Rapid Screening and Quantification of Multi-Class Multi-Residue Veterinary Drugs in Pork by a Modified Quechers Protocol Coupled to UPLC-QOrbitrap HRMS

Page: [863 - 879] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: A rapid and simple analytical method for the screening and quantification of multi-residues was established by a quick, easy, cheap, effective, rugged and safe (QuEChERS) approach coupled to ultra-performance liquid chromatography and electrospray ionization quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). A total number of 59 veterinary drugs were investigated, which belonged to 12 classes, such as β-agonist, quinolones, sulfonamides, tetracyclines, lincomycin series, triphenylmethane, nitroimidazoles, macrolides, amide alcohols, quinoxalines, steroid hormone and sedatives.

Methods: The factors which influence the determination of veterinary drugs residues, such as mobile phase, extract solvent, clean up sorbent, and re-dissolved solvent, were optimized by the single factor experiment. The method was sufficiently validated by using the parameters of linearity, sensitivity, accuracy, and repeatability.

Results: The response of the detector was linear for 59 veterinary drug residues in extensive range (two to three orders of magnitude) with a high coefficient of determination (R2) (0.9995-0.9998). The limit of quantification (LOQ) ranged from 0.1μg/kg to 2.0μg/kg for 59 veterinary drug residues in pork samples. The repeatability was in the range of 1.0%-9.5%. Average recoveries of 59 veterinary drugs at three spiked levels ranged from 53.7%-117.8% with relative standard deviation (RSD) of 1.9%-13.9%. The full MS scan coupled with data-dependent MS/MS mode was applied for screening the target compounds to simultaneously obtain the accurate mass of parent ion and the mass spectrum of fragments. Elemental composition, accurate mass, and retention time and characteristic fragment ions were used to establish a homemade database.

Conclusion: The ability of the homemade database was verified by analyzing the real pork samples, and the result was satisfactory.

Keywords: Multi-residues, pork, QuEChERS, UPLC-Q-Orbitrap HRMS, veterinary drugs, Limit of Quantification (LOQ).

Graphical Abstract

[1]
Pontes, F.L.D.; Gasparetto, J.C. Francisco de, T. M. G.;Goetzke, H. C.;Leonart, L. P.; Jesus de, D. A.; Pontarolo, R. Development and validation of a multiclass method for the analysis of veterinary drug residues in eggs using liquid chromatography-tandem mass spectrometry. Food Anal. Methods, 2017, 10, 1063-1077.
[http://dx.doi.org/10.1007/s12161-016-0670-8]
[2]
Lopes, R.P.; Reyes, R.C.; Romero-González, R.; Frenich, A.G.; Vidal, J.L.M. Development and validation of a multiclass method for the determination of veterinary drug residues in chicken by ultra high performance liquid chromatography-tandem mass spectrometry. Talanta, 2012, 89, 201-208.
[http://dx.doi.org/10.1016/j.talanta.2011.11.082] [PMID: 22284481]
[3]
Ågerstrand, M.; Berg, C.; Björlenius, B.; Breitholtz, M.; Brunström, B.; Fick, J.; Gunnarsson, L.; Larsson, D.G.J.; Sumpter, J.P.; Tysklind, M.; Rudén, C. Improving environmental risk assessment of human pharmaceuticals. Environ. Sci. Technol., 2015, 49(9), 5336-5345.
[http://dx.doi.org/10.1021/acs.est.5b00302] [PMID: 25844810]
[4]
Botana, L.M. Toxicological perspective on climate change: aquatic toxins. Chem. Res. Toxicol., 2016, 29(4), 619-625.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00020] [PMID: 26958981]
[5]
Dambach, D.M.; Misner, D.; Brock, M.; Fullerton, A.; Proctor, W.; Maher, J.; Lee, D.; Ford, K.; Diaz, D. Safety lead optimization and candidate identification: integrating new technologies into decision-making. Chem. Res. Toxicol., 2016, 29(4), 452-472.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00396] [PMID: 26625186]
[6]
DeFuria, M.D.; Zeller, M.; Genna, D.T. Removal of pharmaceuticals from watervia p-p stacking interactions in perfluorinated metal-organic frameworks. Cryst. Growth Des., 2016, 16, 3530-3534.
[http://dx.doi.org/10.1021/acs.cgd.6b00488]
[7]
Félix, L.M.; Serafim, C.; Valentim, A.M.; Antunes, L.M.; Campos, S.; Matos, M.; Coimbra, A.M. Embryonic stage-dependent teratogenicity of ketamine in zebrafish (Daniorerio). Chem. Res. Toxicol., 2016, 29(8), 1298-1309.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00122] [PMID: 27359275]
[8]
Friedman, M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J. Agric. Food Chem., 2015, 63(15), 3805-3822.
[http://dx.doi.org/10.1021/acs.jafc.5b00778] [PMID: 25856120]
[9]
Codex Alimentarius Commission. Maximum residue limits for veterinary drugs in foods, updated as at the 35th session of the Codex Alimentarius Commission, CAC/MRL 2-2012, July . 2012.ftp://ftp.fao.org/codex/weblinks/MRL2_e_2012.pdf (Accessed August 09, 2015)
[10]
Commission Regulation (EU) 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin;, 2010.
[11]
Electronic Code of Federal Regulations. Tolerances for residues of new animal drugs in food [EB/OL], 2011.. http://ecfr.gpoaccess. gov/cgi/t/text/text-idx?c=ecfr&sid=407e94cecd1bff327c7146f42bcc0d56&tpl=/ecfrbrowse/Title21/21cfr556_main_02.tpl2011.
[12]
Milanetti, E.; Carlucci, G.; Olimpieri, P.P.; Palumbo, P.; Carlucci, M.; Ferrone, V. Correlation analysis based on the hydropathy properties of non-steroidal anti-inflammatory drugs in solid-phase extraction (SPE) and reversed-phase high performance liquid chromatography (HPLC) with photodiode array detection and their applications to biological samples. J. Chromatogr. A, 2019, 1605360351
[http://dx.doi.org/10.1016/j.chroma.2019.07.005] [PMID: 31307791]
[13]
Wianowska, D.; Gil, M. New insights into the application of MSPD in various fields of analytical chemistry. Trac. Trend Anal. Chem., 2019, 112, 29-51.
[http://dx.doi.org/10.1016/j.trac.2018.12.028]
[14]
Sun, H.W.; Kang, Z.S.; Li, H. Determination of nine steroid hormone residues in beef samples by gel permeation cheromatography-solid phase extraction-rapid resolution liquid chromatography-mass spectrometry/mass spectrometry. Chin. J. Anal. Chem., 2010, 39, 1272-1276.
[http://dx.doi.org/10.1016/S1872-2040(09)60066-9]
[15]
Richter, B.E.; Jones, B.A.; Ezzell, J.; Porter, N.L. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem., 1996, 68, 1033-1039.
[http://dx.doi.org/10.1021/ac9508199]
[16]
Albero, B.; Tadeo, J.L.; Perez, R.A. Ultrasound-assisted extraction of organic contaminants. Trac. Trend Anal. Chem., 2019, 118, 739-750.
[http://dx.doi.org/10.1016/j.trac.2019.07.007]
[17]
Zhang, C.Y.; Deng, Y.C.; Zheng, J.F.; Zhang, Y.; Yang, L.H.; Liao, C.J.; Su, L.; Zhou, Y.Y.; Gong, D.X.; Chen, L.; Luo, A. The application of the QuECHERS methodology in the determination of antibiotics in food: A review. Trac. Trend Anal. Chem., 2019, 118, 517-537.
[http://dx.doi.org/10.1016/j.trac.2019.06.012]
[18]
Chen, D.; Yu, J.; Tao, Y.; Pan, Y.; Xie, S.; Huang, L.; Peng, D.; Wang, X.; Wang, Y.; Liu, Z.; Yuan, Z. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food producing animals using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2016, 1017-1018, 1017-1018.
[http://dx.doi.org/10.1016/j.jchromb.2016.02.037] [PMID: 26950031]
[19]
Schneider, M.J.; Lehotay, S.J.; Lightfield, A.R. Validation of a streamlined multiclass, multiresidue method for determination of veterinary drug residues in bovine muscle by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2015, 407(15), 4423-4435.
[http://dx.doi.org/10.1007/s00216-014-8386-3] [PMID: 25542573]
[20]
Lozowicka, B.; Ilyasova, G.; Kaczynski, P.; Jankowska, M.; Rutkowska, E.; Hrynko, I.; Mojsak, P.; Szabunko, J. Multi-residue methods for the determination of over four hundred pesticides in solid and liquid high sucrose content matrices by tandem mass spectrometry coupled with gas and liquid chromatograph. Talanta, 2016, 151, 51-61.
[http://dx.doi.org/10.1016/j.talanta.2016.01.020] [PMID: 26946009]
[21]
Barker, S.A. Matrix solid-phase dispersion. J. Chromatogr. A, 2000, 885(1-2), 115-127.
[http://dx.doi.org/10.1016/S0021-9673(00)00249-1] [PMID: 10941670]
[22]
Gilbert-López, B.; García-Reyes, J.F.; Molina-Díaz, A. Sample treatment and determination of pesticide residues in fatty vegetable matrices: A review. Talanta, 2009, 79(2), 109-128.
[http://dx.doi.org/10.1016/j.talanta.2009.04.022] [PMID: 19559852]
[23]
Jira, W.; Ziegenhals, K.; Speer, K. Gas chromatography-mass spectrometry (GC-MS) method for the determination of 16 European priority polycyclic aromatic hydrocarbons in smoked meat products and edible oils. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(6), 704-713.
[http://dx.doi.org/10.1080/02652030701697769] [PMID: 18630343]
[24]
Jira, W. A GC/MS method for the determination of carcinogenic polycyclic aromatic hydrocarbons (PAH) in smoked meat products and liquid smokes. Eur. Food Res. Technol., 2004, 218, 208-212.
[25]
Lehotay, S.J.; De Kok, A.; Hiemstra, M.; Bodegraven Van, P. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J. AOAC Int., 2005, 88, 595-614.
[26]
Niell, S.; Cesio, V.; Hepperle, J.; Roux, D.; Kirsch, L.; Kolberg, D.; Anastassiades, M.; Heinzen, H. Analisismultiresiduo de 41 pesticidas en mielpor LC-MS/MS: Evaluaciòn de dos métodos de clean-up. Agrociencia Urug., 2013, 17, 101-107.
[27]
Tran, K.; Eide, D.; Nickols, S.M.; Cromer, M.R.; Sabaa-Srur, A.; Smith, R.E. Finding of pesticides in fashionable fruit juices by LC-MS/MS and GC-MS/MS. Food Chem., 2012, 134(4), 2398-2405.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.034] [PMID: 23442701]
[28]
Malato, O.; Lozano, A.; Mezcua, M.; Agüera, A.; Fernandez-Alba, A.R. Benefits and pitfalls of the application of screening methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A, 2011, 1218(42), 7615-7626.
[http://dx.doi.org/10.1016/j.chroma.2011.06.110] [PMID: 21798548]
[29]
Uclés Moreno, A.; Herrera López, S.; Reichert, B.; Lozano Fernández, A.; Hernando Guil, M.D.; Fernández-Alba, A.R. Microflow liquid chromatography coupled to mass spectrometry--an approach to significantly increase sensitivity, decrease matrix effects, and reduce organic solvent usage in pesticide residue analysis. Anal. Chem., 2015, 87(2), 1018-1025.
[http://dx.doi.org/10.1021/ac5035852] [PMID: 25495653]
[30]
Santana-Mayor, A.; Socas-Rodriguz, B.; Herrera-Herrera, A.V.; Rodriguez-Delgado, M.A. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis TrAC-Special Issue “Green Extraction Techniques”. Trac. Trend Anal. Chem., 2019, 116, 214-235.
[http://dx.doi.org/10.1016/j.trac.2019.04.018]
[31]
Lehotay, S.J. Quick, easy, cheap, effective, rugged, and safe approach for determining pesticide residue. Pesticide Protocols, 2006, 19, 239-261.
[http://dx.doi.org/10.1385/1-59259-929-X:239]
[32]
Andressa, C.V.; Gabriela, A.P.; Cristian, R.K.; Molognoni, L.; Daguer, H.A. QuEChERS/LC-MS method for the analysis of ractopamine in pork. J. Food Compos. Anal., 2016, 47, 38-44.
[http://dx.doi.org/10.1016/j.jfca.2016.01.002]
[33]
Yin, Z.; Chai, T.; Mu, P.; Xu, N.N; Song, Y.; Wang, X.L.; Jia, Q. Multi-residue determination of 210 drugs in pork by ultra-highperformance liquid chromatography-tandem mass spectrometry. J Chromatogra. A, 2016, 1463, 49-59.
[34]
Chen, Q.; Pan, X.D.; Huang, B.F.; Han, J.L. Quantification of 16 β-lactams in chicken muscle by QuEChERS extraction and UPLC-Q-Orbitrap-MS with parallel reaction monitoring. J. Pharm. Biomed. Anal., 2017, 145, 525-530.
[http://dx.doi.org/10.1016/j.jpba.2017.07.019] [PMID: 28756171]
[35]
Yan, H.; Liu, X.; Cui, F.; Yun, H.; Li, J.; Ding, S.; Yang, D.; Zhang, Z. Determination of amantadine and rimantadine in chicken muscle by QuEChERS pretreatment method and UHPLC coupled with LTQ Orbitrap mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 938, 8-13.
[http://dx.doi.org/10.1016/j.jchromb.2013.08.020] [PMID: 24036176]
[36]
Nuzzo, G.; Gallo, C.; d’Ippolito, G.; Manzo, E.; Ruocco, N.; Russo, E.; Carotenuto, Y.; Costantini, M.; Zupo, V.; Sardo, A.; Fonana, A. UPLC-MS/MS identification of sterol sulfates in marine diatoms. Mar. Drugs, 2019, 17, 10.
[http://dx.doi.org/10.3390/md17010010]
[37]
Zhang, Y.Q.; Liu, X.M.; Li, X.; Zhang, J.J.; Cao, Y.Z.; Su, M.; Shi, Z.H.; Sun, H.W. Rapid screening and quanitification of multi-class multi-residue veterinary drugs in royal jelly by ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Control, 2016, 60, 667-676.
[http://dx.doi.org/10.1016/j.foodcont.2015.09.010]
[38]
Dasenaki, M.E.; Bletsou, A.A.; Koulis, G.A.; Thomaidis, N.S. Qualitative multiresidue screening method for 143 veterinary drugs and pharmaceuticals in milk and fish tissue using liquid chromatography quadrupole-time-of-flight mass spectrometry. J. Agric. Food Chem., 2015, 63, 4493-4508.
[39]
Fedorova, G.; Nebesky, V.; Randak, T.; Grabic, R. Simultaneous determination of 32 antibiotics in aquaculture products using LCMS/MS. Chem. Pap., 2014, 68, 29-36
[http://dx.doi.org/10.2478/s11696-013-0428-3]
[40]
Liu, H.Y.; Lin, S-L.; Fuh, M.R. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry. Talanta, 2016, 150, 233-239.
[http://dx.doi.org/10.1016/j.talanta.2015.12.045] [PMID: 26838404]
[41]
Łozowicka, B.; Rutkowska, E.; Jankowska, M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ. Sci. Pollut. Res. Int., 2017, 24(8), 7124-7138.
[http://dx.doi.org/10.1007/s11356-016-8334-1] [PMID: 28093672]
[42]
Delatour, T.; Racault, L.; Bessaire, T.; Desmarchelier, A. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2018, 35(4), 632-645.
[http://dx.doi.org/10.1080/19440049.2018.1426890 PMID: 29324075]