulating the muscarinic and nicotinic receptors: a concept to treat alzheimer’s disease. Molecules, 2018, 23(12), 3230.
[http://dx.doi.org/10.3390/molecules23123230] [PMID: 30544533]
[78]
Conn, P.J.; Lindsley, C.W.; Meiler, J.; Niswender, C.M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov., 2014, 13(9), 692-708.
[http://dx.doi.org/10.1038/nrd4308] [PMID: 25176435]
[79]
Tata, M.; Velluto, A.; D’Angelo, L.; Reale, M. Cholinergic system dysfunction and neurodegenerative diseases: cause or effect. CNS Neurol. Disord. Drug Targets, 2014, 13(7), 1294-1303.
[PMID: 25230223]
[80]
Valant, C.; Gregory, K.J.; Hall, N.E.; Scammells, P.J.; Lew, M.J.; Sexton, P.M.; Christopoulos, A. A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem., 2008, 283(43), 29312-29321.
[http://dx.doi.org/10.1074/jbc.M803801200] [PMID: 18723515]
[81]
Keov, P.; Valant, C.; Devine, S.M.; Lane, J.R.; Scammells, P.J.; Sexton, P.M.; Christopoulos, A. Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M1 muscarinic acetylcholine receptor. Mol. Pharmacol., 2013, 84(3), 425-437.
[http://dx.doi.org/10.1124/mol.113.087320] [PMID: 23798605]
[82]
Lebois, E.P.; Digby, G.J.; Sheffler, D.J.; Melancon, B.J.; Tarr, J.C.; Cho, H.P.; Miller, N.R.; Morrison, R.; Bridges, T.M.; Xiang, Z.; Daniels, J.S.; Wood, M.R.; Conn, P.J.; Lindsley, C.W. Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. Bioorg. Med. Chem. Lett., 2011, 21(21), 6451-6455.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.084] [PMID: 21930376]
[83]
Lebois, E.P.; Bridges, T.M.; Lewis, L.M.; Dawson, E.S.; Kane, A.S.; Xiang, Z.; Jadhav, S.B.; Yin, H.; Kennedy, J.P.; Meiler, J.; Niswender, C.M.; Jones, C.K.; Conn, P.J.; Weaver, C.D.; Lindsley, C.W. Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M(1) receptor function in the central nervous system. ACS Chem. Neurosci., 2010, 1(2), 104-121.
[http://dx.doi.org/10.1021/cn900003h] [PMID: 21961051]
[84]
Spalding, T.A.; Trotter, C.; Skjaerbaek, N.; Messier, T.L.; Currier, E.A.; Burstein, E.S.; Li, D.; Hacksell, U.; Brann, M.R. Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol. Pharmacol., 2002, 61(6), 1297-1302.
[http://dx.doi.org/10.1124/mol.61.6.1297] [PMID: 12021390]
[85]
Steinfeld, T.; Mammen, M.; Smith, J.A.; Wilson, R.D.; Jasper, J.R. A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol. Pharmacol., 2007, 72(2), 291-302.
[http://dx.doi.org/10.1124/mol.106.033746] [PMID: 17478612]
[86]
Bradley, S.J.; Molloy, C.; Bundgaard, C.; Mogg, A.J.; Thompson, K.J.; Dwomoh, L.; Sanger, H.E.; Crabtree, M.D.; Brooke, S.M.; Sexton, P.M.; Felder, C.C.; Christopoulos, A.; Broad, L.M.; Tobin, A.B.; Langmead, C.J. Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes. Mol. Pharmacol., 2018, 93(6), 645-656.
[http://dx.doi.org/10.1124/mol.118.111872] [PMID: 29695609]
[87]
Chen, X.; Klöckner, J.; Holze, J.; Zimmermann, C.; Seemann, W.K.; Schrage, R.; Bock, A.; Mohr, K.; Tränkle, C.; Holzgrabe, U.; Decker, M. Rational design of partial agonists for the muscarinic m1 acetylcholine receptor. J. Med. Chem., 2015, 58(2), 560-576.
[http://dx.doi.org/10.1021/jm500860w] [PMID: 25478907]
[88]
Antony, J.; Kellershohn, K.; Mohr-Andrä, M.; Kebig, A.; Prilla, S.; Muth, M.; Heller, E.; Disingrini, T.; Dallanoce, C.; Bertoni, S.; Schrobang, J.; Tränkle, C.; Kostenis, E.; Christopoulos, A.; Höltje, H.D.; Barocelli, E.; De Amici, M.; Holzgrabe, U.; Mohr, K. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J., 2009, 23(2), 442-450.
[http://dx.doi.org/10.1096/fj.08-114751] [PMID: 18842964]
[89]
Cao, Y.; Min, C.; Acharya, S.; Kim, K.M.; Cheon, S.H. Design, synthesis and evaluation of bitopic arylpiperazinephenyl-1,2,4-oxadiazoles as preferential dopamine D3 receptor ligands. Bioorg. Med. Chem., 2016, 24(2), 191-200.
[http://dx.doi.org/10.1016/j.bmc.2015.12.002] [PMID: 26707842]
[90]
Le Naour, M.; Lunzer, M.M.; Powers, M.D.; Kalyuzhny, A.E.; Benneyworth, M.A.; Thomas, M.J.; Portoghese, P.S. Putative kappa opioid heteromers as targets for developing analgesics free of adverse effects. J. Med. Chem., 2014, 57(15), 6383-6392.
[http://dx.doi.org/10.1021/jm500159d] [PMID: 24978316]
[91]
Koch, H.J.; Haas, S.; Jürgens, T. On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer’s disease. Curr. Med. Chem., 2005, 12(24), 2915-2921.
[http://dx.doi.org/10.2174/092986705774454742] [PMID: 16305479]
[92]
Davie, B.J.; Christopoulos, A.; Scammells, P.J. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem. Neurosci., 2013, 4(7), 1026-1048.
[http://dx.doi.org/10.1021/cn400086m] [PMID: 23659787]
[93]
Keov, P.; López, L.; Devine, S.M.; Valant, C.; Lane, J.R.; Scammells, P.J.; Sexton, P.M.; Christopoulos, A. Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor. J. Biol. Chem., 2014, 289(34), 23817-23837.
[http://dx.doi.org/10.1074/jbc.M114.582874] [PMID: 25006252]
[94]
Langmead, C.J.; Austin, N.E.; Branch, C.L.; Brown, J.T.; Buchanan, K.A.; Davies, C.H.; Forbes, I.T.; Fry, V.A.; Hagan, J.J.; Herdon, H.J.; Jones, G.A.; Jeggo, R.; Kew, J.N.; Mazzali, A.; Melarange, R.; Patel, N.; Pardoe, J.; Randall, A.D.; Roberts, C.; Roopun, A.; Starr, K.R.; Teriakidis, A.; Wood, M.D.; Whittington, M.; Wu, Z.; Watson, J. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br. J. Pharmacol., 2008, 154(5), 1104-1115.
[http://dx.doi.org/10.1038/bjp.2008.152] [PMID: 18454168]
[95]
Kelly, E.; Mundell, S.J.; Sava, A.; Roth, A.L.; Felici, A.; Maltby, K.; Nathan, P.J.; Bullmore, E.T.; Henderson, G. The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours. Psychopharmacology (Berl.), 2015, 232(1), 305-314.
[http://dx.doi.org/10.1007/s00213-014-3666-3] [PMID: 24973897]
[96]
Nathan, P.J.; Watson, J.; Lund, J.; Davies, C.H.; Peters, G.; Dodds, C.M.; Swirski, B.; Lawrence, P.; Bentley, G.D.; O’Neill, B.V.; Robertson, J.; Watson, S.; Jones, G.A.; Maruff, P.; Croft, R.J.; Laruelle, M.; Bullmore, E.T. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol., 2013, 16(4), 721-731.
[http://dx.doi.org/10.1017/S1461145712000752] [PMID: 22932339]
[97]
Carnicella, S.; Drui, G.; Boulet, S.; Carcenac, C.; Favier, M.; Duran, T.; Savasta, M. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl. Psychiatry, 2014, 4e401
[http://dx.doi.org/10.1038/tp.2014.43] [PMID: 24937095]
[98]
Maramai, S.; Gemma, S.; Brogi, S.; Campiani, G.; Butini, S.; Stark, H.; Brindisi, M. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front. Neurosci., 2016, 10, 451.
[http://dx.doi.org/10.3389/fnins.2016.00451] [PMID: 27761108]
[99]
Li, P.; Snyder, G.L.; Vanover, K.E. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr. Top. Med. Chem., 2016, 16(29), 3385-3403.
[http://dx.doi.org/10.2174/1568026616666160608084834] [PMID: 27291902]
[100]
Lane, J.R.; Chubukov, P.; Liu, W.; Canals, M.; Cherezov, V.; Abagyan, R.; Stevens, R.C.; Katritch, V. Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Mol. Pharmacol., 2013, 84(6), 794-807.
[http://dx.doi.org/10.1124/mol.113.088054] [PMID: 24021214]
[101]
Furman, C.A.; Roof, R.A.; Moritz, A.E.; Miller, B.N.; Doyle, T.B.; Free, R.B.; Banala, A.K.; Paul, N.M.; Kumar, V.; Sibley, C.D.; Newman, A.H.; Sibley, D.R. Investigation of the binding and functional properties of extended length D3 dopamine receptor-selective antagonists. Eur. Neuropsychopharmacol., 2015, 25(9), 1448-1461.
[http://dx.doi.org/10.1016/j.euroneuro.2014.11.013] [PMID: 25583363]
[102]
Cao, Y.; Sun, N.; Zhang, J.; Liu, Z.; Tang, Y.Z.; Wu, Z.; Kim, K.M.; Cheon, S.H. Design, synthesis, and evaluation of bitopic arylpiperazine-phthalimides as selective dopamine D3 receptor agonists. MedChemComm, 2018, 9(9), 1457-1465.
[http://dx.doi.org/10.1039/C8MD00237A] [PMID: 30288220]
[103]
Jacobson, K.A.; Gao, Z.G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov., 2006, 5(3), 247-264.
[http://dx.doi.org/10.1038/nrd1983] [PMID: 16518376]
[104]
Valant, C.; May, L.T.; Aurelio, L.; Chuo, C.H.; White, P.J.; Baltos, J.A.; Sexton, P.M.; Scammells, P.J.; Christopoulos, A. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc. Natl. Acad. Sci. USA, 2014, 111(12), 4614-4619.
[http://dx.doi.org/10.1073/pnas.1320962111] [PMID: 24619092]
[105]
Aurelio, L.; Baltos, J.A.; Ford, L.; Nguyen, A.T.N.; Jörg, M.; Devine, S.M.; Valant, C.; White, P.J.; Christopoulos, A.; May, L.T.; Scammells, P.J. A structure-activity relationship study of bitopic n6-substituted adenosine derivatives as biased adenosine a1 receptor agonists. J. Med. Chem., 2018, 61(5), 2087-2103.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00047] [PMID: 29446948]
[106]
Harrison, L.M.; Kastin, A.J.; Zadina, J.E. Opiate tolerance and dependence: receptors, G-proteins, and antiopiates. Peptides, 1998, 19(9), 1603-1630.
[http://dx.doi.org/10.1016/S0196-9781(98)00126-0] [PMID: 9864069]
[107]
Kieffer, B.L. Opioids: first lessons from knockout mice. Trends Pharmacol. Sci., 1999, 20(1), 19-26.
[http://dx.doi.org/10.1016/S0165-6147(98)01279-6] [PMID: 10101958]
[108]
Spanagel, R.; Herz, A.; Shippenberg, T.S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl. Acad. Sci. USA, 1992, 89(6), 2046-2050.
[http://dx.doi.org/10.1073/pnas.89.6.2046] [PMID: 1347943]
[109]
Obeng, S.; Wang, H.; Jali, A.; Stevens, D.L.; Akbarali, H.I.; Dewey, W.L.; Selley, D.E.; Zhang, Y. Structure-activity relationship studies of 6α- and 6β-indolylacetamidonaltrexamine derivatives as bitopic Mu opioid receptor modulators and elaboration of the “Message-Address Concept” to comprehend their functional conversion. ACS Chem. Neurosci., 2019, 10(3), 1075-1090.
[http://dx.doi.org/10.1021/acschemneuro.8b00349] [PMID: 30156823]
[110]
Priestley, R.S.; Nickolls, S.A.; Alexander, S.P.; Kendall, D.A. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB J., 2015, 29(4), 1446-1455.
[http://dx.doi.org/10.1096/fj.14-263053] [PMID: 25550466]
[111]
Morales, P.; Goya, P.; Jagerovic, N.; Hernandez-Folgado, L. Allosteric modulators of the CB1 cannabinoid receptor: a structural update review. Cannabis Cannabinoid Res., 2016, 1(1), 22-30.
[http://dx.doi.org/10.1089/can.2015.0005] [PMID: 28861476]
[112]
Emmerson, P.J.; Fisher, M.J.; Yan, L.Z.; Mayer, J.P. Melanocortin-4 receptor agonists for the treatment of obesity. Curr. Top. Med. Chem., 2007, 7(11), 1121-1130.
[http://dx.doi.org/10.2174/156802607780906636] [PMID: 17584132]
[113]
Falls, B.A.; Zhang, Y. Insights into the allosteric mechanism of setmelanotide (RM-493) as a potent and first-in-class melanocortin-4 receptor (MC4R) agonist to treat rare genetic disorders of obesity through an in silico approach. ACS Chem. Neurosci., 2019, 10(3), 1055-1065.
[http://dx.doi.org/10.1021/acschemneuro.8b00346] [PMID: 30048591]
[114]
Brown, A.J.; Tsoulou, C.; Ward, E.; Gower, E.; Bhudia, N.; Chowdhury, F.; Dean, T.W.; Faucher, N.; Gangar, A.; Dowell, S.J. Pharmacological properties of acid N-thiazolylamide FFA2 agonists. Pharmacol. Res. Perspect., 2015, 3(3)e00141
[http://dx.doi.org/10.1002/prp2.141] [PMID: 26236484]
[115]
Bonifazi, A.; Yano, H.; Del Bello, F.; Farande, A.; Quaglia, W.; Petrelli, R.; Matucci, R.; Nesi, M.; Vistoli, G.; Ferré, S.; Piergentili, A. Synthesis and biological evaluation of a novel series of heterobivalent muscarinic ligands based on xanomeline and 1-[3-(4-butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1). J. Med. Chem., 2014, 57(21), 9065-9077.
[http://dx.doi.org/10.1021/jm501173q] [PMID: 25275964]
[116]
Lane, J.R.; Donthamsetti, P.; Shonberg, J.; Draper-Joyce, C.J.; Dentry, S.; Michino, M.; Shi, L.; López, L.; Scammells, P.J.; Capuano, B.; Sexton, P.M.; Javitch, J.A.; Christopoulos, A. A new mechanism of allostery in a G protein-coupled receptor dimer. Nat. Chem. Biol., 2014, 10(9), 745-752.
[http://dx.doi.org/10.1038/nchembio.1593] [PMID: 25108820]
[117]
Jo, E.; Bhhatarai, B.; Repetto, E.; Guerrero, M.; Riley, S.; Brown, S.J.; Kohno, Y.; Roberts, E.; Schürer, S.C.; Rosen, H. Novel selective allosteric and bitopic ligands for the S1P(3) receptor. ACS Chem. Biol., 2012, 7(12), 1975-1983.
[http://dx.doi.org/10.1021/cb300392z] [PMID: 22971058]
[118]
Sanna, M.G.; Vincent, K.P.; Repetto, E.; Nguyen, N.; Brown, S.J.; Abgaryan, L.; Riley, S.W.; Leaf, N.B.; Cahalan, S.M.; Kiosses, W.B.; Kohno, Y.; Brown, J.H.; McCulloch, A.D.; Rosen, H.; Gonzalez-Cabrera, P.J. Bitopic sphingosine 1-phosphate receptor 3 (S1P3) antagonist rescue from complete heart block: pharmacological and genetic evidence for direct S1P3 regulation of mouse cardiac conduction. Mol. Pharmacol., 2016, 89(1), 176-186.
[http://dx.doi.org/10.1124/mol.115.100222] [PMID: 26494861]
[119]
Stauch, B.; Johansson, L.C.; McCorvy, J.D.; Patel, N.; Han, G.W.; Huang, X.P.; Gati, C.; Batyuk, A.; Slocum, S.T.; Ishchenko, A.; Brehm, W.; White, T.A.; Michaelian, N.; Madsen, C.; Zhu, L.; Grant, T.D.; Grandner, J.M.; Shiriaeva, A.; Olsen, R.H.J.; Tribo, A.R.; Yous, S.; Stevens, R.C.; Weierstall, U.; Katritch, V.; Roth, B.L.; Liu, W.; Cherezov, V. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature, 2019, 569(7755), 284-288.
[http://dx.doi.org/10.1038/s41586-019-1141-3] [PMID: 31019306]