Mercury Exposure, Epigenetic Alterations and Brain Tumorigenesis: A Possible Relationship?

Page: [6596 - 6610] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The risk assessment of mercury (Hg), in both wildlife and humans, represents an increasing challenge. Increased production of Reactive Oxygen Species (ROS) is a known Hg-induced toxic effect, which can be accentuated by other environmental pollutants and by complex interactions between environmental and genetic factors. Some epidemiological and experimental studies have investigated a possible correlation between brain tumors and heavy metals. Epigenetic modifications in brain tumors include aberrant activation of genes, hypomethylation of specific genes, changes in various histones, and CpG hypermethylation. Also, Hg can decrease the bioavailability of selenium and induce the generation of reactive oxygen that plays important roles in different pathological processes. Modification of of metals can induce excess ROS and cause lipid peroxidation, alteration of proteins, and DNA damage. In this review, we highlight the possible relationship between Hg exposure, epigenetic alterations, and brain tumors.

Keywords: Mercury, cancer, brain, reactive oxygen species, homeostasis, CpG hypermethylation.

[1]
Takahashi, T.; Fujimura, M.; Koyama, M.; Kanazawa, M.; Usuki, F.; Nishizawa, M.; Shimohata, T. Methylmercury causes blood-brain barrier damage in rats via upregulation of vascular endothelial growth factor expression. PLoS One, 2017, 12(1)e0170623
[http://dx.doi.org/10.1371/journal.pone.0170623] [PMID: 28118383]
[2]
Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett., 2018, 592(5), 728-742.
[http://dx.doi.org/10.1002/1873-3468.12956 ] [PMID: 29281123]
[3]
Cariccio, V.L.; Samà, A.; Bramanti, P.; Mazzon, E. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol. Trace Elem. Res., 2019, 187(2), 341-356.
[http://dx.doi.org/10.1007/s12011-018-1380-4] [PMID: 29777524]
[4]
Bjørklund, G.; Tinkov, A.A.; Dadar, M.; Rahman, M.M.; Chirumbolo, S.; Skalny, A.V.; Skalnaya, M.G.; Haley, B.E.; Ajsuvakova, O.P.; Aaseth, J. Insights into the potential role of mercury in Alzheimer’s disease. J. Mol. Neurosci., 2019, 67(4), 511-533.
[http://dx.doi.org/10.1007/s12031-019-01274-3] [PMID: 30877448]
[5]
Tiffany-Castiglion, E.; Qian, Y. Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology, 2001, 22(5), 577-592.
[http://dx.doi.org/10.1016/S0161-813X(01)00050-X] [PMID: 11770879]
[6]
Pamphlett, R.; Kum Jew, S. Age-related uptake of heavy metals in human spinal Interneurons. PLoS One, 2016, 11(9)e0162260
[http://dx.doi.org/10.1371/journal.pone.0162260] [PMID: 27611334]
[7]
Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol., 2006, 36(8), 609-662.
[http://dx.doi.org/10.1080/10408440600845619] [PMID: 16973445]
[8]
Bonacker, D.; Stoiber, T.; Wang, M.; Böhm, K.J.; Prots, I.; Unger, E.; Thier, R.; Bolt, H.M.; Degen, G.H. Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Arch. Toxicol., 2004, 78(10), 575-583.
[http://dx.doi.org/10.1007/s00204-004-0578-8] [PMID: 15205888]
[9]
Syversen, T.; Kaur, P. The toxicology of mercury and its compounds. J. Trace Elem. Med. Biol., 2012, 26(4), 215-226.
[http://dx.doi.org/10.1016/j.jtemb.2012.02.004] [PMID: 22658719]
[10]
Keates, R.A.; Yott, B. Inhibition of microtubule polymerization by micromolar concentrations of mercury (II). Can. J. Biochem. Cell Biol., 1984, 62(9), 814-818.
[http://dx.doi.org/10.1139/o84-103] [PMID: 6437647]
[11]
Crespo-López, M.E.; Lima de Sá, A.; Herculano, A.M.; Rodríguez Burbano, R.; Martins do Nascimento, J.L. Methylmercury genotoxicity: a novel effect in human cell lines of the central nervous system. Environ. Int., 2007, 33(2), 141-146.
[http://dx.doi.org/10.1016/j.envint.2006.08.005] [PMID: 17007929]
[12]
Simning, A.; van Wijngaarden, E. Literature review of cancer mortality and incidence among dentists. Occup. Environ. Med., 2007, 64(7), 432-438.
[http://dx.doi.org/10.1136/oem.2006.029223] [PMID: 17259166]
[13]
Miyamoto, M.D. Hg2+ causes neurotoxicity at an intracellular site following entry through Na and Ca channels. Brain Res., 1983, 267(2), 375-379.
[http://dx.doi.org/10.1016/0006-8993(83)90893-4] [PMID: 6307469]
[14]
Carvalho, C.M.; Chew, E-H.; Hashemy, S.I.; Lu, J.; Holmgren, A. Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J. Biol. Chem., 2008, 283(18), 11913-11923.
[http://dx.doi.org/10.1074/jbc.M710133200] [PMID: 18321861]
[15]
Branco, V.; Carvalho, C. The thioredoxin system as a target for mercury compounds. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(12)129255
[http://dx.doi.org/10.1016/j.bbagen.2018.11.007] [PMID: 30447253]
[16]
Branco, V.; Pimentel, J.; Brito, M.A.; Carvalho, C. Thioredoxin, glutathione and related molecules in tumors of the nervous system. Curr. Med. Chem., 2020, 27(12), 1878-1900.
[http://dx.doi.org/10.2174/0929867326666190201113004 ] [PMID: 30706774]
[17]
Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev., 2017, 332, 30-37.
[http://dx.doi.org/10.1016/j.ccr.2016.10.009]
[18]
Ward, R.J.; Dexter, D.T.; Crichton, R.R. Neurodegenerative diseases and therapeutic strategies using iron chelators. J. Trace Elem. Med. Biol., 2015, 31, 267-273.
[http://dx.doi.org/10.1016/j.jtemb.2014.12.012] [PMID: 25716300]
[19]
Ren, Z.; Liang, J.; Zhang, P.; Chen, J.; Wen, J. Inhibition of human glioblastoma cell invasion involves PION@E6 mediated autophagy process. Cancer Manag. Res., 2019, 11, 2643-2652.
[http://dx.doi.org/10.2147/CMAR.S200151] [PMID: 31015768]
[20]
Zhang, P.; Xu, Y.; Sun, J.; Li, X.; Wang, L.; Jin, L. Protection of pyrroloquinoline quinone against methylmercury-induced neurotoxicity via reducing oxidative stress. Free Radic. Res., 2009, 43(3), 224-233.
[http://dx.doi.org/10.1080/10715760802677348] [PMID: 19191107]
[21]
Dreiem, A.; Seegal, R.F. Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. Neurotoxicology, 2007, 28(4), 720-726.
[http://dx.doi.org/10.1016/j.neuro.2007.03.004] [PMID: 17442395]
[22]
Yin, Z.; Milatovic, D.; Aschner, J.L.; Syversen, T.; Rocha, J.B.; Souza, D.O.; Sidoryk, M.; Albrecht, J.; Aschner, M. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res., 2007, 1131(1), 1-10.
[http://dx.doi.org/10.1016/j.brainres.2006.10.070] [PMID: 17182013]
[23]
Ou, Y.C.; White, C.C.; Krejsa, C.M.; Ponce, R.A.; Kavanagh, T.J.; Faustman, E.M. The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology, 1999, 20(5), 793-804.
[PMID: 10591515]
[24]
Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res., 2017, 159, 545-554.
[http://dx.doi.org/10.1016/j.envres.2017.08.051] [PMID: 28889024]
[25]
Garg, T.K.; Chang, J.Y. Methylmercury causes oxidative stress and cytotoxicity in microglia: attenuation by 15-deoxy-delta 12, 14-prostaglandin J2. J. Neuroimmunol., 2006, 171(1-2), 17-28.
[http://dx.doi.org/10.1016/j.jneuroim.2005.09.007] [PMID: 16225932]
[26]
Fragou, D.; Fragou, A.; Kouidou, S.; Njau, S.; Kovatsi, L. Epigenetic mechanisms in metal toxicity. Toxicol. Mech. Methods, 2011, 21(4), 343-352.
[http://dx.doi.org/10.3109/15376516.2011.557878] [PMID: 21495872]
[27]
Ruiz-Hernandez, A.; Kuo, C-C.; Rentero-Garrido, P.; Tang, W-Y.; Redon, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin. Epigenetics, 2015, 7(1), 55.
[http://dx.doi.org/10.1186/s13148-015-0055-7] [PMID: 25984247]
[28]
Kondo, Y.; Katsushima, K.; Ohka, F.; Natsume, A.; Shinjo, K. Epigenetic dysregulation in glioma. Cancer Sci., 2014, 105(4), 363-369.
[http://dx.doi.org/10.1111/cas.12379] [PMID: 24843883]
[29]
Caffo, M.; Caruso, G.; Fata, G.L.; Barresi, V.; Visalli, M.; Venza, M.; Venza, I. Heavy metals and epigenetic alterations in brain tumors. Curr. Genomics, 2014, 15(6), 457-463.
[http://dx.doi.org/10.2174/138920291506150106151847] [PMID: 25646073]
[30]
Go, S.; Kurita, H.; Matsumoto, K.; Hatano, M.; Inden, M.; Hozumi, I. Methylmercury causes epigenetic suppression of the tyrosine hydroxylase gene in an in vitro neuronal differentiation model. Biochem. Biophys. Res. Commun., 2018, 502(4), 435-441.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.162] [PMID: 29856999]
[31]
Bakulski, K.M.; Lee, H.; Feinberg, J.I.; Wells, E.M.; Brown, S.; Herbstman, J.B.; Witter, F.R.; Halden, R.U.; Caldwell, K.; Mortensen, M.E.; Jaffe, A.E.; Moye, J., Jr; Caulfield, L.E.; Pan, Y.; Goldman, L.R.; Feinberg, A.P.; Fallin, M.D. Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int. J. Epidemiol., 2015, 44(4), 1249-1262.
[http://dx.doi.org/10.1093/ije/dyv032] [PMID: 25906783]
[32]
Bjørklund, G. Selenium as an antidote in the treatment of mercury intoxication. Biometals, 2015, 28(4), 605-614.
[http://dx.doi.org/10.1007/s10534-015-9857-5] [PMID: 25947386]
[33]
Kuria, A.; Fang, X.; Li, M.; Han, H.; He, J.; Aaseth, J.O.; Cao, Y. Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Crit. Rev. Food Sci. Nutr., 2020, 60(4), 684-694.
[http://dx.doi.org/10.1080/10408398.2018.1548427 ] [PMID: 30570346]
[34]
Pivina, L.; Semenova, Y.; Doşa, M.D.; Dauletyarova, M.; Bjørklund, G. Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J. Mol. Neurosci., 2019, 68(1), 1-10.
[http://dx.doi.org/10.1007/s12031-019-01276-1] [PMID: 30778834]
[35]
Semenova, Y.; Zhunussov, Y.; Pivina, L.; Abisheva, A.; Tinkov, A.; Belikhina, T.; Skalny, A.; Zhanaspayev, M.; Bulegenov, T.; Glushkova, N.; Lipikhina, A.; Dauletyarova, M.; Zhunussova, T.; Bjørklund, G. Trace element biomonitoring in hair and blood of occupationally unexposed population residing in polluted areas of East Kazakhstan and Pavlodar regions. J. Trace Elem. Med. Biol., 2019, 56, 31-37.
[http://dx.doi.org/10.1016/j.jtemb.2019.07.006] [PMID: 31442951]
[36]
Basu, N.; Goodrich, J.M.; Head, J. Ecogenetics of mercury: from genetic polymorphisms and epigenetics to risk assessment and decision-making. Environ. Toxicol. Chem., 2014, 33(6), 1248-1258.
[http://dx.doi.org/10.1002/etc.2375] [PMID: 24038486]
[37]
Vianna, A.D.S.; Matos, E.P.; Jesus, I.M.; Asmus, C.I.R.F.; Câmara, V.M. Human exposure to mercury and its hematological effects: a systematic review. Cad. Saude Publica, 2019, 35(2)e00091618
[http://dx.doi.org/10.1590/0102-311x00091618] [PMID: 30758455]
[38]
Fisher, J.F.; Organization, WHO. Elemental mercury and inorganic mercury compounds: human health aspects, 2003.
[39]
Boffetta, P.; Merler, E.; Vainio, H. Carcinogenicity of mercury and mercury compounds. Scand. J. Work Environ. Health, 1993, 19(1), 1-7.
[http://dx.doi.org/10.5271/sjweh.1510] [PMID: 8465166]
[40]
Von Burg, R. Inorganic mercury. J. Appl. Toxicol., 1995, 15(6), 483-493.
[http://dx.doi.org/10.1002/jat.2550150610] [PMID: 8603936]
[41]
al-Saleh, I.; Shinwari, N. Urinary mercury levels in females: influence of skin-lightening creams and dental amalgam fillings. Biometals, 1997, 10(4), 315-323.
[http://dx.doi.org/10.1023/A:1018380501673] [PMID: 9353880]
[42]
Balluz, L.S.; Philen, R.M.; Sewell, C.M.; Voorhees, R.E.; Falter, K.H.; Paschal, D. Mercury toxicity associated with a beauty lotion, New Mexico. Int. J. Epidemiol., 1997, 26(5), 1131-1132.
[http://dx.doi.org/10.1093/ije/26.5.1131] [PMID: 9363537]
[43]
Halbach, S.; Welzl, G.; Kremers, L.; Willruth, H.; Mehl, A.; Wack, F.X.; Hickel, R.; Greim, H. Steady-state transfer and depletion kinetics of mercury from amalgam fillings. Sci. Total Environ., 2000, 259(1-3), 13-21.
[http://dx.doi.org/10.1016/S0048-9697(00)00545-3] [PMID: 11032131]
[44]
Kingman, A.; Albertini, T.; Brown, L.J. Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J. Dent. Res., 1998, 77(3), 461-471.
[http://dx.doi.org/10.1177/00220345980770030501] [PMID: 9496919]
[45]
Riley, D.M.; Newby, C.A.; Leal-Almeraz, T.O.; Thomas, V.M. Assessing elemental mercury vapor exposure from cultural and religious practices. Environ. Health Perspect., 2001, 109(8), 779-784.
[http://dx.doi.org/10.1289/ehp.01109779] [PMID: 11564612]
[46]
Jedrzejczak, R. Determination of total mercury in foods of plant origin in Poland by cold vapour atomic absorption spectrometry. Food Addit. Contam., 2002, 19(10), 996-1002.
[http://dx.doi.org/10.1080/02652030210151912] [PMID: 12443563]
[47]
Mason, H.J.; Hindell, P.; Williams, N.R. Biological monitoring and exposure to mercury. Occup. Med. (Lond.), 2001, 51(1), 2-11.
[http://dx.doi.org/10.1093/occmed/51.1.2] [PMID: 11235823]
[48]
Preston-Martin, S. Descriptive epidemiology of primary tumors of the brain, cranial nerves and cranial meninges in Los Angeles County. Neuroepidemiology, 1989, 8(6), 283-295.
[http://dx.doi.org/10.1159/000110196] [PMID: 2586698]
[49]
Krishnan, G.; Felini, M.; Carozza, S.E.; Miike, R.; Chew, T.; Wrensch, M. Occupation and adult gliomas in the San Francisco Bay Area. J. Occup. Environ. Med., 2003, 45(6), 639-647.
[http://dx.doi.org/10.1097/01.jom.0000069245.06498.48] [PMID: 12802217]
[50]
Carozza, S.E.; Wrensch, M.; Miike, R.; Newman, B.; Olshan, A.F.; Savitz, D.A.; Yost, M.; Lee, M. Occupation and adult gliomas. Am. J. Epidemiol., 2000, 152(9), 838-846.
[http://dx.doi.org/10.1093/aje/152.9.838] [PMID: 11085395]
[51]
Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol., 2005, 20(2), 351-360.
[http://dx.doi.org/10.1016/j.etap.2005.03.007] [PMID: 21783611]
[52]
Bjørklund, G. Mercury in the dental office. Risk evaluation of the occupational environment in dental care Tidsskr. Nor. Laegeforen., 1991, 111(8), 948-951.
[PMID: 2042211]
[53]
Navas-Acién, A.; Pollán, M.; Gustavsson, P.; Plato, N. Occupation, exposure to chemicals and risk of gliomas and meningiomas in Sweden. Am. J. Ind. Med., 2002, 42(3), 214-227.
[http://dx.doi.org/10.1002/ajim.10107] [PMID: 12210690]
[54]
Kazantzis, G. Mercury exposure and early effects: an overview. Med. Lav., 2002, 93(3), 139-147.
[PMID: 12197264]
[55]
Koifman, S.; Malhão, T.A.; Pinto de Oliveira, G.; de Magalhães Câmara, V.; Koifman, R.J.; Meyer, A. Cancer mortality among Brazilian dentists. Am. J. Ind. Med., 2014, 57(11), 1255-1264.
[http://dx.doi.org/10.1002/ajim.22369] [PMID: 25164308]
[56]
Ahlbom, A.; Norell, S.; Rodvall, Y.; Nylander, M. Dentists, dental nurses and brain tumours. Br. Med. J. (Clin. Res. Ed.), 1986, 292(6521), 662.
[http://dx.doi.org/10.1136/bmj.292.6521.662] [PMID: 3081218]
[57]
McLaughlin, J.K.; Malker, H.S.; Blot, W.J.; Malker, B.K.; Stone, B.J.; Weiner, J.A.; Ericsson, J.L.; Fraumeni, J.F. Jr. Occupational risks for intracranial gliomas in Sweden. J. Natl. Cancer Inst., 1987, 78(2), 253-257.
[PMID: 3468289]
[58]
Antunes, J.L.F.; Macedo, M.M.; de Araujo, M.E. [Comparative analysis of cause-specific mortality for dentists in the city of São Paulo Cad. Saude Publica, 2004, 20(1), 241-248.
[http://dx.doi.org/10.1590/S0102-311X2004000100041] [PMID: 15029326]
[59]
Rix, B.A.; Lynge, E. Cancer incidence in Danish health care workers. Scand. J. Soc. Med., 1996, 24(2), 114-120.
[http://dx.doi.org/10.1177/140349489602400205] [PMID: 8816000]
[60]
Vågerö, D.; Swerdlow, A.J.; Beral, V. Occupation and malignant melanoma: a study based on cancer registration data in England and Wales and in Sweden. Br. J. Ind. Med., 1990, 47(5), 317-324.
[http://dx.doi.org/10.1136/oem.47.5.317] [PMID: 2357453]
[61]
Brownson, R.C.; Reif, J.S.; Chang, J.C.; Davis, J.R. An analysis of occupational risks for brain cancer. Am. J. Public Health, 1990, 80(2), 169-172.
[http://dx.doi.org/10.2105/AJPH.80.2.169] [PMID: 2297060]
[62]
Cancer, I.A.R.C. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry, 1993.
[63]
Thomas, T.L.; Waxweiler, R.J. Brain tumors and occupational risk factors: a review. Scand. J. Work Environ. Health, 1986, 12(1), 1-15.
[64]
Hassan, A.; Velasquez, E.; Belmar, R.; Coye, M.; Drucker, E.; Landrigan, P.J.; Michaels, D.; Sidel, K.B. Mercury poisoning in Nicaragua: a case study of the export of environmental and occupational health hazards by a multinational corporation. Int. J. Health Serv., 1981, 11(2), 221-226.
[http://dx.doi.org/10.2190/N9Y9-YMU2-D6R1-LPYP] [PMID: 7239735]
[65]
Duffield, D.P.; Paddle, G.M.; Woolhead, G. A mortality study of non-malignant genitourinary tract disease in electrolytic mercury cell room employees. J. Soc. Occup. Med., 1983, 33(3), 137-140.
[http://dx.doi.org/10.1093/occmed/33.3.137] [PMID: 6632815]
[66]
Cragle, D.L.; Hollis, D.R.; Qualters, J.R.; Tankersley, W.G.; Fry, S.A. A mortality study of men exposed to elemental mercury. J. Occup. Med., 1984, 26(11), 817-821.
[http://dx.doi.org/10.1097/00043764-198411000-00011] [PMID: 6502285]
[67]
Barregård, L.; Sällsten, G.; Järvholm, B. Mortality and cancer incidence in chloralkali workers exposed to inorganic mercury. Br. J. Ind. Med., 1990, 47(2), 99-104.
[http://dx.doi.org/10.1136/oem.47.2.99] [PMID: 2310721]
[68]
Ellingsen, D.G.; Andersen, A.; Nordhagen, H.P.; Efskind, J.; Kjuus, H. Incidence of cancer and mortality among workers exposed to mercury vapour in the Norwegian chloralkali industry. Br. J. Ind. Med., 1993, 50(10), 875-880.
[http://dx.doi.org/10.1136/oem.50.10.875] [PMID: 8217844]
[69]
Viola, P.L.; Cassano, G.B. The effect of chlorine on mercury vapor intoxication. Autoradiographic study. Med. Lav., 1968, 59(6), 437-444.
[PMID: 5738990]
[70]
Bonneterre, V.; Mathern, G.; Pelen, O.; Balthazard, A.L.; Delafosse, P.; Mitton, N.; Colonna, M. Cancer incidence in a chlorochemical plant in Isère, France: an occupational cohort study, 1979-2002. Am. J. Ind. Med., 2012, 55(9), 756-767.
[http://dx.doi.org/10.1002/ajim.22069] [PMID: 22692930]
[71]
Pavilonis, B.; Grassman, J.; Johnson, G.; Diaz, Y.; Caravanos, J. Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environ. Res., 2017, 154, 1-9.
[http://dx.doi.org/10.1016/j.envres.2016.12.010] [PMID: 27992737]
[72]
Sodhi-Berry, N.; Reid, A.; Fritschi, L.; Musk, A.B.; Vermeulen, R.; de Klerk, N.; Peters, S. Cancer incidence in the Western Australian mining industry (1996-2013). Cancer Epidemiol., 2017, 49, 8-18.
[http://dx.doi.org/10.1016/j.canep.2017.05.001] [PMID: 28528292]
[73]
Reid, P.J.; Sluis-Cremer, G.K. Mortality of white South African gold miners. Occup. Environ. Med., 1996, 53(1), 11-16.
[http://dx.doi.org/10.1136/oem.53.1.11] [PMID: 8563852]
[74]
Eisler, R. Health risks of gold miners: a synoptic review. Environ. Geochem. Health, 2003, 25(3), 325-345.
[http://dx.doi.org/10.1023/A:1024573701073] [PMID: 12971253]
[75]
Gómez, M.G.; Boffetta, P.; Klink, J.D.; Español, S.; Quintana, J.G.; Colin, D. [Cancer mortality in mercury miners Gac. Sanit., 2007, 21(3), 210-217.
[PMID: 17565895]
[76]
Hanna, D.E.; Solomon, C.T.; Poste, A.E.; Buck, D.G.; Chapman, L.J. A review of mercury concentrations in freshwater fishes of Africa: patterns and predictors. Environ. Toxicol. Chem., 2015, 34(2), 215-223.
[http://dx.doi.org/10.1002/etc.2818] [PMID: 25470784]
[77]
Scheuhammer, A.; Braune, B.; Chan, H.M.; Frouin, H.; Krey, A.; Letcher, R.; Loseto, L.; Noël, M.; Ostertag, S.; Ross, P.; Wayland, M. Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci. Total Environ., 2015, 509-510, 91-103.
[http://dx.doi.org/10.1016/j.scitotenv.2014.05.142] [PMID: 24935263]
[78]
Carpenter, D.O. Health effects of persistent organic pollutants: the challenge for the Pacific Basin and for the world. Rev. Environ. Health, 2011, 26(1), 61-69.
[http://dx.doi.org/10.1515/reveh.2011.009] [PMID: 21714383]
[79]
Tamashiro, H.; Fukutomi, K.; Lee, E.S. Methylmercury exposure and mortality in Japan: a life table analysis. Arch. Environ. Health, 1987, 42(2), 100-107.
[http://dx.doi.org/10.1080/00039896.1987.9935804] [PMID: 3579363]
[80]
Futatsuka, M.; Kitano, T.; Shono, M.; Nagano, M.; Wakamiya, J.; Miyamoto, K.; Ushijima, K.; Inaoka, T.; Fukuda, Y.; Nakagawa, M. Long-term follow-up study of health status in population living in methylmercury-polluted area. Environ. Sci., 2005, 12(5), 239-282.
[PMID: 16308560]
[81]
Gamo, M.; Oka, T.; Nakanishi, J. Ranking the risks of 12 major environmental pollutants that occur in Japan. Chemosphere, 2003, 53(4), 277-284.
[http://dx.doi.org/10.1016/S0045-6535(03)00053-5] [PMID: 12946386]
[82]
Amin-Zaki, L.; Elhassani, S.; Majeed, M.A.; Clarkson, T.W.; Doherty, R.A.; Greenwood, M. Intra-uterine methylmercury poisoning in Iraq. Pediatrics, 1974, 54(5), 587-595.
[PMID: 4480317]
[83]
Amin-zaki, L.; Majeed, M.A.; Clarkson, T.W.; Greenwood, M.R. Methylmercury poisoning in Iraqi children: clinical observations over two years. BMJ, 1978, 1(6113), 613-616.
[http://dx.doi.org/10.1136/bmj.1.6113.613] [PMID: 630256]
[84]
Ratcliffe, H.E.; Swanson, G.M.; Fischer, L.J. Human exposure to mercury: a critical assessment of the evidence of adverse health effects. J. Toxicol. Environ. Health, 1996, 49(3), 221-270.
[http://dx.doi.org/10.1080/00984108.1996.11667600] [PMID: 8876653]
[85]
Tamashiro, H.; Akagi, H.; Arakaki, M.; Futatsuka, M.; Roht, L.H. Causes of death in Minamata disease: analysis of death certificates. Int. Arch. Occup. Environ. Health, 1984, 54(2), 135-146.
[http://dx.doi.org/10.1007/BF00378516] [PMID: 6480121]
[86]
Yorifuji, T.; Tsuda, T.; Kawakami, N. Age standardized cancer mortality ratios in areas heavily exposed to methyl mercury. Int. Arch. Occup. Environ. Health, 2007, 80(8), 679-688.
[http://dx.doi.org/10.1007/s00420-007-0179-y] [PMID: 17357798]
[87]
Agency, E.P. Basic of Environmental Assessment, 2012.
[88]
Khuder, S.A.; Mutgi, A.B.; Schaub, E.A. Meta-analyses of brain cancer and farming. Am. J. Ind. Med., 1998, 34(3), 252-260.
[http://dx.doi.org/10.1002/(SICI)1097-0274(199809)34:3<252:AID-AJIM7>3.0.CO;2-X] [PMID: 9698994]
[89]
Cordier, S.; Mandereau, L.; Preston-Martin, S.; Little, J.; Lubin, F.; Mueller, B.; Holly, E.; Filippini, G.; Peris-Bonet, R.; McCredie, M.; Choi, N.W.; Arsla, A. Parental occupations and childhood brain tumors: results of an international case-control study. Cancer Causes Control, 2001, 12(9), 865-874.
[http://dx.doi.org/10.1023/A:1012277703631] [PMID: 11714115]
[90]
Kang, H.K.; Cypel, Y.; Kilbourne, A.M.; Magruder, K.M.; Serpi, T.; Collins, J.F.; Frayne, S.M.; Furey, J.; Huang, G.D.; Kimerling, R.; Reinhard, M.J.; Schumacher, K.; Spiro, A. III HealthViEWS: mortality study of female US Vietnam era veterans, 1965-2010. Am. J. Epidemiol., 2014, 179(6), 721-730.
[http://dx.doi.org/10.1093/aje/kwt319] [PMID: 24488510]
[91]
Ruder, A.M.; Waters, M.A.; Carreón, T.; Butler, M.A.; Davis-King, K.E.; Calvert, G.M.; Schulte, P.A.; Ward, E.M.; Connally, L.B.; Lu, J.; Wall, D.; Zivkovich, Z.; Heineman, E.F.; Mandel, J.S.; Morton, R.F.; Reding, D.J.; Rosenman, K.D. Brain cancer collaborative study group. The upper midwest health study: a case-control study of primary intracranial gliomas in farm and rural residents. J. Agric. Saf. Health, 2006, 12(4), 255-274.
[http://dx.doi.org/10.13031/2013.22013] [PMID: 17131948]
[92]
Charleston, J.S.; Body, R.L.; Bolender, R.P.; Mottet, N.K.; Vahter, M.E.; Burbacher, T.M. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neurotoxicology, 1996, 17(1), 127-138.
[PMID: 8784824]
[93]
Piccoli, C.; D’Aprile, A.; Scrima, R.; Ambrosi, L.; Zefferino, R.; Capitanio, N. Subcytotoxic mercury chloride inhibits gap junction intercellular communication by a redox- and phosphorylation-mediated mechanism. Free Radic. Biol. Med., 2012, 52(5), 916-927.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.12.018] [PMID: 22240155]
[94]
Pamphlett, R.; Kum Jew, S. Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: implications for multiple sclerosis, neurodegenerative disorders and gliomas. Biometals, 2018, 31(5), 807-819.
[http://dx.doi.org/10.1007/s10534-018-0124-4] [PMID: 29959651]
[95]
Haydon, P.G. GLIA: listening and talking to the synapse. Nat. Rev. Neurosci., 2001, 2(3), 185-193.
[http://dx.doi.org/10.1038/35058528] [PMID: 11256079]
[96]
Ray, P.D.; Yosim, A.; Fry, R.C. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front. Genet., 2014, 5, 201.
[http://dx.doi.org/10.3389/fgene.2014.00201] [PMID: 25076963]
[97]
Crespo-López, M.E.; Macêdo, G.L.; Pereira, S.I.; Arrifano, G.P.; Picanço-Diniz, D.L.; do Nascimento, J.L.M.; Herculano, A.M. Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol. Res., 2009, 60(4), 212-220.
[http://dx.doi.org/10.1016/j.phrs.2009.02.011] [PMID: 19446469]
[98]
Smits, M. Imaging of oligodendroglioma. Br. J. Radiol., 2016, 89(1060)20150857
[http://dx.doi.org/10.1259/bjr.20150857] [PMID: 26849038]
[99]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[100]
Xiong, S. Mouse models of Mdm2 and Mdm4 and their clinical implications. Chin. J. Cancer, 2013, 32(7), 371-375.
[http://dx.doi.org/10.5732/cjc.012.10286] [PMID: 23327795]
[101]
Caruso, G.; Caffo, M.; Pino, M.A.; Raudino, G. Antisense oligonucleotides therapy: a new potential tool in the treatment of cerebral gliomas. Front Clin Drug Res CNS Neuro Dis, 2013, 1, 69-115.
[http://dx.doi.org/10.2174/9781608057580113010005]
[102]
Caruso, G.; Caffo, M.; Raudino, G.; Alafaci, C.; Salpietro, F.M.; Tomasello, F. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas. Recent Patents CNS Drug Discov., 2010, 5(1), 53-69.
[http://dx.doi.org/10.2174/157488910789753503] [PMID: 19832690]
[103]
Kreth, S.; Thon, N.; Kreth, F.W. Epigenetics in human gliomas. Cancer Lett., 2014, 342(2), 185-192.
[http://dx.doi.org/10.1016/j.canlet.2012.04.008] [PMID: 22531315]
[104]
Hong, B.; van den Heuvel, A.P.; Prabhu, V.V.; Zhang, S.; El-Deiry, W.S. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr. Drug Targets, 2014, 15(1), 80-89.
[http://dx.doi.org/10.2174/1389450114666140106101412] [PMID: 24387333]
[105]
Bredel, M.; Scholtens, D.M.; Yadav, A.K.; Alvarez, A.A.; Renfrow, J.J.; Chandler, J.P.; Yu, I.L.; Carro, M.S.; Dai, F.; Tagge, M.J.; Ferrarese, R.; Bredel, C.; Phillips, H.S.; Lukac, P.J.; Robe, P.A.; Weyerbrock, A.; Vogel, H.; Dubner, S.; Mobley, B.; He, X.; Scheck, A.C.; Sikic, B.I.; Aldape, K.D.; Chakravarti, A.; Harsh, G.R. IV NFKBIA deletion in glioblastomas. N. Engl. J. Med., 2011, 364(7), 627-637.
[http://dx.doi.org/10.1056/NEJMoa1006312] [PMID: 21175304]
[106]
Zou, P.; Xu, H.; Chen, P.; Yan, Q.; Zhao, L.; Zhao, P.; Gu, A. IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS One, 2013, 8(7)e68782
[http://dx.doi.org/10.1371/journal.pone.0068782] [PMID: 23894344]
[107]
Haberler, C.; Wöhrer, A. Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas. Clin. Neuropathol., 2014, 33(2), 108-111.
[http://dx.doi.org/10.5414/NP300758] [PMID: 24559763]
[108]
Probst, A.V.; Dunleavy, E.; Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol., 2009, 10(3), 192-206.
[http://dx.doi.org/10.1038/nrm2640] [PMID: 19234478]
[109]
Rossella, F.; Polledri, E.; Bollati, V.; Baccarelli, A.; Fustinoni, S. Development and validation of a gas chromatography/mass spectrometry method for the assessment of genomic DNA methylation. Rapid Commun. Mass Spectrom., 2009, 23(17), 2637-2646.
[http://dx.doi.org/10.1002/rcm.4166] [PMID: 19630031]
[110]
Ji, W.; Yang, L.; Yu, L.; Yuan, J.; Hu, D.; Zhang, W.; Yang, J.; Pang, Y.; Li, W.; Lu, J.; Fu, J.; Chen, J.; Lin, Z.; Chen, W.; Zhuang, Z. Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis, 2008, 29(6), 1267-1275.
[http://dx.doi.org/10.1093/carcin/bgn012] [PMID: 18204074]
[111]
Cadieux, B.; Ching, T-T.; VandenBerg, S.R.; Costello, J.F. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res., 2006, 66(17), 8469-8476.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1547] [PMID: 16951158]
[112]
Lucio-Eterovic, A.K.; Cortez, M.A.; Valera, E.T.; Motta, F.J.; Queiroz, R.G.; Machado, H.R.; Carlotti, C.G. Jr.; Neder, L.; Scrideli, C.A.; Tone, L.G. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer, 2008, 8(1), 243.
[http://dx.doi.org/10.1186/1471-2407-8-243] [PMID: 18713462]
[113]
Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res., 2005, 65(14), 6029-6033.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0137] [PMID: 16024602]
[114]
Godlewski, J.; Nowicki, M.O.; Bronisz, A.; Williams, S.; Otsuki, A.; Nuovo, G.; Raychaudhury, A.; Newton, H.B.; Chiocca, E.A.; Lawler, S. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res., 2008, 68(22), 9125-9130.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2629] [PMID: 19010882]
[115]
Cheng, T.F.; Choudhuri, S.; Muldoon-Jacobs, K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J. Appl. Toxicol., 2012, 32(9), 643-653.
[http://dx.doi.org/10.1002/jat.2717] [PMID: 22334439]
[116]
Dadar, M.; Adel, M.; Nasrollahzadeh Saravi, H.; Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev., 2017, 36(3), 222-227.
[http://dx.doi.org/10.1080/15569543.2016.1274762]
[117]
Welge-Lüssen, A. Ageing, neurodegeneration, and olfactory and gustatory loss. B-ENT, 2009, 5(Suppl. 13), 129-132.
[PMID: 20084814]
[118]
Block, M.L.; Calderón-Garcidueñas, L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci., 2009, 32(9), 506-516.
[http://dx.doi.org/10.1016/j.tins.2009.05.009] [PMID: 19716187]
[119]
Gundacker, C.; Gencik, M.; Hengstschläger, M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutat. Res., 2010, 705(2), 130-140.
[http://dx.doi.org/10.1016/j.mrrev.2010.06.003] [PMID: 20601101]
[120]
Nilsen, F.M.; Parrott, B.B.; Bowden, J.A.; Kassim, B.L.; Somerville, S.E.; Bryan, T.A.; Bryan, C.E.; Lange, T.R.; Delaney, J.P.; Brunell, A.M.; Long, S.E.; Guillette, L.J. Jr. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis). Sci. Total Environ., 2016, 545-546, 389-397.
[http://dx.doi.org/10.1016/j.scitotenv.2015.12.059] [PMID: 26748003]
[121]
Lu, Z.; Ma, Y.; Gao, L.; Li, Y.; Li, Q.; Qiang, M. Urine mercury levels correlate with DNA methylation of imprinting gene H19 in the sperm of reproductive-aged men. PLoS One, 2018, 13(4)e0196314
[http://dx.doi.org/10.1371/journal.pone.0196314] [PMID: 29698523]
[122]
Cardenas, A.; Rifas-Shiman, S.L.; Agha, G.; Hivert, M-F.; Litonjua, A.A.; DeMeo, D.L.; Lin, X.; Amarasiriwardena, C.J.; Oken, E.; Gillman, M.W.; Baccarelli, A.A. Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci. Rep., 2017, 7(1), 288.
[http://dx.doi.org/10.1038/s41598-017-00384-5] [PMID: 28325913]
[123]
Bose, R.; Onishchenko, N.; Edoff, K.; Janson Lang, A.M.; Ceccatelli, S. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol. Sci., 2012, 130(2), 383-390.
[http://dx.doi.org/10.1093/toxsci/kfs257] [PMID: 22918959]
[124]
Humans, I.W.G.E.C.R.t.; Organization, W.H. Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. 1987, 7(1), 440.
[PMID: 3482203]
[125]
Morton, J.; Mason, H.J.; Ritchie, K.A.; White, M. Comparison of hair, nails and urine for biological monitoring of low level inorganic mercury exposure in dental workers. Biomarkers, 2004, 9(1), 47-55.
[http://dx.doi.org/10.1080/13547500410001670312] [PMID: 15204310]
[126]
Ritchie, K.A.; Burke, F.J.; Gilmour, W.H.; Macdonald, E.B.; Dale, I.M.; Hamilton, R.M.; McGowan, D.A.; Binnie, V.; Collington, D.; Hammersley, R. Mercury vapour levels in dental practices and body mercury levels of dentists and controls. Br. Dent. J., 2004, 197(10), 625-632.
[http://dx.doi.org/10.1038/sj.bdj.4811831] [PMID: 15611750]
[127]
Rathore, M.; Singh, A.; Pant, V.A. The dental amalgam toxicity fear: a myth or actuality. Toxicol. Int., 2012, 19(2), 81-88.
[http://dx.doi.org/10.4103/0971-6580.97191] [PMID: 22778502]
[128]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[129]
Clarkson, T.W.; Friberg, L.; Nordberg, G.F.; Sager, P.R. Biological monitoring of toxic metals; Springerlink, 1988.
[http://dx.doi.org/10.1007/978-1-4613-0961-1]
[130]
Berlin, M.; Zalups, R.K.; Fowler, B.A. Mercury in: Handbook on the Toxicology of Metals. Nordberg, G.F.; Fowler, G.A; Nordberg, M., Ed.; , 2015, Vol. 2, pp. 1013-1075.
[http://dx.doi.org/10.1016/B978-0-444-59453-2.00046-9]