Objective: A novel pH-sensitive superparamagnetic drug delivery system was developed based on quercetin loaded hyperbranched polyamidoamine-b-polyethylene glycol-folic acid-modified Fe3O4 nanoparticles (Fe3O4@PAMAM-b-PEG-FA).
Methods: The nanoparticles exhibit excellent water dispersity with well-defined size distribution (around 51.8 nm) and strong magnetisability. In vitro release studies demonstrated that the quercetinloaded Fe3O4@PAMAM-b-PEG-FA nanoparticles are stable at normal physiologic conditions (pH 7.4 and 37°C) but sensitive to acidic conditions (pH 5.6 and 37°C), which led to the rapid release of the loaded drug.
Results: Fluorescent microscopy results indicated that the Fe3O4@PAMAM-b-PEG-FA nanoparticles could be efficiently accumulated in tumor tissue compared with non-folate conjugated nanoparticles. Also, in comparison with free quercetin, the quercetin loaded Fe3O4@PAMAM-b-PEG-FA exerts higher cytotoxicity. Furthermore, this magnetic nanocarrier showed high MRI sensitivity, even in its lower iron content.
Conclusion: The results indicated that the prepared nanoparticles are an effective chemotherapy and diagnosis system to inhibit proliferation and monitor the progression of tumor cells, respectively.
Keywords: Magnetic nanoparticles, targeted drug delivery, pH-sensitive, magnetic resonance imaging, nanoparticles, hyperbranched polymers.