Genotypic Methods for HIV Drug Resistance Monitoring: The Opportunities and Challenges Faced by China

Page: [225 - 239] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

AIDS is a globalized infectious disease. In 2014, UNAIDS launched a global project of “90-90-90” to end the HIV epidemic by 2030. The second and third 90 require 90% of HIV-1 infected individuals receiving antiretroviral therapy (ART) and durable virological suppression. However, wide use of ART will greatly increase the emergence and spreading of HIV drug resistance and current HIV drug resistance test (DRT) assays in China are seriously lagging behind, hindering to achieve virological suppression. Therefore, recommending an appropriate HIV DRT method is critical for HIV routine surveillance and prevention in China. In this review, we summarized the current existing HIV drug resistance genotypic testing methods around the world and discussed the advantages and disadvantages of these methods.

Keywords: HIV/AIDS, drug resistance test, genotypic methods, antiretroviral therapy, oligonucleotide ligation assay, HIV routine surveillance.

Graphical Abstract

[1]
UNAIDS. Global AIDS Monitoring 2019 - Indicators for Monitoring the 2016 United Nations Political Declaration on Ending AIDS. 2018. Available from. https://aidsdatahub.org/sites/default/files/publication/UNAIDS-global-aids-monitoring_2019pdf
[2]
UNAIDS. 90-90-90: An Ambitious Treatment Target to Help End the AIDS Epidemic 2017. Available from. https://www.unaids.org/sites/default/files/media_asset/90-90-90_en.pdf
[3]
UNAIDS. On the Fast-Track to End AIDS: UNAIDS 2016 - 2021 Strategy 2015. Available from. https://www.aidsdatahub.org/sites/default/files/publication/UNAIDS_Strategy_2016-2021.pdf
[4]
UNAIDS. Available from. https://www.unaids.org/en/topic/ treatment
[5]
Gupta RK, Gregson J, Parkin N, et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: A systematic review and meta-regression analysis. Lancet Infect Dis 2018; 18(3): 346-55.
[http://dx.doi.org/10.1016/S1473-3099(17)30702-8] [PMID: 29198909]
[6]
Rhee SY, Blanco JL, Jordan MR, et al. Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: An individual-patient- and sequence-level meta-analysis. PLoS Med 2015; 12(4)e1001810
[http://dx.doi.org/10.1371/journal.pmed.1001810] [PMID: 25849352]
[7]
Chung MH, Beck IA, Dross S, et al. Oligonucleotide ligation assay detects HIV drug resistance associated with virologic failure among antiretroviral-naive adults in Kenya. J Acquir Immune Defic Syndr 2014; 67(3): 246-53.
[http://dx.doi.org/10.1097/QAI.0000000000000312] [PMID: 25140907]
[8]
Clutter DS, Jordan MR, Bertagnolio S, Shafer RW. HIV-1 drug resistance and resistance testing. Infect Genet Evol 2016; 46: 292-307.
[http://dx.doi.org/10.1016/j.meegid.2016.08.031] [PMID: 27587334]
[9]
Cihlar T, Fordyce M. Current status and prospects of HIV treatment. Curr Opin Virol 2016; 18: 50-6.
[http://dx.doi.org/10.1016/j.coviro.2016.03.004] [PMID: 27023283]
[10]
Inzaule SC, Ondoa P, Peter T, et al. Affordable HIV drug-resistance testing for monitoring of antiretroviral therapy in sub-Saharan Africa. Lancet Infect Dis 2016; 16(11): e267-75.
[http://dx.doi.org/10.1016/S1473-3099(16)30118-9] [PMID: 27569762]
[11]
Revell AD, Wang D, Wood R, et al. An update to the HIV-TRePS system: the development and evaluation of new global and local computational models to predict HIV treatment outcomes, with or without a genotype. J Antimicrob Chemother 2016; 71(10): 2928-37.
[http://dx.doi.org/10.1093/jac/dkw217] [PMID: 27330070]
[12]
Siedner MJ, Bwana MB, Moosa MS, et al. The REVAMP trial to evaluate HIV resistance testing in sub-Saharan Africa: a case study in clinical trial design in resource limited settings to optimize effectiveness and cost effectiveness estimates. HIV Clin Trials 2017; 18(4): 149-55.
[http://dx.doi.org/10.1080/15284336.2017.1349028] [PMID: 28720039]
[13]
Clutter DS, Rojas Sánchez P, Rhee SY, Shafer RW. Genetic variability of HIV-1 for drug resistance assay development. Viruses 2016; 8(2)E48
[http://dx.doi.org/10.3390/v8020048] [PMID: 26875985]
[14]
Zheng S. The growing threat of China’s HIV epidemic. Lancet Public Health 2018; 3(7)e311
[http://dx.doi.org/10.1016/S2468-2667(18)30098-7] [PMID: 29976325]
[15]
NCAIDS, NCSTD, China CDC. Update on the AIDS/STD epidemic in China the third quarter of 2018. Chin J AIDS STD 2018; 24(11): 1075. [in Chinese].
[16]
Country progress report - China Global AIDS Monitoring 2018 Geneva 2018. Available from.https://www.unaids.org/sites/default/files/country/documents/CHN_2018_countryreport.pdf
[17]
Chinese CDC. Chinese guidelines for diagnosis and treatment of HIV/AIDS (2018). Zhonghua Nei Ke Za Zhi 2018; 57(12): 867-84.
[http://dx.doi.org/10.3760/cma.j.issn.0578-1426.2018.12.002] [PMID: 30486555]
[18]
Duarte HA, Panpradist N, Beck IA, Lutz B, Lai J, Kanthula RM, et al. Current status of point-of-care testing for human immunodeficiency virus drug resistance. J Infect Dis 2017; 216(Suppl. 9): S824-.
[http://dx.doi.org/10.1093/infdis/jix413] [PMID: 29040621]
[19]
Tarasova O, Poroikov V. HIV Resistance prediction to reverse transcriptase inhibitors: focus on open data. Molecules 2018; 23(4)E956
[http://dx.doi.org/10.3390/molecules23040956] [PMID: 29671808]
[20]
Weng Y, Zhang L, Huang J, et al. A simple and cost-saving phenotypic drug susceptibility testing of HIV-1. Sci Rep 2016; 6: 33559.
[http://dx.doi.org/10.1038/srep33559] [PMID: 27640883]
[21]
Revell AD, Wang D, Wood R, et al. An update to the HIV-TRePS system: the development of new computational models that do not require a genotype to predict HIV treatment outcomes. J Antimicrob Chemother 2014; 69(4): 1104-10.
[http://dx.doi.org/10.1093/jac/dkt447] [PMID: 24275116]
[22]
Revell AD, Wang D, Wood R, et al. Computational models can predict response to HIV therapy without a genotype and may reduce treatment failure in different resource-limited settings. J Antimicrob Chemother 2013; 68(6): 1406-14.
[http://dx.doi.org/10.1093/jac/dkt041] [PMID: 23485767]
[23]
Cunningham S, Ank B, Lewis D, et al. Performance of the applied biosystems ViroSeq human immunodeficiency virus type 1 (HIV-1) genotyping system for sequence-based analysis of HIV-1 in pediatric plasma samples. J Clin Microbiol 2001; 39(4): 1254-7.
[http://dx.doi.org/10.1128/JCM.39.4.1254-1257.2001] [PMID: 11283037]
[24]
Hales G, Birch C, Crowe S, et al. A randomised trial comparing genotypic and virtual phenotypic interpretation of HIV drug resistance: the CREST study. PLoS Clin Trials 2006; 1(3)e18
[http://dx.doi.org/10.1371/journal.pctr.0010018] [PMID: 16878178]
[25]
Saladini F, Giannini A, Boccuto A, Vicenti I, Zazzi M. Agreement between an in-house replication competent and a reference replication defective recombinant virus assay for measuring phenotypic resistance to HIV-1 protease, reverse transcriptase, and integrase inhibitors. J Clin Lab Anal 2018; 32(1)e22206
[http://dx.doi.org/10.1002/jcla.22206] [PMID: 28303602]
[26]
Vercauteren J, Vandamme AM. Algorithms for the interpretation of HIV-1 genotypic drug resistance information. Antiviral Res 2006; 71(2-3): 335-42.
[http://dx.doi.org/10.1016/j.antiviral.2006.05.003] [PMID: 16782210]
[27]
Inzaule SC, Hamers RL, Paredes R, Yang C, Schuurman R, Rinke de Wit TF. The evolving landscape of HIV drug resistance diagnostics for expanding testing in resource-limited settings. AIDS Rev 2017; 19(4): 219-30.
[PMID: 28182618]
[28]
Aves T, Tambe J, Siemieniuk RA, Mbuagbaw L. Antiretroviral resistance testing in HIV-positive people. Cochrane Database Syst Rev 2018; 11CD006495
[http://dx.doi.org/10.1002/14651858.CD006495.pub5] [PMID: 30411789]
[29]
AIDSinfo. Guidelines for the use of antiretroviral agents in adults and adolescents living with HIV 2019 Available from.http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf
[30]
Raposo LM, Nobre FF. Ensemble classifiers for predicting HIV-1 resistance from three rule-based genotypic resistance interpretation systems. J Med Syst 2017; 41(10): 155.
[http://dx.doi.org/10.1007/s10916-017-0802-8] [PMID: 28856560]
[31]
Gifford RJ, Liu TF, Rhee SY, et al. The calibrated population resistance tool: standardized genotypic estimation of transmitted HIV-1 drug resistance. Bioinformatics 2009; 25(9): 1197-8.
[http://dx.doi.org/10.1093/bioinformatics/btp134] [PMID: 19304876]
[32]
Shafer RW. Rationale and uses of a public HIV drug-resistance database. J Infect Dis 2006; 194(Suppl. 1): S51-8.
[http://dx.doi.org/10.1086/505356] [PMID: 16921473]
[33]
Bruyand M, Thiébaut R, Lawson-Ayayi S, et al. Role of uncontrolled HIV RNA level and immunodeficiency in the occurrence of malignancy in HIV-infected patients during the combination antiretroviral therapy era: Agence Nationale de Recherche sur le Sida (ANRS) CO3 Aquitaine Cohort. Clin Infect Dis 2009; 49(7): 1109-16.
[http://dx.doi.org/10.1086/605594] [PMID: 19705973]
[34]
Vercauteren J, Beheydt G, Prosperi M, et al. Clinical evaluation of Rega 8: an updated genotypic interpretation system that significantly predicts HIV-therapy response. PLoS One 2013; 8(4)e61436
[http://dx.doi.org/10.1371/journal.pone.0061436] [PMID: 23613852]
[35]
Sacks D, Ledwaba J, Morris L, Hunt GM. Rapid detection of common HIV-1 drug resistance mutations by use of high-resolution melting analysis and unlabeled probes. J Clin Microbiol 2016; 55(1): 122-33.
[http://dx.doi.org/10.1128/JCM.01291-16] [PMID: 27795333]
[36]
Meintjes G, Moorhouse MA, Carmona S, et al. Adult antiretroviral therapy guidelines 2017. South Afr J HIV Med 2017; 18(1): 776.
[http://dx.doi.org/10.4102/sajhivmed.v18i1.776] [PMID: 29568644]
[37]
WHO. Global action plan on HIV drug resistance 2017-2021 2017. Available from. https://apps.who.int/iris/bitstream/handle/10665/255883/9789241512848-eng.pdf jsessionid=AE89E9E903EEAE F8D1487E763ACAF437?sequence=1
[38]
Ribas SG, Heyndrickx L, Ondoa P, Fransen K. Performance evaluation of the two protease sequencing primers of the Trugene HIV-1 genotyping kit. J Virol Methods 2006; 135(2): 137-42.
[http://dx.doi.org/10.1016/j.jviromet.2006.05.010] [PMID: 16777242]
[39]
Stelzl E, Pröll J, Bizon B, et al. Human immunodeficiency virus type 1 drug resistance testing: Evaluation of a new ultra-deep sequencing-based protocol and comparison with the TRUGENE HIV-1 Genotyping Kit. J Virol Methods 2011; 178(1-2): 94-7.
[http://dx.doi.org/10.1016/j.jviromet.2011.08.020] [PMID: 21907239]
[40]
Zhou Z, Wagar N, DeVos JR, et al. Optimization of a low cost and broadly sensitive genotyping assay for HIV-1 drug resistance surveillance and monitoring in resource-limited settings. PLoS One 2011; 6(11)e28184
[http://dx.doi.org/10.1371/journal.pone.0028184] [PMID: 22132237]
[41]
Inzaule S, Yang C, Kasembeli A, et al. Field evaluation of a broadly sensitive HIV-1 in-house genotyping assay for use with both plasma and dried blood spot specimens in a resource-limited country. J Clin Microbiol 2013; 51(2): 529-39.
[http://dx.doi.org/10.1128/JCM.02347-12] [PMID: 23224100]
[42]
Rosemary A, Chika O, Jonathan O, et al. Genotyping performance evaluation of commercially available HIV-1 drug resistance test. PLoS One 2018; 13(6)e0198246
[http://dx.doi.org/10.1371/journal.pone.0198246] [PMID: 29953436]
[43]
Scientific TF. Genotyping of HIV-1 to Detect Drug Resistance: thermofisher.com 2014. Available from.https://www. thermofisher.com/cn/zh/home/life-science/sequencing/sanger-sequencing/applications/genotyping-hiv-detect-drug-resistance.html
[44]
Scientific TF. One step closer to realizing the 90-90-90 target- Introducing a rapid, reliable, and cost-effective HIV-1 genotyping workflow 2016. Available from.https://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/PG1609-PJT1874-COL12936-New-awareness-flyer-for-Kibo-EMEA-FLR.pdf
[45]
Shao Y. HIV resistance monitoring strategy and detection technology (in Chinese): People’s medical publishing house 2010.
[46]
Lapointe HR, Dong W, Lee GQ, et al. HIV drug resistance testing by high-multiplex “wide” sequencing on the MiSeq instrument. Antimicrob Agents Chemother 2015; 59(11): 6824-33.
[http://dx.doi.org/10.1128/AAC.01490-15] [PMID: 26282425]
[47]
Clutter DS, Zhou S, Varghese V, et al. Prevalence of drug-resistant minority variants in untreated HIV-1-infected individuals with and those without transmitted drug resistance detected by sanger sequencing. J Infect Dis 2017; 216(3): 387-91.
[http://dx.doi.org/10.1093/infdis/jix338] [PMID: 28859436]
[48]
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2016; 17(6): 333-51.
[http://dx.doi.org/10.1038/nrg.2016.49] [PMID: 27184599]
[49]
Mbunkah HA, Marzel A, Schmutz S, et al. Low prevalence of transmitted HIV-1 drug resistance detected by a dried blood spot (DBS)-based next-generation sequencing (NGS) method in newly diagnosed individuals in Cameroon in the years 2015-16. J Antimicrob Chemother 2018; 73(7): 1917-29.
[http://dx.doi.org/10.1093/jac/dky103] [PMID: 29635462]
[50]
Ramamurthy M, Sankar S, Kannangai R, Nandagopal B, Sridharan G. Application of viromics: A new approach to the understanding of viral infections in humans. Virusdisease 2017; 28(4): 349-59.
[http://dx.doi.org/10.1007/s13337-017-0415-3] [PMID: 29291225]
[51]
Chang MW, Oliveira G, Yuan J, Okulicz JF, Levy S, Torbett BE. Rapid deep sequencing of patient-derived HIV with ion semiconductor technology. J Virol Methods 2013; 189(1): 232-4.
[http://dx.doi.org/10.1016/j.jviromet.2013.01.019] [PMID: 23384677]
[52]
Van Laethem K, Theys K, Vandamme AM. HIV-1 genotypic drug resistance testing: Digging deep, reaching wide? Curr Opin Virol 2015; 14: 16-23.
[http://dx.doi.org/10.1016/j.coviro.2015.06.001] [PMID: 26114581]
[53]
Diagnostics V. Simultaneous genotyping & Drug Resistance Mutation detection with the Sentosa® SQ HIV Genotyping Assay 2017. Available from.http://www.veladx.com/HIV.html
[54]
Vela diagnostics receives CE-IVD for HIV genotyping test 2017. Available from:.http://www.veladx.com/news-reader/items/vela-diagnostics-sentosa-sq-hiv-genotyping-assay-receives-ce-ivd-approval.html
[55]
Diagnostics V. Vela diagnostics receives TGA for HIV genotyping test 2017 Available from.http://www.veladx.com/news-reader/items/vela-diagnostics-announces-the-launch-of-tga-approved-sentosa-sq-hiv-genotyping-assay.html
[56]
Raymond S, Nicot F, Carcenac R, et al. HIV-1 genotypic resistance testing using the Vela automated next-generation sequencing platform. J Antimicrob Chemother 2018; 73(5): 1152-7.
[http://dx.doi.org/10.1093/jac/dky003] [PMID: 29444253]
[57]
Nimitsantiwong P, Wathitphan C, Kaveepatharanon S, Thanomphakorn K, Chantratita W, Pasomsub E. Comparison of SENTOSA® SQ deep sequencing-based HIV-1 genotyping coupled to integrated workflow with sanger sequencing method for detection of drug resistance mutations. Southeast Asian J Trop Med Public Health 2018; 49(2): 10.
[58]
Tzou PL, Ariyaratne P, Varghese V, et al. Comparison of an in vitro diagnostic next-generation sequencing assay with sanger sequencing for HIV-1 genotypic resistance testing. J Clin Microbiol 2018; 56(6): e00105-18.
[http://dx.doi.org/10.1128/JCM.00105-18] [PMID: 29618499]
[59]
Dessilly G, Goeminne L, Vandenbroucke AT, Dufrasne FE, Martin A, Kabamba-Mukadi B. First evaluation of the Next-Generation Sequencing platform for the detection of HIV-1 drug resistance mutations in Belgium. PLoS One 2018; 13(12)e0209561
[http://dx.doi.org/10.1371/journal.pone.0209561] [PMID: 30596682]
[60]
Herms J, Rodriguez C, Casadella M, et al. PASeq.org: One-click, Cloud-based web service for NGS-based HIV genotyping data analysis. Conference on Retroviruses and Opportunistic Infections. Boston, Massachusetts. 2018.
[61]
Noguera-Julian M, Edgil D, Harrigan PR, Sandstrom P, Godfrey C, Paredes R. Next-Generation Human Immunodeficiency Virus Sequencing for Patient Management and Drug Resistance Surveillance. J Infect Dis 2017; 216(Suppl. 9): S829-33.
[http://dx.doi.org/10.1093/infdis/jix397] [PMID: 28968834]
[62]
Kou R, Lam H, Duan H, et al. Benefits and challenges with applying unique molecular identifiers in next generation sequencing to detect low frequency mutations. PLoS One 2016; 11(1)e0146638
[http://dx.doi.org/10.1371/journal.pone.0146638] [PMID: 26752634]
[63]
Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46(5): 2159-68.
[http://dx.doi.org/10.1093/nar/gky066] [PMID: 29401301]
[64]
Lu H, Giordano F, Ning Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics Proteomics Bioinformatics 2016; 14(5): 265-79.
[http://dx.doi.org/10.1016/j.gpb.2016.05.004] [PMID: 27646134]
[65]
van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet 2018; 34(9): 666-81.
[http://dx.doi.org/10.1016/j.tig.2018.05.008] [PMID: 29941292]
[66]
Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 2003; 299(5607): 682-6.
[67]
PacBio. Available from. https://www.pacb.com
[68]
Ita S, Ben Murrell GC, Ignacio C, et al. SMRT sequencing of full-length pol amplicons to investigate hiv-1 drug resistance. Conference on Retroviruses and Opportunistic Infections. San Diego, CA USA. 2018.
[69]
Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. Long-read sequencing - a powerful tool in viral transcriptome research. Trends Microbiol 2019; 27(7): 578-92.
[http://dx.doi.org/10.1016/j.tim.2019.01.010] [PMID: 30824172]
[70]
Su B, Zheng X, Liu Y, et al. Detection of pretreatment minority HIV-1 reverse transcriptase inhibitor-resistant variants by ultra-deep sequencing has a limited impact on virological outcomes. J Antimicrob Chemother 2019; 74(5): 1408-16.
[http://dx.doi.org/10.1093/jac/dky561] [PMID: 30668734]
[71]
Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. Improved data analysis for the MinION nanopore sequencer. Nat Methods 2015; 12(4): 351-6.
[http://dx.doi.org/10.1038/nmeth.3290] [PMID: 25686389]
[72]
Ameur A, Kloosterman WP, Hestand MS. Single-molecule sequencing: Towards clinical applications. Trends Biotechnol 2019; 37(1): 72-85.
[http://dx.doi.org/10.1016/j.tibtech.2018.07.013] [PMID: 30115375]
[73]
Oxford nanopore technologies. Available from. https://nanoporetech.com
[74]
Gonzalez C, Gondola J, Ortiz AY, Castillo JM, Pascale JM, Martinez AA. Barcoding analysis of HIV drug resistance mutations using Oxford Nanopore MinION (ONT) sequencing. Oxford Nanopore, 2018. Available from:.https://nanoporetech.com/resource-centre/barcoding-analysis-hiv-drug-resistance-mutations-using-oxford-nanopore-minion-ont
[75]
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015; 13(5): 278-89.
[http://dx.doi.org/10.1016/j.gpb.2015.08.002] [PMID: 26542840]
[76]
Nishizawa M, Hattori J, Shiino T, et al. Highly-sensitive allele-specific PCR testing identifies a greater prevalence of transmitted HIV drug resistance in Japan. PLoS One 2013; 8(12)e83150
[http://dx.doi.org/10.1371/journal.pone.0083150] [PMID: 24358257]
[77]
Zhang G, Cai F, de Rivera IL, et al. Simultaneous detection of major drug resistance mutations of HIV-1 subtype B viruses from dried blood spot specimens by multiplex allele-specific assay. J Clin Microbiol 2016; 54(1): 220-2.
[http://dx.doi.org/10.1128/JCM.02833-15] [PMID: 26560533]
[78]
Houser B. Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview. Arch Physiol Biochem 2012; 118(4): 192-6.
[http://dx.doi.org/10.3109/13813455.2012.705301] [PMID: 22852821]
[79]
Zhang G, Cai F, Zhou Z, et al. Simultaneous detection of major drug resistance mutations in the protease and reverse transcriptase genes for HIV-1 subtype C by use of a multiplex allele-specific assay. J Clin Microbiol 2013; 51(11): 3666-74.
[http://dx.doi.org/10.1128/JCM.01669-13] [PMID: 23985909]
[80]
Clutter DS, Mazarei G, Sinha R, et al. Multiplex solid-phase melt curve analysis for the point-of-care detection of HIV-1 drug resistance. J Mol Diagn 2019; 21(4): 580-92.
[http://dx.doi.org/10.1016/j.jmoldx.2019.02.005] [PMID: 31026601]
[81]
Liegler T, Abdel-Mohsen M, Bentley LG, et al. HIV-1 drug resistance in the iPrEx preexposure prophylaxis trial. J Infect Dis 2014; 210(8): 1217-27.
[http://dx.doi.org/10.1093/infdis/jiu233] [PMID: 24740633]
[82]
McCalla SE, Ong C, Sarma A, Opal SM, Artenstein AW, Tripathi A. A simple method for amplifying RNA targets (SMART). J Mol Diagn 2012; 14(4): 328-35.
[http://dx.doi.org/10.1016/j.jmoldx.2012.02.001] [PMID: 22691910]
[83]
Zhang L, Wang J, Roebelen J, Tripathi A. A simple microfluidic assay for the detection of ligation product. Mol Diagn Ther 2015; 19(1): 59-64.
[http://dx.doi.org/10.1007/s40291-015-0129-4] [PMID: 25609550]
[84]
Ong C, Tai W, Sarma A, Opal SM, Artenstein AW, Tripathi A. Ligation with nucleic acid sequence-based amplification. J Mol Diagn 2012; 14(3): 206-13.
[http://dx.doi.org/10.1016/j.jmoldx.2012.01.004] [PMID: 22449695]
[85]
Morabito K, Wiske C, Tripathi A. Engineering insights for multiplexed real-time nucleic acid sequence-based amplification (NASBA): implications for design of point-of-care diagnostics. Mol Diagn Ther 2013; 17(3): 185-92.
[http://dx.doi.org/10.1007/s40291-013-0029-4] [PMID: 23677856]
[86]
Wang J, Tai W, Angione SL, et al. Subtyping clinical specimens of influenza A virus by use of a simple method to amplify RNA targets. J Clin Microbiol 2013; 51(10): 3324-30.
[http://dx.doi.org/10.1128/JCM.01206-13] [PMID: 23903546]
[87]
McCalla SE, Tripathi A. Microfluidic reactors for diagnostics applications. Annu Rev Biomed Eng 2011; 13: 321-43.
[http://dx.doi.org/10.1146/annurev-bioeng-070909-105312] [PMID: 21568712]
[88]
Morabito K, Kantor R, Tai W, Schreier L, Tripathi A. Detection of HIV-1 minority variants containing the K103N drug-resistance mutation using a simple method to amplify RNA targets (SMART). J Mol Diagn 2013; 15(3): 401-12.
[http://dx.doi.org/10.1016/j.jmoldx.2013.02.005] [PMID: 23541840]
[89]
Mutsvangwa J, Beck IA, Gwanzura L, et al. Optimization of the oligonucleotide ligation assay for the detection of nevirapine resistance mutations in zimbabwean human immunodeficiency virus type-1 subtype C. J Virol Methods 2014; 210: 36-9.
[http://dx.doi.org/10.1016/j.jviromet.2014.09.005] [PMID: 25239368]
[90]
Jallow S, Kaye S, Schutten M, et al. Development and evaluation of an oligonucleotide ligation assay for detection of drug resistance-associated mutations in the human immunodeficiency virus type 2 pol gene. J Clin Microbiol 2007; 45(5): 1565-71.
[http://dx.doi.org/10.1128/JCM.02220-06] [PMID: 17329450]
[91]
Ellis GM, Vlaskin TA, Koth A, et al. Simultaneous and sensitive detection of human immunodeficiency virus type 1 (HIV) drug resistant genotypes by multiplex oligonucleotide ligation assay. J Virol Methods 2013; 192(1-2): 39-43.
[http://dx.doi.org/10.1016/j.jviromet.2011.11.030] [PMID: 23660583]
[92]
Severins I, Szczepaniak M, Joo C. Multiplex single-molecule DNA barcoding using an oligonucleotide ligation assay. Biophys J 2018; 115(6): 957-67.
[http://dx.doi.org/10.1016/j.bpj.2018.08.013] [PMID: 30195940]
[93]
Natoli ME, Rohrman BA, De Santiago C, van Zyl GU, Richards-Kortum RR. Paper-based detection of HIV-1 drug resistance using isothermal amplification and an oligonucleotide ligation assay. Anal Biochem 2018; 544: 64-71.
[http://dx.doi.org/10.1016/j.ab.2017.12.008] [PMID: 29229373]
[94]
Daher RK, Stewart G, Boissinot M, Bergeron MG. Recombinase polymerase amplification for diagnostic applications. Clin Chem 2016; 62(7): 947-58.
[http://dx.doi.org/10.1373/clinchem.2015.245829] [PMID: 27160000]
[95]
Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 2012; 12(17): 3082-8.
[http://dx.doi.org/10.1039/c2lc40423k] [PMID: 22733333]
[96]
Novitsky V, Zahralban-Steele M, McLane MF, et al. Long-range HIV genotyping using viral RNA and proviral DNA for analysis of HIV drug resistance and HIV clustering. J Clin Microbiol 2015; 53(8): 2581-92.
[http://dx.doi.org/10.1128/JCM.00756-15] [PMID: 26041893]
[97]
Panpradist N, Beck IA, Chung MH, Kiarie JN, Frenkel LM, Lutz BR. Simplified paper format for detecting HIV drug resistance in clinical specimens by oligonucleotide ligation. PLoS One 2016; 11(1)e0145962
[http://dx.doi.org/10.1371/journal.pone.0145962] [PMID: 26751207]
[98]
Kanthula R, Rossouw TM, Feucht UD, et al. Persistence of HIV drug resistance among South African children given nevirapine to prevent mother-to-child-transmission. AIDS 2017; 31(8): 1143-8.
[http://dx.doi.org/10.1097/QAD.0000000000001446] [PMID: 28301421]
[99]
Silverman RA, Beck IA, Kiptinness C, et al. Prevalence of Pre-antiretroviral-Treatment Drug Resistance by Gender, Age, and Other Factors in HIV-Infected Individuals Initiating Therapy in Kenya, 2013-2014. J Infect Dis 2017; 216(12): 1569-78.
[http://dx.doi.org/10.1093/infdis/jix544] [PMID: 29040633]
[100]
Takebe Y, Liao H, Hase S, et al. Reconstructing the epidemic history of HIV-1 circulating recombinant forms CRF07_BC and CRF08_BC in East Asia: The relevance of genetic diversity and phylodynamics for vaccine strategies. Vaccine 2010; 28(Suppl. 2): B39-44.
[http://dx.doi.org/10.1016/j.vaccine.2009.07.101] [PMID: 20510742]
[101]
An M, Han X, Xu J, et al. Reconstituting the epidemic history of HIV strain CRF01_AE among men who have sex with men (MSM) in Liaoning, northeastern China: Implications for the expanding epidemic among MSM in China. J Virol 2012; 86(22): 12402-6.
[http://dx.doi.org/10.1128/JVI.00262-12] [PMID: 22933290]
[102]
Beyrer C, Razak MH, Lisam K, Chen J, Lui W, Yu XF. Overland heroin trafficking routes and HIV-1 spread in south and south-east Asia. AIDS 2000; 14(1): 75-83.
[http://dx.doi.org/10.1097/00002030-200001070-00009] [PMID: 10714570]
[103]
Chinese CDC. National guideline for detection of HIV/AIDS (2015 edition). (in Chinese) Zhongguo Bingdubing Zazhi 2016; 6(6): 401-27.
[104]
Wu J, Zhang Y, Shen Y, et al. Phylogenetic analysis highlights the role of older people in the transmission of HIV-1 in Fuyang, Anhui Province, China. BMC Infect Dis 2019; 19(1): 562.
[http://dx.doi.org/10.1186/s12879-019-4187-9] [PMID: 31248372]
[105]
Sun L, Jia L, Liu Y, et al. Multiple HIV-1 Subtypes Were Found Circulating in Shijingshan District of Beijing, China. AIDS Res Hum Retroviruses 2019; 35(5): 494-9.
[http://dx.doi.org/10.1089/aid.2018.0263] [PMID: 30681000]
[106]
Pei B, Jia L, Zhang Z, et al. Multiple HIV-1 subtypes were found circulating in suqian district of jiangsu province, China. AIDS Res Hum Retroviruses 2019; 35(7): 679-83.
[http://dx.doi.org/10.1089/aid.2019.0027] [PMID: 30924679]
[107]
Luo XL, Mo LD, Su GS, et al. Incidence and types of HIV-1 drug resistance mutation among patients failing first-line antiretroviral therapy. J Pharmacol Sci 2019; 139(4): 275-9.
[http://dx.doi.org/10.1016/j.jphs.2018.11.016] [PMID: 30928089]
[108]
Jia D, Zhao J, Liu Y, et al. Two-year cross-sectional studies reveal that single, young MSMs in Shenzhen, China are at high risk for HIV infection. Virol J 2019; 16(1): 83.
[http://dx.doi.org/10.1186/s12985-019-1189-6] [PMID: 31228958]
[109]
Dong K, Ye L, Leng Y, et al. Prevalence of HIV-1 drug resistance among patients with antiretroviral therapy failure in Sichuan, China, 2010-2016. Tohoku J Exp Med 2019; 247(1): 1-12.
[http://dx.doi.org/10.1620/tjem.247.1] [PMID: 30643108]
[110]
Xu Y, Peng X, Peng X, et al. Characterization of HIV-1 subtypes and transmitted drug resistance among treatment-naive HIV-infected individuals in Zhejiang, China, 2014-2017. Arch Virol 2018; 163(8): 2233-7.
[http://dx.doi.org/10.1007/s00705-018-3839-1] [PMID: 29637428]
[111]
Wang ZH, Zhang CY, Yan PP. Analysis on risk factors of drug resistance of HIV cases received antiretroviral therapy in Fujian, China. (in Chinese) Strait J Prev Med 2018; 24(5): 10-2.
[112]
Wang XL, Zeng H, Xu X. Drug resistance in HIV-infected persons receiving HIV antiviral therapy from 2010 to 2015. (in Chinese) Parasitoses and Infectious Diseases 2018; 16(2): 69-75.
[113]
Wang FY, Jin T, Ni MJ. Drug resistance analysis of AIDS patients in Yili Prefecture, Xinjiang. (in Chinese) Chin J Health Lab Tec 2018; 28(14): 1693-395.
[114]
Wang FY, Jin T, Ni MJ. Drug resistance of 1816 viral suppression failure cases of HIV treatment, Xinjiang. (in Chinese) Mod Prev Med 2018; 45(13): 2447-50.
[115]
Lu X, Chen S, Zhao H, et al. Baseline investigation of HIV-1 primary drug resistance among newly diagnosed treatment-naive HIV-1 individuals in Hebei, China. AIDS Res Hum Retroviruses 2018.
[http://dx.doi.org/10.1089/aid.2018.0142] [PMID: 29999406]
[116]
Liu P, Liao L, Xu W, et al. Adherence, virological outcome, and drug resistance in Chinese HIV patients receiving first-line antiretroviral therapy from 2011 to 2015. Medicine (Baltimore) 2018; 97(50)e13555
[http://dx.doi.org/10.1097/MD.0000000000013555] [PMID: 30558015]
[117]
Liu JF, Yang BH, Zhang M, et al. Drug resistance of initial antiviral therapy including LPV/r failed for HIV/AIDS patients. (in Chinese) Mod Prev Med 2018; 45(11): 2073-9.
[118]
Liu J, Yan JZ, Wang Z. The study of HIV-1 drug resistance transmission among newly reported HIV infections in Henan 2015. (in Chinese) Henan Med Res 2018; 27(4): 598-601.
[119]
Liang S, Yang H, Yuan D. Efficacy of extended treatment and influencing factors of HIV drug resistance patients in Sichuan. (in Chinese) J Prev Med Inf 2018; 34(7): 898-907.
[120]
Chen M, Jia MH, Ma YL, et al. The changing HIV-1 genetic characteristics and transmitted drug resistance among recently infected population in Yunnan, China. Epidemiol Infect 2018; 146(6): 775-81.
[http://dx.doi.org/10.1017/S0950268818000389] [PMID: 29534773]
[121]
Chen J, Peng C, Wang J, Zhu W. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling. Proteins 2018; 86(12): 1294-305.
[http://dx.doi.org/10.1002/prot.25610] [PMID: 30260044]
[122]
Cao P, Su B, Wu J, et al. Treatment outcomes and HIV drug resistance of patients switching to second-line regimens after long-term first-line antiretroviral therapy: An observational cohort study. Medicine (Baltimore) 2018; 97(28)e11463
[http://dx.doi.org/10.1097/MD.0000000000011463] [PMID: 29995803]
[123]
Zhu XY, Wang GY, Kang DM. Analysis of drug resistance among HIV/AIDS receiving antiretroviral treatment in Shandong province. (in Chinese) Chin J AIDS STD 2017; 23(2): 107-11.
[124]
Zhou Y, Lu J. Risk factors associated with HIV drug resistance among ART virological failure patients taking first-line antiviral treatment from Jiangsu Province. (in Chinese) Chin J Dis Control Prev 2017; 21(12): 1191-4.
[125]
Zhang F, Liu L, Sun M, Sun J, Lu H. An analysis of drug resistance among people living with HIV/AIDS in Shanghai, China. PLoS One 2017; 12(2)e0165110
[http://dx.doi.org/10.1371/journal.pone.0165110] [PMID: 28187212]
[126]
Zeng P, Liu Y, He M, et al. The infection staging and profile of genotypic distribution and drug resistance mutation among the human immunodeficiency virus-1 infected blood donors from five Chinese blood centers, 2012-2014. PLoS One 2017; 12(6)e0179328
[http://dx.doi.org/10.1371/journal.pone.0179328] [PMID: 28622345]
[127]
Yang W, Xiao Q, Wang D, Yao C, Yang J. Evaluation of pharmacokinetic interactions between long-acting HIV-1 fusion inhibitor albuvirtide and lopinavir/ritonavir, in HIV-infected subjects, combined with clinical study and simulation results. Xenobiotica 2017; 47(2): 133-43.
[http://dx.doi.org/10.3109/00498254.2016.1166532] [PMID: 27052428]
[128]
Liu Y, Gong FH, Yuan D. HIV antiretroviral treatment effect and drug resistance analysis in Chengdu in 2014. (in Chinese) J Prev Med Inf 2017; 33(12): 1296-300.
[129]
Liu P, Feng Y, Wu J, et al. Polymorphisms and Mutational Covariation Associated with Death in a Prospective Cohort of HIV/AIDS Patients Receiving Long-Term ART in China. PLoS One 2017; 12(1)e0170139
[http://dx.doi.org/10.1371/journal.pone.0170139] [PMID: 28099515]
[130]
Liu JF, Li JJ, Zhu BS. Study on drug-resistant gene mutation of HIV-1 virulent strains in Wenshan Prefecture of Yunnan Province during 2014-2015. (in Chinese) Int J Lab Med 2017; 38(3): 307-10.
[131]
Li HQ, Lao YF. Effect of LPV/r based second-line ART after failure of the first-line ART in Yunnan province. (in Chinese) Chin J AIDS STD 2017; 23(9): 780-3.
[132]
Gai J, Wu J, Kang LY. Observation of HIV primary drug resistance effect of highly active antiretroviral therapy in Shanghai. (in Chinese) Dis Surveill 2017; 32(2): 162-7.
[133]
Zuo Z, Liang S, Sun X, et al. Drug resistance and virological failure among HIV-infected patients after a decade of antiretroviral treatment expansion in eight provinces of China. PLoS One 2016; 11(12)e0166661
[http://dx.doi.org/10.1371/journal.pone.0166661] [PMID: 27997554]
[134]
Yuan D, Ye L, Liu HL. Influencing factors for therapeutic effect and drug resistance among HIV/aids patients receiving antiviral therapy in some areas of Sichuan, 2014. (in Chinese) Mod Prev Med 2016; 43(13): 2445-52.
[135]
Wang HJ, Zhang FC, Zhou CY, Liu CY, Zhang LN. Analysis of drug resistance of antiviral treatment in patients with AIDS and study on treatment strategy. (in Chinese) China Modern Medicine 2016; 23(21): 33-6.
[136]
Pan S, Xu JJ, Han XX, et al. Internet-Based Sex-Seeking Behavior Promotes HIV Infection Risk: A 6-Year Serial Cross-Sectional Survey to MSM in Shenyang, China. BioMed Res Int 2016; 20162860346
[http://dx.doi.org/10.1155/2016/2860346] [PMID: 28105415]
[137]
Luo DW, Wang SD, Xu X. Analysis on drug resistance and subtype of HIV-1 patients receiving antiretroviral treatment in Dazhou City, Sichuan Province. (in Chinese) J Prev Med Inf 2016; 32(1): 39-45.
[138]
Cheung KW, Peng Q, He L, et al. Rapid and simultaneous detection of major drug resistance mutations in reverse transcriptase gene for HIV-1 CRF01_AE, CRF07_BC and subtype B in China using sequenom MassARRAY® System. PLoS One 2016; 11(4)e0153641
[http://dx.doi.org/10.1371/journal.pone.0153641] [PMID: 27092551]
[139]
Chang SY, Lin PH, Cheng CL, et al. Prevalence of integrase strand transfer inhibitors (INSTI) resistance mutations in Taiwan. Sci Rep 2016; 6: 35779.
[http://dx.doi.org/10.1038/srep35779] [PMID: 27779200]
[140]
Yang CB, Yang W, Zhu ZD. Analysis on the detection status of the HIV-1 resistant gene in Butuo county Liangshan prefecture of Sichuan province. (in Chinese) Mod Prev Med 2015; 42(16): 2983-5.
[141]
Wang X, Wu Y, Mao L, et al. Targeting HIV prevention based on molecular epidemiology among deeply sampled subnetworks of men who have sex with men. Clin Infect Dis 2015; 61(9): 1462-8.
[http://dx.doi.org/10.1093/cid/civ526] [PMID: 26129754]
[142]
Liu J, Wu Y, Yang W, et al. Population-based human immunodeficiency virus 1 drug resistance profiles among individuals who experienced virological failure to first-line antiretroviral therapy in Henan, China during 2010-2011. AIDS Res Ther 2015; 12: 22.
[http://dx.doi.org/10.1186/s12981-015-0062-y] [PMID: 26120348]
[143]
Liang S, Shen Z, Yan J, et al. Low virologic failure and drug resistance among HIV-infected patients receiving hospital-based art while care and outreach through community in Guangxi, China. Front Public Health 2015; 3: 244.
[http://dx.doi.org/10.3389/fpubh.2015.00244] [PMID: 26579506]
[144]
Zhao K, Kang W, Liu Q, et al. Genotypes and transmitted drug resistance among treatment-naive HIV-1-infected patients in a northwestern province, China: trends from 2003 to 2013. PLoS One 2014; 9(10)e109821
[http://dx.doi.org/10.1371/journal.pone.0109821] [PMID: 25333965]
[145]
Sui H, Gui T, Jia L, et al. Different frequencies of drug resistance mutations among HIV-1 subtypes circulating in China: a comprehensive study. PLoS One 2014; 9(3)e91803
[http://dx.doi.org/10.1371/journal.pone.0091803] [PMID: 24663120]
[146]
Li CX, Bai JS, Huang Y. Analysis of drug-resistance in HIV patients treated with antivirus-therapy in Kunming. (in Chinese) J Dermatology and Venereology 2014; 36(3): 137-9.
[147]
Zhao DC, Ma Y, Wang N. Drug resistance among HIV-infected adults receiving long term first-line antiretroviral treatment in China. (in Chinese) Chin J Exp Clin Infect Dis 2013; 7(2): 204-9.
[148]
Yu XH, Wu ZL, Yang DZ, Zhang YH, Guan GY. Study on the resistance of antiviral treatment for the HIV-1 patients in Ningxia. (in Chinese) Ningxia Med J 2013; 35(7): 623-4.
[149]
Yu GL, Qin B, Lin P. Investigation of HIV-1 drug resistance prevalence in AIDS patients with long-term HAART therapy in Guangdong Province. (in Chinese) J Newat Med 2013; 44(7): 463-6.
[150]
To SW, Chen JH, Wong KH, et al. Performance comparison of an in-house integrase genotyping assay versus the ViroSeq™ Integra48, and study of HIV-1 integrase polymorphisms in Hong Kong. J Clin Virol 2013; 58(1): 299-302.
[http://dx.doi.org/10.1016/j.jcv.2013.06.040] [PMID: 23886504]
[151]
E S. Wu SH, Yao WQ. Distribution of HIV-1 subtypes and drug resistance analysis in the population of antiviral treatment in Liaoning Province from 2004 to 2011. (in Chinese) Chin J AIDS STD 2013; 19(8): 606-7.
[152]
Yao ST, Ma YL, Duan S. Mutation rate and risk factors of HIV resistance among AIDS patients receiving antiretroviral treatment in Dehong Prefecture, Yunnan Province. (in Chinese) Chin J Dis Control Prev 2012; 16(12): 1019-23.
[153]
Liao LJ, Zhong P. Evaluation of proficiency of HIV-1 drug resistance genotyping testing in three consecutive years in China. (in Chinese) Chin J AIDS STD 2012; 18(4): 206-9.
[154]
Liao L, Xing H, Shang H, et al. The prevalence of transmitted antiretroviral drug resistance in treatment-naive HIV-infected individuals in China. J Acquir Immune Defic Syndr 2010; 53(Suppl. 1): S10-4.
[http://dx.doi.org/10.1097/QAI.0b013e3181c7d363] [PMID: 20104099]
[155]
Van Laethem K, Schrooten Y, Covens K, et al. A genotypic assay for the amplification and sequencing of integrase from diverse HIV-1 group M subtypes. J Virol Methods 2008; 153(2): 176-81.
[http://dx.doi.org/10.1016/j.jviromet.2008.07.008] [PMID: 18706932]
[156]
Yohe S, Thyagarajan B. Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med 2017; 141(11): 1544-57.
[http://dx.doi.org/10.5858/arpa.2016-0501-RA] [PMID: 28782984]
[157]
Ye F, Wu HW. Clinical molecular pathology laboratory second-generation gene sequencing detection expert consensus. (in Chinese) Chin J Pathol 2017; 46(3): 145-8.
[158]
Ávila-Ríos S, García-Morales C, Matías-Florentino M, et al. Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: a nationally representative 2015 WHO survey. Lancet HIV 2016; 3(12): e579-91.
[http://dx.doi.org/10.1016/S2352-3018(16)30119-9] [PMID: 27658867]
[159]
China Food and Drug Administration. Available from https://samrcfdagovcn/
[160]
Antiretroviral drugs used in the treatment of HIV infection 2018. Available from https://wwwfdagov/patients/hiv-treatment/antiretroviral-drugs-used-treatment-hiv-infection
[161]
National Medical Products Administration. Available from. https://wwwnmpagovcn/WS04/CL2073/
[162]
Shen Z, Zhu Q, Tang Z, et al. Effects of cd4 cell counts and viral load testing on mortality rates in patients with HIV infection receiving antiretroviral treatment: An observational cohort study in Rural Southwest China. Clin Infect Dis 2016; 63(1): 108-14.
[http://dx.doi.org/10.1093/cid/ciw146] [PMID: 27001800]
[163]
Ma Y, Dou Z, Guo W, et al. The human immunodeficiency virus care continuum in China: 1985-2015. Clin Infect Dis 2018; 66(6): 833-9.
[http://dx.doi.org/10.1093/cid/cix911] [PMID: 29216405]
[164]
Junqueira DM, Almeida SE. HIV-1 subtype B: Traces of a pandemic. Virology 2016; 495: 173-84.
[http://dx.doi.org/10.1016/j.virol.2016.05.003] [PMID: 27228177]
[165]
Venner CM, Nankya I, Kyeyune F, et al. Infecting HIV-1 Subtype Predicts Disease Progression in Women of Sub-Saharan Africa. EBioMedicine 2016; 13: 305-14.
[http://dx.doi.org/10.1016/j.ebiom.2016.10.014] [PMID: 27751765]
[166]
Xiao P, Li J, Fu G, Zhou Y, Huan X, Yang H. Geographic Distribution and Temporal Trends of HIV-1 Subtypes through Heterosexual Transmission in China: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2017; 14(7)E830
[http://dx.doi.org/10.3390/ijerph14070830] [PMID: 28737729]
[167]
Yin Y, Liu Y, Zhu J, et al. The prevalence, temporal trends, and geographical distribution of HIV-1 subtypes among men who have sex with men in China: A systematic review and meta-analysis. Epidemiol Infect 2019; 147e83
[http://dx.doi.org/10.1017/S0950268818003400] [PMID: 30869019]
[168]
Chen M, Ma Y, Chen H, et al. Spatial clusters of HIV-1 genotypes in a recently infected population in Yunnan, China. BMC Infect Dis 2019; 19(1): 669.
[http://dx.doi.org/10.1186/s12879-019-4276-9] [PMID: 31357947]
[169]
Gianotti N, Galli L, Galizzi N, et al. Time spent with residual viraemia after virological suppression below 50 HIV-RNA copies/mL according to type of first-line antiretroviral regimen. Int J Antimicrob Agents 2018; 52(4): 492-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.07.001] [PMID: 30009958]