The Cold Case of Metabotropic Glutamate Receptor 6: Unjust Detention in the Retina?

Page: [120 - 125] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

It is a common opinion that metabotropic glutamate receptor subtype 6 (mGluR6) is expressed exclusively in the retina, and in particular in the dendrites of ON-bipolar cells. Glutamate released in darkness from photoreceptors activates mGluR6, which is negatively associated with a membrane non-selective cation channel, the transient receptor potential melanoma-related 1, TRPM1, resulting in cell hyperpolarization. The evidence that mGluR6 is expressed not only in the retina but also in other tissues and cell populations has accumulated over time. The expression of mGluR6 has been identified in microglia, bone marrow stromal and prostate cancer cells, B lymphocytes, melanocytes and keratinocytes and non-neural tissues such as testis, kidney, cornea, conjunctiva, and eyelid. The receptor also appears to be expressed in brain areas, such as the hypothalamus, cortex, hippocampus, nucleus of tractus solitarius, superior colliculus, axons of the corpus callosum and accessory olfactory bulb. The pharmacological activation of mGluR6 in the hippocampus produced an anxiolytic-like effect and in the periaqueductal gray analgesic potential. This review aims to collect all the evidence on the expression and functioning of mGluR6 outside the retina that has been accumulated over the years for a broader view of the potential of the receptor whose retinal confinement appears understimated.

Keywords: mGluR6, homo-AMPA, anxiolytic-like effect, periaqueductal grey, rostroventromedial medulla.

Graphical Abstract

[1]
Nakajima, Y.; Iwakabe, H.; Akazawa, C.; Nawa, H.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J. Biol. Chem., 1993, 268(16), 11868-11873.
[PMID: 8389366]
[2]
Laurie, D.J.; Schoeffter, P.; Wiederhold, K.H.; Sommer, B. Cloning, distribution and functional expression of the human mGlu6 metabotropic glutamate receptor. Neuropharmacology, 1997, 36(2), 145-152.
[http://dx.doi.org/10.1016/S0028-3908(96)00172-4] [PMID: 9144651]
[3]
Ahmadian, H.; Nielsen, B.; Bräuner-Osborne, H.; Johansen, T.N.; Stensbøl, T.B.; Sløk, F.A.; Sekiyama, N.; Nakanishi, S.; Krogsgaard-Larsen, P.; Madsen, U. (S)-homo-AMPA, a specific agonist at the mGlu6 subtype of metabotropic glutamic acid receptors. J. Med. Chem., 1997, 40(22), 3700-3705.
[http://dx.doi.org/10.1021/jm9703597] [PMID: 9357538]
[4]
Naples, M.A.; Hampson, D.R. Pharmacological profiles of the metabotropic glutamate receptor ligands. Neuropharmacology, 2001, 40(2), 170-177.
[http://dx.doi.org/10.1016/S0028-3908(00)00128-3] [PMID: 11114395]
[5]
Rosemond, E.; Wang, M.; Yao, Y.; Storjohann, L.; Stormann, T.; Johnson, E.C.; Hampson, D.R. Molecular basis for the differential agonist affinities of group III metabotropic glutamate receptors. Mol. Pharmacol., 2004, 66(4), 834-842.
[http://dx.doi.org/10.1124/mol.104.002956] [PMID: 15231870]
[6]
Rosemond, E.; Peltekova, V.; Naples, M.; Thøgersen, H.; Hampson, D.R. Molecular determinants of high affinity binding to group III metabotropic glutamate receptors. J. Biol. Chem., 2002, 277(9), 7333-7340.
[http://dx.doi.org/10.1074/jbc.M110476200] [PMID: 11744707]
[7]
Valerio, A.; Ferraboli, S.; Paterlini, M.; Spano, P.; Barlati, S. Identification of novel alternatively-spliced mRNA isoforms of metabotropic glutamate receptor 6 gene in rat and human retina. Gene, 2001, 262(1-2), 99-106. a
[http://dx.doi.org/10.1016/S0378-1119(00)00547-3] [PMID: 11179672]
[8]
Valerio, A.; Zoppi, N.; Ferraboli, S.; Paterlini, M.; Ferrario, M.; Barlati, S.; Spano, P. Alternative splicing of mGlu6 gene generates a truncated glutamate receptor in rat retina. Neuroreport, 2001, 12(12), 2711-2715. b
[http://dx.doi.org/10.1097/00001756-200108280-00024] [PMID: 11522953]
[9]
Vardi, T.; Fina, M.; Zhang, L.; Dhingra, A.; Vardi, N. mGluR6 transcripts in non-neuronal tissues. J. Histochem. Cytochem., 2011, 59(12), 1076-1086.
[http://dx.doi.org/10.1369/0022155411425386] [PMID: 22034516]
[10]
Huang, Y.Y.; Haug, M.F.; Gesemann, M.; Neuhauss, S.C. Novel expression patterns of metabotropic glutamate receptor 6 in the zebrafish nervous system. PLoS One, 2012, 7(4)e35256
[http://dx.doi.org/10.1371/journal.pone.0035256] [PMID: 22523578]
[11]
Bräuner-Osborne, H.; Sløk, F.A.; Skjaerbaek, N.; Ebert, B.; Sekiyama, N.; Nakanishi, S.; Krogsgaard-Larsen, P. A new highly selective metabotropic excitatory amino acid agonist: 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid. J. Med. Chem., 1996, 39(16), 3188-3194.
[http://dx.doi.org/10.1021/jm9602569] [PMID: 8759641]
[12]
Nomura, A.; Shigemoto, R.; Nakamura, Y.; Okamoto, N.; Mizuno, N.; Nakanishi, S. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell, 1994, 77(3), 361-369.
[http://dx.doi.org/10.1016/0092-8674(94)90151-1] [PMID: 8181056]
[13]
Weng, K.; Lu, C.; Daggett, L.P.; Kuhn, R.; Flor, P.J.; Johnson, E.C.; Robinson, P.R. Functional coupling of a human retinal metabotropic glutamate receptor (hmGluR6) to bovine rod transducin and rat Go in an in vitro reconstitution system. J. Biol. Chem., 1997, 272(52), 33100-33104.
[http://dx.doi.org/10.1074/jbc.272.52.33100] [PMID: 9407094]
[14]
Nawy, S. The metabotropic receptor mGluR6 may signal through G(o), but not phosphodiesterase, in retinal bipolar cells. J. Neurosci., 1999, 19(8), 2938-2944.
[http://dx.doi.org/10.1523/JNEUROSCI.19-08-02938.1999] [PMID: 10191311]
[15]
Dhingra, A. Lyubarsky, A.; Jiang, M.; Pugh, Jr. E.N.; Birnbaumer, L.; Sterling, P.; Vardi, N. The light response of ON bipolar neurons requires Go. J. Neurosci., 2000, 20, 9053-9058.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09053.2000] [PMID: 11124982]
[16]
Dhingra, A.; Jiang, M.; Wang, T.L.; Lyubarsky, A.; Savchenko, A.; Bar-Yehuda, T.; Sterling, P.; Birnbaumer, L.; Vardi, N. Light response of retinal ON bipolar cells requires a specific splice variant of Galpha(o). J. Neurosci., 2002, 22(12), 4878-4884.
[http://dx.doi.org/10.1523/JNEUROSCI.22-12-04878.2002] [PMID: 12077185]
[17]
Nawy, S.; Jahr, C.E. Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature, 1990, 346(6281), 269-271.
[http://dx.doi.org/10.1038/346269a0] [PMID: 1695713]
[18]
Sheiells, R.A.; Falk, G. Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc. Biol. Sci., 1990, 242(1304), 91-94.
[19]
Shen, Y.; Heimel, J.A.; Kamermans, M.; Peachey, N.S.; Gregg, R.G.; Nawy, S. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J. Neurosci., 2009, 29(19), 6088-6093.
[http://dx.doi.org/10.1523/JNEUROSCI.0132-09.2009] [PMID: 19439586]
[20]
Koike, C.; Obara, T.; Uriu, Y.; Numata, T.; Sanuki, R.; Miyata, K.; Koyasu, T.; Ueno, S.; Funabiki, K.; Tani, A.; Ueda, H.; Kondo, M.; Mori, Y.; Tachibana, M.; Furukawa, T. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 332-337.
[http://dx.doi.org/10.1073/pnas.0912730107] [PMID: 19966281]
[21]
Morgans, C.W.; Brown, R.L.; Duvoisin, R.M. TRPM1: the endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. BioEssays, 2010, 32(7), 609-614.
[http://dx.doi.org/10.1002/bies.200900198] [PMID: 20544736]
[22]
Shen, Y.; Rampino, M.A.; Carroll, R.C.; Nawy, S. G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc. Natl. Acad. Sci. USA, 2012, 109(22), 8752-8757.
[http://dx.doi.org/10.1073/pnas.1117433109] [PMID: 22586107]
[23]
Faden, A.I.; Ivanova, S.A.; Yakovlev, A.G.; Mukhin, A.G. Neuroprotective effects of group III mGluR in traumatic neuronal injury. J. Neurotrauma, 1997, 14(12), 885-895.
[http://dx.doi.org/10.1089/neu.1997.14.885] [PMID: 9475370]
[24]
Taylor, D.L.; Diemel, L.T.; Pocock, J.M. Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J. Neurosci., 2003, 23(6), 2150-2160.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02150.2003] [PMID: 12657674]
[25]
Okamoto, N.; Hori, S.; Akazawa, C.; Hayashi, Y.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J. Biol. Chem., 1994, 269(2), 1231-1236.
[PMID: 8288585]
[26]
Schoepp, D.D.; Jane, D.E.; Monn, J.A. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 1999, 38(10), 1431-1476.
[http://dx.doi.org/10.1016/S0028-3908(99)00092-1] [PMID: 10530808]
[27]
Gasparini, F.; Bruno, V.; Battaglia, G.; Lukic, S.; Leonhardt, T.; Inderbitzin, W.; Laurie, D.; Sommer, B.; Varney, M.A.; Hess, S.D.; Johnson, E.C.; Kuhn, R.; Urwyler, S.; Sauer, D.; Portet, C.; Schmutz, M.; Nicoletti, F.; Flor, P.J. (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J. Pharmacol. Exp. Ther., 1999, 289(3), 1678-1687.
[PMID: 10336568]
[28]
Ghosh, P.K.; Baskaran, N.; van den Pol, A.N. Developmentally regulated gene expression of all eight metabotropic glutamate receptors in hypothalamic suprachiasmatic and arcuate nuclei--a PCR analysis. Brain Res. Dev. Brain Res., 1997, 102(1), 1-12.
[http://dx.doi.org/10.1016/S0165-3806(97)00066-7] [PMID: 9298229]
[29]
Hoang, C.J.; Hay, M. Expression of metabotropic glutamate receptors in nodose ganglia and the nucleus of the solitary tract. Am. J. Physiol. Heart Circ. Physiol., 2001, 281(1), H457-H462.
[http://dx.doi.org/10.1152/ajpheart.2001.281.1.H457] [PMID: 11406515]
[30]
Young, R.L.; Cooper, N.J.; Blackshaw, L.A. Anatomy and function of group III metabotropic glutamate receptors in gastric vagal pathways. Neuropharmacology, 2008, 54(6), 965-975.
[http://dx.doi.org/10.1016/j.neuropharm.2008.02.010] [PMID: 18371991]
[31]
Dammann, F.; Kirschstein, T.; Guli, X.; Müller, S.; Porath, K.; Rohde, M.; Tokay, T.; Köhling, R. Bidirectional shift of group III metabotropic glutamate receptor-mediated synaptic depression in the epileptic hippocampus. Epilepsy Res., 2018, 139, 157-163.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.12.002] [PMID: 29224956]
[32]
Foreman, M.A.; Gu, Y.; Howl, J.D.; Jones, S.; Publicover, S.J. Group III metabotropic glutamate receptor activation inhibits Ca2+ influx and nitric oxide synthase activity in bone marrow stromal cells. J. Cell. Physiol., 2005, 204(2), 704-713.
[http://dx.doi.org/10.1002/jcp.20353] [PMID: 15799084]
[33]
Pissimissis, N.; Papageorgiou, E.; Lembessis, P.; Armakolas, A.; Koutsilieris, M. The glutamatergic system expression in human PC-3 and LNCaP prostate cancer cells. Anticancer Res., 2009, 29(1), 371-377.
[PMID: 19331175]
[34]
Marciniak, M.; Chruścicka, B.; Lech, T.; Burnat, G.; Pilc, A. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice. Reprod. Fertil. Dev., 2016, 28(3), 369-374.
[http://dx.doi.org/10.1071/RD14132] [PMID: 25066043]
[35]
Romano, C.; van den Pol, A.N.; O’Malley, K.L. Enhanced early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: protein, mRNA splice variants, and regional distribution. J. Comp. Neurol., 1996, 367(3), 403-412.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19960408)367:3<403: AID-CNE6>3.0.CO;2-9] [PMID: 8698900]
[36]
Tong, Q.; Kirchgessner, A.L. Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(5), G992-G1003.
[http://dx.doi.org/10.1152/ajpgi.00118.2003] [PMID: 12829438]
[37]
Valero, M.L.; Caminos, E.; Juiz, J.M.; Martinez-Galan, J.R. TRPC1 and metabotropic glutamate receptor expression in rat auditory midbrain neurons. J. Neurosci. Res., 2015, 93(6), 964-972.
[http://dx.doi.org/10.1002/jnr.23557] [PMID: 25627107]
[38]
Fu, N.; Drinnenberg, I.; Kelso, J.; Wu, J.R.; Pääbo, S.; Zeng, R.; Khaitovich, P. Comparison of protein and mRNA expression evolution in humans and chimpanzees. PLoS One, 2007, 2(2)e216
[http://dx.doi.org/10.1371/journal.pone.0000216] [PMID: 17299596]
[39]
Shankavaram, U.T.; Reinhold, W.C.; Nishizuka, S.; Major, S.; Morita, D.; Chary, K.K.; Reimers, M.A.; Scherf, U.; Kahn, A.; Dolginow, D.; Cossman, J.; Kaldjian, E.P.; Scudiero, D.A.; Petricoin, E.; Liotta, L.; Lee, J.K.; Weinstein, J.N. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol. Cancer Ther., 2007, 6(3), 820-832.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0650] [PMID: 17339364]
[40]
Gry, M.; Rimini, R.; Strömberg, S.; Asplund, A.; Pontén, F.; Uhlén, M.; Nilsson, P. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics, 2009, 10, 365.
[http://dx.doi.org/10.1186/1471-2164-10-365] [PMID: 19660143]
[41]
Devi, S.; Markandeya, Y.; Maddodi, N.; Dhingra, A.; Vardi, N.; Balijepalli, R.C.; Setaluri, V. Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes. Pigment Cell Melanoma Res., 2013, 26(3), 348-356.
[http://dx.doi.org/10.1111/pcmr.12083] [PMID: 23452348]
[42]
Zheng, S.; Sun, Z.; Ni, J.; Li, Z.; Sha, Y.; Zhang, T.; Qiao, S.; Zhao, G.; Song, Z. mGluR6 regulates keratinocyte phagocytosis by modulating CaM KII/ERK/MLC signalling pathway. Exp. Dermatol., 2016, 25(11), 909-911.
[http://dx.doi.org/10.1111/exd.13096] [PMID: 27246800]
[43]
Toms, N.J.; Jane, D.E.; Kemp, M.C.; Bedingfield, J.S.; Roberts, P.J. The effects of (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG), a potent and selective metabotropic glutamate receptor antagonist. Br. J. Pharmacol., 1996, 119(5), 851-854.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15750.x] [PMID: 8922731]
[44]
Acher, F.C.; Tellier, F.J.; Azerad, R.; Brabet, I.N.; Fagni, L.; Pin, J.P. Synthesis and pharmacological characterization of aminocyclopentanetricarboxylic acids: new tools to discriminate between metabotropic glutamate receptor subtypes. J. Med. Chem., 1997, 40(19), 3119-3129.
[http://dx.doi.org/10.1021/jm970207b] [PMID: 9301676]
[45]
Pałucha, A.; Tatarczyńska, E.; Brański, P.; Szewczyk, B.; Wierońska, J.M.; Kłak, K.; Chojnacka-Wójcik, E.; Nowak, G.; Pilc, A. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology, 2004, 46(2), 151-159.
[http://dx.doi.org/10.1016/j.neuropharm.2003.09.006] [PMID: 14680755]
[46]
Tatarczyńska, E.; Kłodzińska, A.; Kroczka, B.; Chojnacka-Wójcik, E.; Pilc, A. The antianxiety-like effects of antagonists of group I and agonists of group II and III metabotropic glutamate receptors after intrahippocampal administration. Psychopharmacology (Berl.), 2001, 158(1), 94-99.
[http://dx.doi.org/10.1007/s002130100798] [PMID: 11685389]
[47]
Stachowicz, K.; Chojnacka-Wójcik, E.; Kłak, K.; Pilc, A. Anxiolytic-like effects of group III mGlu receptor ligands in the hippocampus involve GABAA signaling. Pharmacol. Rep., 2006, 58(6), 820-826.
[PMID: 17220539]
[48]
Smiałowska, M.; Wierońska, J.M.; Domin, H.; Zieba, B. The effect of intrahippocampal injection of group II and III metobotropic glutamate receptor agonists on anxiety; the role of neuropeptide Y. Neuropsychopharmacology, 2007, 32(6), 1242-1250.
[http://dx.doi.org/10.1038/sj.npp.1301258] [PMID: 17133262]
[49]
Reynolds, D.V. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science, 1969, 164(3878), 444-445.
[http://dx.doi.org/10.1126/science.164.3878.444] [PMID: 4887743]
[50]
Basbaum, A.I.; Fields, H.L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci., 1984, 7, 309-338.
[http://dx.doi.org/10.1146/annurev.ne.07.030184.001521] [PMID: 6143527]
[51]
Moreau, J.L.; Fields, H.L. Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res., 1986, 397(1), 37-46.
[http://dx.doi.org/10.1016/0006-8993(86)91367-3] [PMID: 3801864]
[52]
Fields, H.L.; Bry, J.; Hentall, I.; Zorman, G. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J. Neurosci., 1983, 3(12), 2545-2552.
[http://dx.doi.org/10.1523/JNEUROSCI.03-12-02545.1983] [PMID: 6317812]
[53]
Gao, K.; Chen, D.O.; Genzen, J.R.; Mason, P. Activation of serotonergic neurons in the raphe magnus is not necessary for morphine analgesia. J. Neurosci., 1998, 18(5), 1860-1868.
[http://dx.doi.org/10.1523/JNEUROSCI.18-05-01860.1998] [PMID: 9465010]
[54]
Heinricher, M.M.; Morgan, M.M.; Tortorici, V.; Fields, H.L. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience, 1994, 63(1), 279-288.
[http://dx.doi.org/10.1016/0306-4522(94)90022-1] [PMID: 7898652]
[55]
Heinricher, M.M.; Tortorici, V. Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience, 1994, 63(2), 533-546.
[http://dx.doi.org/10.1016/0306-4522(94)90548-7] [PMID: 7891863]
[56]
Tortorici, V.; Morgan, M.M. Comparison of morphine and kainic acid microinjections into identical PAG sites on the activity of RVM neurons. J. Neurophysiol., 2002, 88(4), 1707-1715.
[http://dx.doi.org/10.1152/jn.2002.88.4.1707] [PMID: 12364500]
[57]
Heinricher, M.M.; Morgan, M.M.; Fields, H.L. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience, 1992, 48(3), 533-543.
[http://dx.doi.org/10.1016/0306-4522(92)90400-V] [PMID: 1603332]
[58]
Kincaid, W.; Neubert, M.J.; Xu, M.; Kim, C.J.; Heinricher, M.M. Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J. Neurophysiol., 2006, 95(1), 33-41.
[http://dx.doi.org/10.1152/jn.00449.2005] [PMID: 16192337]
[59]
Neubert, M.J.; Kincaid, W.; Heinricher, M.M. Nociceptive facilitating neurons in the rostral ventromedial medulla. Pain, 2004, 110(1-2), 158-165.
[http://dx.doi.org/10.1016/j.pain.2004.03.017] [PMID: 15275763]
[60]
Marabese, I.; Rossi, F.; Palazzo, E.; de Novellis, V.; Starowicz, K.; Cristino, L.; Vita, D.; Gatta, L.; Guida, F.; Di Marzo, V.; Rossi, F.; Maione, S. Periaqueductal gray metabotropic glutamate receptor subtype 7 and 8 mediate opposite effects on amino acid release, rostral ventromedial medulla cell activities, and thermal nociception. J. Neurophysiol., 2007, 98(1), 43-53. [a]
[http://dx.doi.org/10.1152/jn.00356.2007] [PMID: 17507496]
[61]
Marabese, I.; de Novellis, V.; Palazzo, E.; Scafuro, M.A.; Vita, D.; Rossi, F.; Maione, S. Effects of (S)-3,4-DCPG, an mGlu8 receptor agonist, on inflammatory and neuropathic pain in mice. Neuropharmacology, 2007, 52(2), 253-262. [b]
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.006] [PMID: 17113112]
[62]
Palazzo, E.; Marabese, I.; Luongo, L.; Boccella, S.; Bellini, G.; Giordano, M.E.; Rossi, F.; Scafuro, M.; Novellis, Vd.; Maione, S. Effects of a metabotropic glutamate receptor subtype 7 negative allosteric modulator in the periaqueductal grey on pain responses and rostral ventromedial medulla cell activity in rat. Mol. Pain, 2013, 9, 44-55.
[http://dx.doi.org/10.1186/1744-8069-9-44] [PMID: 24004843]
[63]
Palazzo, E.; de Novellis, V.; Rossi, F.; Maione, S. Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain. Amino Acids, 2014, 46(6), 1441-1448.
[http://dx.doi.org/10.1007/s00726-014-1703-5] [PMID: 24623118]
[64]
Palazzo, E.; Marabese, I.; de Novellis, V.; Rossi, F.; Maione, S. Supraspinal metabotropic glutamate receptors: a target for pain relief and beyond. Eur. J. Neurosci., 2014, 39(3), 444-454.
[http://dx.doi.org/10.1111/ejn.12398] [PMID: 24494684]
[65]
Palazzo, E.; Marabese, I.; de Novellis, V.; Rossi, F.; Maione, S. Metabotropic glutamate receptor 7: from synaptic function to therapeutic implications. Curr. Neuropharmacol., 2016, 14(5), 504-513.
[http://dx.doi.org/10.2174/1570159X13666150716165323] [PMID: 27306064]
[66]
Palazzo, E.; Marabese, I.; Luongo, L.; Guida, F.; de Novellis, V.; Maione, S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J. Neurochem., 2017, 141(4), 507-519.
[http://dx.doi.org/10.1111/jnc.13725] [PMID: 27363363]
[67]
Palazzo, E.; Guida, F.; Migliozzi, A.; Gatta, L.; Marabese, I.; Luongo, L.; Rossi, C.; de Novellis, V.; Fernández-Sánchez, E.; Soukupova, M.; Zafra, F.; Maione, S. Intraperiaqueductal gray glycine and D-serine exert dual effects on rostral ventromedial medulla ON- and OFF-cell activity and thermoceptive threshold in the rat. J. Neurophysiol., 2009, 102(6), 3169-3179.
[http://dx.doi.org/10.1152/jn.00124.2009] [PMID: 19776366]
[68]
Palazzo, E.; Marabese, I.; de Novellis, V.; Oliva, P.; Rossi, F.; Berrino, L.; Rossi, F.; Maione, S. Metabotropic and NMDA glutamate receptors participate in the cannabinoid-induced antinociception. Neuropharmacology, 2001, 40(3), 319-326.
[http://dx.doi.org/10.1016/S0028-3908(00)00160-X] [PMID: 11166324]
[69]
Palazzo, E.; de Novellis, V.; Marabese, I.; Cuomo, D.; Rossi, F.; Berrino, L.; Rossi, F.; Maione, S. Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur. J. Pharmacol., 2002, 439(1-3), 69-75.
[http://dx.doi.org/10.1016/S0014-2999(02)01367-5] [PMID: 11937094]