From Micro to Nano and from Science to Technology: Nano Age Makes the Impossible Possible

Page: [2 - 3] Pages: 2

  • * (Excluding Mailing and Handling)

[1]
El Naschie, M.S. Nanotechnology for the developing world. Chaos Solitons Fractals, 2006, 30(4), 769-773.
[2]
Xu, C.; Nasrollahzadeh, M.; Sajjadi, M.; Maham, M.; Luque, R.; Puente-Santiago, A.R. Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renew. Sustain. Energy Rev., 2019, 112, 195-252.
[3]
Ain, Q.T.; He, J.H. On two-scale dimension and its applications. Therm. Sci., 2019, 23, 1707-1712.
[http://dx.doi.org/10.2298/TSCI190408138A]
[4]
He, J.H.; Ji, F.Y. Two-scale mathematics and fractional calculus for thermodynamics. Therm. Sci., 2019, 10
[http://dx.doi.org/10.2298/TSCI1904131H]
[5]
He, J.H. The smaller, the better: From the spider-spinning to bubble-electrospinning. Acta Phys. Pol. A, 2012, 121, 254-256.
[6]
Dumée, L.F.; Maina, J.W.; Merenda, A.; Reis, R.; He, L.; Kong, L. Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. J. Membr. Sci., 2017, 528, 217-224.
[7]
Zhang, S.M.; Liu, P.; Yin, Y.H.; Wang, X.Y.; Tang, W.; Chen, R.X.; He, J.H. Electricity from nanoparticles on a nanomembrane. Therm. Sci., 2015, 19, 351-352.
[8]
Chen, R.X.; He, J.H.; He, C.H. Electricity from nanomembrane. Therm. Sci., 2014, 18, 1720-1721.
[9]
Tian, D.; Li, X.X.; He, J.H. Geometrical potential and nanofiber membrane’s highly selective adsorption property. Adsorpt. Sci. Technol., 2019, 37, 367-388.
[10]
Fan, J.; Zhang, Y.; Liu, Y.; Wang, Y.; Cao, F.; Yang, Q.; Tian, F. Explanation of the cell orientation in a nanofiber membrane by the geometric potential theory. Result Phys., 2019, 31102537
[http://dx.doi.org/10.1016/j.rinp.2019.102537]
[11]
Li, X.X.; He, J.H. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning. Result Phys., 2019, 12, 1405-1410.