Although studies have established the role of integrins in bone homeostasis, especially in osteoclastogenesis, and these molecules are novel and promising therapeutic drug targets for bone loss diseases, such as: osteolysis, the cellular mechanism still elusive. Bone homeostasis takes place through the interaction of bone cells (osteoblasts and osteoclast) via the activation of intercellular adhesion molecule-1 (ICAM-1), which is a critical submolecule of integrin. In the present study, we reviewed several novel studies on integrins and their submolecule, ICAM-1, in bone homeostasis. In order to demonstrated that ICAM-1 might exert dual effects on osteoclastogenesis by directly affecting the adhesive ability of mature osteoclasts and indirectly participating in RANKL/RANK induced osteoclastic precursors differentiation. Although these results still need to be verified in the future, the extending study about the role of ICAM-1 in osteoclastogenesis will cerntainly provide a promising therapeutic target for the treatment of bone loss diseases.
Keywords: Integrin, bone homeostasis, osteoclastogenesis, ICAM-1, LFA-1, therapeutic drug targets.