Dual Catalytic Activity of Amberlyst-15 in the Large-scale and Sustainable Synthesis of Dioctyl Sodium Sulfosuccinate (DOSS)

Page: [555 - 559] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Dioctyl sodium sulfosuccinate (DOSS) as a unique material both as a drug and surfactant was synthesized by a facile and economical synthetic method. In this project, Amberlyst-15 was selected as a heterogeneous recyclable bronsted solid acid for this synthesis both in the esterification of maleic anhydride and sulfonation of dioctyl maleate (DOM) ester. This catalyst was easily recovered and reused at least for 13 consecutive cycles without a significant loss in the catalytic activity. In this paper, we wish to uncover a catalytic approach for the synthesis of DOSS through a recyclable, easily recoverable, and commercially available catalyst, namely Amberlyst 15, under mild conditions.

Keywords: Dioctyl sodium sulfosuccinate (DOSS), Dioctyl maleate (DOM), Amberlyst, Bronsted acid, Surfactant.

Graphical Abstract

[1]
Clark, M.D.; Subramanian, S.; Krishnamoorti, R. J. Colloid Interface Sci., 2011, 354(1), 144-151.
[http://dx.doi.org/10.1016/j.jcis.2010.10.027] [PMID: 21084094]
[2]
Suttipong, M.; Tummala, N.R.; Kitiyanan, B.; Striolo, A. J. Phys. Chem. C, 2011, 115, 17286-17296.
[http://dx.doi.org/10.1021/jp203247r]
[3]
Yang, Z.; Wei, J.; Sobolev, Y.I.; Grzybowski, B.A. Nature, 2018, 553(7688), 313-318.
[http://dx.doi.org/10.1038/nature25137] [PMID: 29320473]
[4]
Ha, J.W.; Yang, S.M. J. Colloid Interface Sci., 1998, 206(1), 195-204.
[http://dx.doi.org/10.1006/jcis.1998.5676] [PMID: 9761644]
[5]
Prasad, M.; Strubbe, F.; Beunis, F.; Neyts, K. Langmuir, 2016, 32(23), 5796-5801.
[http://dx.doi.org/10.1021/acs.langmuir.6b00468] [PMID: 27231768]
[6]
Dong, L.; Liu, H.; Meng, L.; Xing, M.; Wang, J.; Wang, C.; Chen, H.; Zheng, N. J. Dairy Sci., 2018, 101(6), 4936-4943.
[http://dx.doi.org/10.3168/jds.2017-14087] [PMID: 29605335]
[7]
Guo, Y.; Wang, C.; Dun, J.; Du, L.; Hawley, M.; Sun, C.C. J. Pharm. Sci., 2019, 108(1), 516-524.
[http://dx.doi.org/10.1016/j.xphs.2018.10.047] [PMID: 30389564]
[8]
Park, E.J.; Seong, E.; Kim, Y.; Lee, K. Toxicol. In Vitro, 2019, 57, 132-142.
[http://dx.doi.org/10.1016/j.tiv.2019.02.021] [PMID: 30825645]
[9]
Hurdon, V.; Viola, R.; Schroder, C.; Pain Sym, J. Manag., 2000, 19, 130-136.
[10]
Li, M.; Xu, W.; Hu, D. Colloids Surf. A Physicochem. Eng. Asp., 2018, 553, 578-585.
[http://dx.doi.org/10.1016/j.colsurfa.2018.06.009]
[11]
Peri, J. J. Am. Oil Chem. Soc., 1958, 35, 110-117.
[http://dx.doi.org/10.1007/BF02640589]
[12]
El-Laithy, H.M. AAPS PharmSciTech, 2003, 4, 1-10.
[http://dx.doi.org/10.1208/pt040111]
[13]
Dai, R.; Wu, G.; Li, W. Colloids Surf. A Physicochem. Eng. Asp., 2010, 362, 84-89.
[http://dx.doi.org/10.1016/j.colsurfa.2010.03.041]
[14]
Hussein, M.Z.B.; Hwa, T.K. J. Nanopart. Res., 2000, 2, 293-298.
[http://dx.doi.org/10.1023/A:1010013201391]
[15]
Simmons, B.A.; Li, S.; John, V.T.; McPherson, G.L. Nano Lett., 2002, 2, 263-268.
[http://dx.doi.org/10.1021/nl010080k]
[16]
Sahiner, N.; Godbey, W.T.; McPherson, G.L. John, Microgel V. T. Colloid Polym. Sci., 2006, 284, 1121.
[http://dx.doi.org/10.1007/s00396-006-1489-4]
[17]
Bloch, M.; Inglis, R. P.; Koebner, A. Process for Preparing Sulfosuccinate US 4,039,562, 1977.
[18]
Longley, K. D.; Karalis, A. J. Unsymmetrical Sulfosuccinate Diesters US 4,117,237, 1978.
[19]
Al-Sabagh, A.; Azzam, E.; Mahmoud, S.; Saleh, N.; Surfact, J. Deterg., 2007, 10, 3-8.
[http://dx.doi.org/10.1007/s11743-006-1000-8]
[20]
Al-Sabagh, A.; Azzam, E.; El-Din, M.N.; Dispersion Sci, J. Technol., 2008, 29, 866-872.
[21]
Pasha, J.; Kandagatla, B.; Sen, S. Tetrahedron Lett., 2015, 56, 2289-2292.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.078]
[22]
Mondal, R.; Guha, C.; Mallik, A.K. Tetrahedron Lett., 2014, 55, 86-89.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.119]
[23]
Pal, R.; Sarkar, T.; Khasnobis, S. ARKIVOC, 2012, 1, 570-609.
[24]
Singh, K.; Sharma, S.; Sharma, A.J. Mol. Cat. A: Chem., 2011, 347, 34-37.
[http://dx.doi.org/10.1016/j.molcata.2011.07.007]