α-Alkoxyalkyl Triphenylphosphonium Salts: Synthesis and Reactions

Page: [1738 - 1755] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Following numerous applications of Wittig reaction now functionalized phosphonium salts are gaining attention due to their characteristic properties and diverse reactivity. This review is focused on α-alkoxyalkyl triphenylphosphonium salts: an important class of functionalized phosphonium salts. Alkoxymethyltriphenylphosphonium salts are majorly employed in the carbon homologation of carbonyl compounds and preparation of enol ethers. Their methylene insertion strategy is extensively demonstrated in the total synthesis of a wide range of natural products and other important organic molecules. Similarly enol ethers prepared thereof are important precursors for different organic transformations like Diels-Alder reaction, Claisen rearrangement, Coupling reactions, Olefin metathesis and Nazarov cyclization. Reactivity of these α-alkoxyalkylphosphonium salts have also been studied in the nucleophilic substitution reactions. A distinctive application of this class of phosphonium salts was recently reported in the phenylation of carbonyl compounds under very mild conditions. Synthesis of structurally diverse alkoxymethyltriphenylphosphonium salts with variation in alkoxy groups as well as counter anions are reported in literature. Here we present a detailed account of different synthetic methodologies for the preparation of this unique class of quaternary phosphonium salts and their applications in organic synthesis.

Keywords: Quaternary phosphonium salts, functionalized phosphonium salts, methoxymethyl triphenylphosphonium chloride, carbon homologation, vinyl ethers, enol ethers, nucleophilic phenylation.

Graphical Abstract

[1]
Nicolaou, K.C.; Härter, M.W.; Gunzner, J.L.; Nadin, A. The Wittig and related reactions in natural product synthesis. Liebigs Ann., 1997, 7, 1283-1301.
[http://dx.doi.org/10.1002/jlac.199719970704]
[2]
Maryanoff, B.E.; Reitz, A.B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89(4), 863-927.
[http://dx.doi.org/10.1021/cr00094a007]
[3]
Swamy, K.K.; Kumar, N.B.; Balaraman, E.; Kumar, K.P. Mitsunobu and related reactions: Advances and applications. Chem. Rev., 2009, 109(6), 2551-2651.
[http://dx.doi.org/10.1021/cr800278z]
[4]
Appel, R. Tertiares phosphan/tetrachlormethan, ein vielseitiges reagens zur chlorierung, dehydratisierung.; PN-verknupfung. Angew. Chem., 1975, 87(24), 863-874.
[http://dx.doi.org/10.1002/ange.19750872403]
[5]
Eguchi, S.; Matsushita, Y.; Yamashita, K. The aza-wittic reaction in heterocyclic synthesis. A review. Org. Prep. Proced. Int., 1992, 24(2), 209-243.
[http://dx.doi.org/10.1080/00304949209355702]
[6]
Staudinger, H.; Meyer, J. Uber neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta, 1919, 2(1), 635-646.
[http://dx.doi.org/10.1002/hlca.19190020164]
[7]
Waschbusch, R.; Carran, J.; Marinetti, A.; Savignac, P. The synthesis of dialkyl α-halogenated methyl phosphonates. Synthesis, 1997, 7, 727-743.
[http://dx.doi.org/10.1055/s-1997-1417]
[8]
Smith, R.A.; Porteous, C.M.; Gane, A.M.; Murphy, M.P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5407-5412.
[http://dx.doi.org/10.1073/pnas.0931245100]
[9]
Bishop, J.E.; Connell, O.J.; Rapoport, H. The reaction of thioimides with phosphorous ylides. J. Org. Chem., 1991, 56, 5079-5091.
[http://dx.doi.org/10.1021/jo00017a017]
[10]
Pugachev, M.V.; Shtyrlin, N.V.; Sapozhnikov, S.V.; Sysoeva, L.P.; Iksanova, A.G.; Nikitina, E.V.; Shtyrlin, Y.G. Bis-phosphonium salts of pyridoxine: the relationship between structure and antibacterial activity. Bioorg. Med. Chem., 2013, 21(23), 7330-7342.
[http://dx.doi.org/10.1016/j.bmc.2013.09.056]
[11]
Rideout, D.C.; Calogeropoulou, T.; Jaworski, J.S.; Dagnino, J.R.; McCarthy, M.R. Phosphonium salts exhibiting selective anti-carcinoma activity in vitro. Anticancer Drug Des., 1989, 4(4), 265-280.
[12]
Rideout, D.; Bustamante, A.; Patel, J. Mechanism of inhibition of Fadu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride. Int. J. Cancer, 1994, 57(2), 247-253.
[http://dx.doi.org/10.1002/ijc.2910570220]
[13]
Enders, D.; Nguyen, T.V. Chiral quaternary phosphonium salts: A new class of organocatalysts. Org. Biomol. Chem., 2012, 10(28), 5327-5331.
[http://dx.doi.org/10.1039/c2ob25823d]
[14]
Manabe, K. Asymmetric phase-transfer alkylation catalyzed by a chiral quaternary phosphonium salt with a multiple hydrogen-bonding site. Tetrahedron Lett., 1998, 39(32), 5807-5810.
[http://dx.doi.org/10.1016/S0040-4039(98)01181-2]
[15]
He, R.; Maruoka, K. Binaphthyl-modified quaternary phosphonium salts as chiral phase transfer catalysts: Application to asymmetric amination of β-Keto esters. Synthesis, 2009, 13, 2289-2292.
[16]
Zhu, C.L.; Zhang, F.G.; Meng, W.; Nie, J.; Cahard, D.; Ma, J.A. Enantioselective base-free electrophilic amination of benzofuran-2 (3H)-ones: catalysis by binol-derived P-spiro quaternary phosphonium salts. Angew. Chem. Int. Ed., 2011, 50(26), 5869-5872.
[http://dx.doi.org/10.1002/anie.201100283]
[17]
Shirakawa, S.; Kasai, A.; Tokuda, T.; Maruoka, K. Efficient approach for the design of effective chiral quaternary phosphonium salts in asymmetric conjugate additions. Chem. Sci. (Camb.), 2013, 4(5), 2248-2252.
[http://dx.doi.org/10.1039/c3sc22130j]
[18]
Shirakawa, S.; Tokuda, T.; Kasai, A.; Maruoka, K. Design of chiral bifunctional quaternary phosphonium bromide catalysts possessing an amide moiety. Org. Lett., 2013, 15(13), 3350-3353.
[http://dx.doi.org/10.1021/ol4013926]
[19]
Wang, B.; Liu, Y.; Sun, C.; Wei, Z.; Cao, J.; Liang, D.; Duan, H. Asymmetric phase-transfer catalysts bearing multiple hydrogen-bonding donors: Highly efficient catalysts for enantio-and diastereoselective nitro-Mannich reaction of amidosulfones. Org. Lett., 2014, 16(24), 6432-6435.
[http://dx.doi.org/10.1021/ol503264n]
[20]
Hoffmann, R.W. Wittig and his accomplishments: Still relevant beyond his 100th birthday. Angew. Chem. Int. Ed., 2001, 40(8), 1411-1416.
[http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1411:AID-ANIE1411>3.0.CO;2-U]
[21]
Hwang, L.K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Tetraarylphosphonium halides as arylating reagents in Pd‐catalyzed heck and cross-coupling reactions. Angew. Chem. Int. Ed., 2005, 44(38), 6166-6169.
[http://dx.doi.org/10.1002/anie.200501582]
[22]
Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; Alnashef, I.M. Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels, 2011, 25(6), 2671-2678.
[http://dx.doi.org/10.1021/ef2004943]
[23]
Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; Alnashef, I.M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data, 2010, 55(11), 4632-4637.
[http://dx.doi.org/10.1021/je100104v]
[24]
Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem., 2011, 13(1), 82-90.
[http://dx.doi.org/10.1039/C0GC00395F]
[25]
Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a]
[26]
Cao, H.; Mcnamee, L.; Alper, H. Palladium-catalyzed thiocarbonylation of iodoarenes with thiols in phosphonium salt ionic liquids. J. Org. Chem., 2008, 73(9), 3530-3534.
[http://dx.doi.org/10.1021/jo800287s]
[27]
McNulty, J.; Capretta, A.; Wilson, J.; Dyck, J.; Adjabeng, G.; Robertson, A. Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. Chem. Commun. (Camb.), 2002, 17, 1986-1987.
[http://dx.doi.org/10.1039/b204699g]
[28]
Gerritsma, D.A.; Robertson, A.; McNulty, J.; Capretta, A. Heck reactions of aryl halides in phosphonium salt ionic liquids: Library screening and applications. Tetrahedron Lett., 2004, 45(41), 7629-7631.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.103]
[29]
Mcnulty, J.; Capretta, A.; Cheekoori, S.; Clyburne, J.A.C.; Robertson, A. Metal catalysed reactions in ionic liquids. J. Chem. Oggi., 2004, 22, 13.
[30]
Mcnulty, J.; Cheekoori, S.; Nair, J.J.; Larichev, V.; Capretta, A.; Robertson, A.J. A mild esterification process in phosphonium salt ionic liquid. Tetrahedron Lett., 2005, 46(21), 3641-3644.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.169]
[31]
Mcnulty, J.; Nair, J.J.; Cheekoori, S.; Larichev, V.; Capretta, A.; Robertson, A.J. Scope and mechanistic insights into the use of tetradecyl (trihexyl) phosphonium bistriflimide: A remarkably selective ionic liquid solvent for substitution reactions. Chemistry, 2006, 12(36), 9314-9322.
[http://dx.doi.org/10.1002/chem.200600653]
[32]
Mcnulty, J.; Cheekoori, S.; Bender, T.P.; Coggan, J.A. A pronounced anionic effect in the Pd‐Catalyzed Buchwald–Hartwig amination reaction revealed in phosphonium salt ionic liquids. Eur. J. Org. Chem., 2007, 9, 1423-1428.
[http://dx.doi.org/10.1002/ejoc.200700005]
[33]
Werner, T. Phosphonium salt organocatalysis. Adv. Synth. Catal., 2009, 351(10), 1469-1481.
[http://dx.doi.org/10.1002/adsc.200900211]
[34]
Dunn, N.L.; Ha, M.; Radosevich, A.T. Main group redox catalysis: Reversible PIII/PV redox cycling at a phosphorus platform. J. Am. Chem. Soc., 2012, 134(28), 11330-11333.
[http://dx.doi.org/10.1021/ja302963p]
[35]
Hounjet, L.J.; Caputo, C.B.; Stephan, D.W. Phosphorus as a Lewis acid: CO2 sequestration with amidophosphoranes. Angew. Chem. Int. Ed., 2012, 51(19), 4714-4717.
[http://dx.doi.org/10.1002/anie.201201422]
[36]
Caputo, C.B.; Hounjet, L.J.; Dobrovetsky, R.; Stephan, D.W. Lewis acidity of organo fluorophosphonium salts: Hydrodefluorination by a saturated acceptor. Science, 2013, 341(6152), 1374-1377.
[http://dx.doi.org/10.1126/science.1241764]
[37]
Zurawinski, R.; Donnadieu, B.; Mikolajczyk, M.; Chauvin, R. Palladium complexes of a chiral P, C-chelating phosphino-(sulfinylmethyl) phosphonium ylide ligand. J. Organomet. Chem., 2004, 689(2), 380-386.
[http://dx.doi.org/10.1016/j.jorganchem.2003.10.026]
[38]
Ohta, T.; Sasayama, H.; Nakajima, O.; Kurahashi, N.; Fujii, T.; Furukawa, I. Asymmetric allylic substitution catalyzed by palladium–Yliphos complex. Tetrahedron Asymmetry, 2003, 14(5), 537-542.
[http://dx.doi.org/10.1016/S0957-4166(03)00046-6]
[39]
Uraguchi, D.; Kinoshita, N.; Ooi, T. Catalytic asymmetric protonation of α-amino acid-derived ketene disilyl acetals using P-spiro diaminodioxaphosphonium barfates as chiral proton. J. Am. Chem. Soc., 2010, 132(35), 12240-12242.
[http://dx.doi.org/10.1021/ja105945z]
[40]
Laleu, B.; Bernardinelli, G.; Chauvin, R.; Lacour, J. Trimesitylmethylphosphonium cation. Supramolecular stereocontrol and simple enantiomerization mechanism determination. J. Org. Chem., 2006, 71(19), 7412-7416.
[http://dx.doi.org/10.1021/jo061097w]
[41]
Jones, G.H.; Hamamura, E.K.; Moffatt, J.G. A new stable Wittig reagent suitable for the synthesis of α, β-unsaturated phosphonates. Tetrahedron Lett., 1968, 9(55), 5731-5734.
[http://dx.doi.org/10.1016/S0040-4039(00)76336-2]
[42]
Kanazawa, A.; Kanaoka, S.; Aoshima, S. Recent progress in living cationic polymerization of vinyl ethers. Chem. Lett., 2010, 39(12), 1232-1237.
[http://dx.doi.org/10.1246/cl.2010.1232]
[43]
Spallarossa, M.; Wang, Q.; Riva, R.; Zhu, J. Synthesis of vinyl isocyanides and development of a convertible isonitrile. Org. Lett., 2016, 18(7), 1622-1625.
[http://dx.doi.org/10.1021/acs.orglett.6b00483]
[44]
Fujioka, H.; Goto, A.; Otake, K.; Kubo, O.; Sawama, Y.; Maegawa, T. An unusual reaction of α-alkoxyphosphonium salts with Grignard reagents under an O2 atmosphere. Chem. Commun., 2011, 47(35), 9894-9896.
[http://dx.doi.org/10.1039/c1cc13919c]
[45]
Goto, A.; Otake, K.; Kubo, O.; Sawama, Y.; Maegawa, T.; Fujioka, H. Effects of phosphorus substituents on reactions of α‐Alkoxyphosphonium salts with nucleophiles. Chemistry, 2012, 18(36), 11423-11432.
[http://dx.doi.org/10.1002/chem.201200480]
[46]
Wiebe, D.A.; Burton, D.J. Chemoselective halogenation of 2-hydroperfluoroalkyl aldehydes. J. Fluor. Chem., 2012, 139, 4-11.
[http://dx.doi.org/10.1016/j.jfluchem.2012.03.013]
[47]
Mangold, S.L.; Carpenter, R.T.; Kiessling, L.L. Synthesis of fluorogenic polymers for visualizing cellular internalization. Org. Lett., 2008, 10(14), 2997-3000.
[http://dx.doi.org/10.1021/ol800932w]
[48]
Ko, K.Y.; Wagner, S.; Yang, S.H.; Furkert, D.P.; Brimble, M.A. Improved synthesis of the unnatural amino acids AHMOD and AMD, components of the anticancer peptaibol culicinin D. J. Org. Chem., 2015, 80(17), 8631-8636.
[http://dx.doi.org/10.1021/acs.joc.5b01265]
[49]
McNulty, J.; Keskar, K.; Crankshaw, D.J.; Holloway, A.C. Discovery of a new class of cinnamyl-triazole as potent and selective inhibitors of aromatase (cytochrome P450 19A1). Bioorg. Med. Chem. Lett., 2014, 24(18), 4586-4589.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.083]
[50]
Treu, M.; Jordis, U. 4a, 5, 9, 10, 11, 12-Hexahydro-6H-benzo [a] cyclohepta [hi] benzofuran-synthesis of unnatural galanthamine analogs. Molecules, 2002, 7(4), 374-381.
[http://dx.doi.org/10.3390/70400374]
[51]
Kerschgens, I.P.; Claveau, E.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet–Spengler reaction. Chem. Commun. (Camb.), 2012, 48(100), 12243-12245.
[http://dx.doi.org/10.1039/c2cc37023a]
[52]
Sidoryk, K.; Korda, A.; Rarova, L.; Oklestkova, J.; Strnad, M.; Cmoch, P.; Luboradzki, R. Synthesis and biological activity of new homolupanes and homolupane saponins. Tetrahedron, 2015, 71(13), 2004-2012.
[http://dx.doi.org/10.1016/j.tet.2015.02.008]
[53]
Yadav, J.S.; Babu, R.S.; Sabitha, G. Stereoselective total synthesis of (+)-artemisinin. Tetrahedron Lett., 2003, 44(2), 387-389.
[http://dx.doi.org/10.1016/S0040-4039(02)02500-5]
[54]
Kobayashi, K.; Yoneda, K.; Miyamoto, K.; Morikawa, O.; Konishi, H. A convenient synthesis of quinolines by reactions of o-isocyano-β-methoxystyrenes with nucleophiles. Tetrahedron, 2004, 60(50), 11639-11645.
[http://dx.doi.org/10.1016/j.tet.2004.09.069]
[55]
Hayakawa, I.; Teruya, T.; Kigoshi, H. Revised structure of zamamistatin. Tetrahedron Lett., 2006, 47(2), 155-158.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.157]
[56]
Gentile, G.; Di Fabio, R.; Pavone, F.; Sabbatini, F.M.; St-Denis, Y.; Zampori, M.G.; Worby, A. Novel substituted tetrahydrotriazaacenaphthylene derivatives as potent CRF1 receptor antagonists. Bioorg. Med. Chem. Lett., 2007, 17(18), 5218-5221.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.077]
[57]
Rej, R.K.; Acharyya, R.K.; Nanda, S. Asymmetric synthesis of dihydroartemisinic acid through intramolecular Stetter reaction. Tetrahedron, 2016, 72(32), 4931-4937.
[http://dx.doi.org/10.1016/j.tet.2016.06.066]
[58]
Das, P.; McNulty, J. Dichotomous reactivity in the reaction of triethyl-and triphenylphosphane HBr salts with dimethyl acetals: A novel entry to α-alkoxy-functionalized ylides and general synthesis of vinyl ethers and alkoxy dienes. Eur. J. Org. Chem., 2010, 19, 3587-3591.
[http://dx.doi.org/10.1002/ejoc.201000601]
[59]
Brioche, J.C.; Barker, T.A.; Whatrup, D.J.; Barker, M.D.; Harrity, J.P. Palladium-catalyzed [1, 3]-O-to-C rearrangement of pyrans toward functionalized cyclohexanones. Org. Lett., 2010, 12(21), 4832-4835.
[http://dx.doi.org/10.1021/ol102213s]
[60]
Dunkel, R.; Hoffmann, H.M.R. Asymmetric synthesis of polyacetate derived building blocks with α-oxyanion functionality. Lewis acid catalyzed opening of 2, 9-dioxabicyclo [3.3. 1] nonan-3-ones. Tetrahedron, 1999, 55(28), 8385-8396.
[http://dx.doi.org/10.1016/S0040-4020(99)00460-3]
[61]
Lambert, W.T.; Hanson, G.H.; Benayoud, F.; Burke, S.D.; Halichondrin, B. Synthesis of the C1− C22 subunit. J. Org. Chem., 2005, 70(23), 9382-9398.
[http://dx.doi.org/10.1021/jo051479m]
[62]
Meek, S.J.; Pradaux, F.; Carbery, D.R.; Demont, E.H.; Harrity, J.P. Development of the scope of a Co-mediated O→ C rearrangement reaction. J. Org. Chem., 2005, 70(24), 10046-10056.
[http://dx.doi.org/10.1021/jo0517895]
[63]
Poschalko, A.; Welzig, S.; Treu, M.; Nerdinger, S.; Mereiter, K.; Jordis, U. Synthesis of (±)-6H-benzofuro [3a, 3, 2, ef][3] benzazepine: an unnatural analog of (−)-galanthamine. Tetrahedron, 2002, 58(8), 1513-1518.
[http://dx.doi.org/10.1016/S0040-4020(01)01235-2]
[64]
Steinbauer, J.; Longwitz, L.; Frank, M.; Epping, J.; Kragl, U.; Werner, T. Immobilized bifunctional phosphonium salts as recyclable organocatalysts in the cycloaddition of CO2 and epoxides. Green Chem., 2017, 19(18), 4435-4445.
[http://dx.doi.org/10.1039/C7GC01782K]
[65]
Bellina, F.; Chiappe, C.; Lessi, M. Synthesis and properties of trialkyl (2, 3-dihydroxypropyl) phosphonium salts, a new class of hydrophilic and hydrophobic glyceryl-functionalized ILs. Green Chem., 2012, 14(1), 148-155.
[http://dx.doi.org/10.1039/C1GC16035D]
[66]
Froyen, P. Phosphorus in organic synthesis. Acyloxyphosphonium salts as chemoselective acylating reagents. Tetrahedron Lett., 1997, 38(30), 5359-5362.
[http://dx.doi.org/10.1016/S0040-4039(97)01172-6]
[67]
Levine, S.G. A new aldehyde synthesis. J. Am. Chem. Soc., 1958, 80(22), 6150-6151.
[http://dx.doi.org/10.1021/ja01555a068]
[68]
Kong, K.; Moussa, Z.; Lee, C.; Romo, D. Total synthesis of the spirocyclic imine marine toxin (−)-gymnodimine and an unnatural C4-epimer. J. Am. Chem. Soc., 2011, 133(49), 19844-19856.
[http://dx.doi.org/10.1021/ja207385y]
[69]
Huang, W.; Rong, H.Y.; Xu, J. Cyclic α-Alkoxyphosphonium Salts from (2-(Diphenylphosphino) phenyl) methanol and Aldehydes and Their application in synthesis of vinyl ethers and ketones via wittig olefination. J. Org. Chem., 2015, 80(13), 6628-6638.
[http://dx.doi.org/10.1021/acs.joc.5b01031]
[70]
Dehli, J.R.; Legros, J.; Bolm, C. Synthesis of enamines, enol ethers and related compounds by cross-coupling reactions. Chem. Commun. (Camb.), 2005, (8), 973-986.
[http://dx.doi.org/10.1039/b415954c]
[71]
Hiersemann, M.; Abraham, L. Catalysis of the claisen rearrangement of aliphatic allyl vinyl ethers. Eur. J. Org. Chem., 2002, 2002(9), 1461-1471.
[http://dx.doi.org/10.1002/1099-0690(200205)2002:9<1461:AID-EJOC1461>3.0.CO;2-1]
[72]
Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H. Total synthesis of the spirocyclic oxindole alkaloids corynoxine, corynoxine B, corynoxeine, and rhynchophylline. Eur. J. Org. Chem., 2013, (6), 1100-1106.
[http://dx.doi.org/10.1002/ejoc.201201505]
[73]
Mondal, S.; Prathap, A.; Sureshan, K.M. Vinylogy in orthoester hydrolysis: Total synthesis of cyclophellitol, Valienamine, Gabosine K, Valienone, Gabosine G, 1-epi-Streptol, Streptol, and Uvamalol A. J. Org. Chem., 2013, 78(15), 7690-7700.
[http://dx.doi.org/10.1021/jo401272j]
[74]
Assefa, H.; Nimrod, A.; Walker, L.; Sindelar, R. Enantioselective synthesis and complement inhibitory assay of A/B-ring partial analogues of oleanolic acid. Bioorg. Med. Chem. Lett., 2001, 11(13), 1619-1623.
[http://dx.doi.org/10.1016/S0960-894X(01)00210-4]
[75]
Corey, E.J. Catalytic enantioselective Diels–Alder reactions: Methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed., 2002, 41(10), 1650-1667.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1650:AID-ANIE1650>3.0.CO;2-B]
[76]
Szymczyk, M. Unexpected course of Wittig reaction when using cinnamyl aldehyde as a substrate. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(3), 264-266.
[http://dx.doi.org/10.1080/10426507.2016.1244203]
[77]
Cheema, Z.M.; Gondal, H.Y. Abdul Rauf Raza; Ahmed AbbasKhan. Nucleophilic Phenylation: a remarkable application of alkoxymethyl triphenylphosphonium salts. Mol. Divers., 2019, 1-8.
[78]
Wittig, G.; Schlosser, M. Uber die Herstellung von Vinylathern, Vinylthioathern und Vinylhalogeniden auf der Phosphylen-Basis; IV. Mitteil. uber Phosphin-alkylene als olefinbildende Reagenzien. Chem. Ber., 1961, 94(5), 1373-1383.
[http://dx.doi.org/10.1002/cber.19610940532]
[79]
Wittig, G.; Boll, W.; Kruck, K.H. Via phosphin-alkylenes as olefin-forming reagents, VI. For the synthesis of alkyl and aryl vinyl ethers based on the phosphylene. Chemical Rep., 1962, 95(10), 2514-2525.
[80]
Schlude, H. Acetal, triphenyl phosphorane, enol ether, acidic hydrolysis, nitroxyl. Tetrahedron, 1975, 31(1), 89-92.
[http://dx.doi.org/10.1016/0040-4020(75)80017-2]
[81]
Mazurek, M.A. A new efficient synthesis of iodomethyl methyl ether. Synthesis, 1978, (08), 588-589.
[82]
Gondal, H.Y.; Cheema, Z.M.; Zaidi, J.H.; Yousuf, S.; Choudhary, M.I. Facile synthesis of α-alkoxymethyltriphenylphosphonium iodides: new application of PPh3/I2. Chem. Cent. J., 2018, 12(1), 62.
[http://dx.doi.org/10.1186/s13065-018-0421-6]
[83]
Tuckmantel, W.; Oshima, K.; Utimoto, K. A convenient preparation of α-methoxyalkyltriphenylphosphonium tetrafluoroborates. Tetrahedron Lett., 1986, 27(46), 5617-5618.
[http://dx.doi.org/10.1016/S0040-4039(00)85281-8]
[84]
Dunkel, R.; Treu, J.; Hoffmann, H.M.R. Synthesis of the C29-C37 segment of spongistatin 1. Tetrahedron Asymmetry, 1999, 10(8), 1539-1549.
[http://dx.doi.org/10.1016/S0957-4166(99)00148-2]
[85]
Queron, E.; Lett, R. Synthetic studies on bafilomycin A1: Stereoselective synthesis of the enantiopure C1–C11 fragment. Tetrahedron Lett., 2004, 45(23), 4527-4531.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.033]
[86]
Aoshima, S.; Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev., 2009, 109(11), 5245-5287.
[http://dx.doi.org/10.1021/cr900225g]
[87]
Meek, S.J.; Demont, E.H.; Harrity, J.P. Investigation of the scope of an enantioselective Co-mediated O→ C rearrangement reaction. Tetrahedron Lett., 2007, 48(24), 4165-4168.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.076]
[88]
Gondal, H.Y.; Cheema, Z.M.; Siddiqui, H.; Choudhary, M.I. Facile efficient synthesis of new alkoxymethylphosphonium tetrafluoroborates; Valuable alternative to their halide analogues. Chem Africa, 2018, 1(3-4), 97-102.
[http://dx.doi.org/10.1007/s42250-018-0009-5]
[89]
Pindur, U.; Lutz, G.; Rogge, M. First synthesis of chiral 3-vinylindoles as 4π-components for diels-alder reactions. J. Heterocycl. Chem., 1995, 32(1), 201-206.
[http://dx.doi.org/10.1002/jhet.5570320133]
[90]
Cheema, Z.M.; Gondal, H.Y.; Siddiqui, H.; Choudhary, M.I. Solvent free synthesis of 1-alkoxyphosphonium chlorides for stereoselective multipurpose vinyl ethers; Phos, Sulf, Silicon Related Elements, 2019, pp. 1-6.
[91]
Su, Q.; Panek, J.S. Total synthesis of (+)-leucascandrolide A. Angew. Chem. Int. Ed., 2005, 44(8), 1223-1225.
[http://dx.doi.org/10.1002/anie.200462408]
[92]
Miwa, T.; Hitaka, T.; Akimoto, H. A novel synthetic approach to pyrrolo [2, 3-d] pyrimidine antifolates. J. Org. Chem., 1993, 58(7), 1696-1701.
[http://dx.doi.org/10.1021/jo00059a016]
[93]
Paju, A.; Soone, A.; Pehk, T.; Lopp, M. Analogues of thromboxane A2. Tetrahedron, 1995, 51(38), 10561-10570.
[http://dx.doi.org/10.1016/0040-4020(95)00619-J]
[94]
Yun, S.Y.; Zheng, J.C.; Lee, D. Concise synthesis of the tricyclic core of platencin. Angew. Chem. Int. Ed., 2008, 47(33), 6201-6203.
[http://dx.doi.org/10.1002/anie.200801587]
[95]
Bourdron, J.; Commeiras, L.; Audran, G.; Vanthuyne, N.; Hubaud, J.C.; Parrain, J.L. First total synthesis and assignment of the stereochemistry of crispatenine. J. Org. Chem., 2007, 72(10), 3770-3775.
[http://dx.doi.org/10.1021/jo070045j]
[96]
Xu, G.; Moeller, K.D. Anodic coupling reactions and the synthesis of C-glycosides. Org. Lett., 2010, 12(11), 2590-2593.
[http://dx.doi.org/10.1021/ol100800u]
[97]
Schubert, M.; Metz, P. Enantioselective total synthesis of the diterpenes kempene-2, Kempene-1, and 3-epi-Kempene-1 from the defense secretion of higher termites. Angew. Chem. Int. Ed., 2011, 50(13), 2954-2956.
[http://dx.doi.org/10.1002/anie.201007551]
[98]
Hande, S.M.; Nakajima, M.; Kamisaki, H.; Tsukano, C.; Takemoto, Y. Flexible strategy for syntheses of spirooxindoles using palladium-catalyzed carbosilylation and sakurai-type cyclization. Org. Lett., 2011, 13(7), 1828-1831.
[http://dx.doi.org/10.1021/ol2003447]
[99]
Liu, Q.; Jia, Y. Total synthesis of (+)-lysergic acid. Org. Lett., 2011, 13(18), 4810-4813.
[http://dx.doi.org/10.1021/ol2018467]
[100]
Molinaro, C.; Shultz, S.; Roy, A.; Lau, S.; Trinh, T.; Angelaud, R.; Funel, J.A. A practical synthesis of renin inhibitor MK-1597 (ACT-178882) via catalytic enantioselective hydrogenation and epimerization of piperidine intermediate. J. Org. Chem., 2011, 76(4), 1062-1071.
[http://dx.doi.org/10.1021/jo102070e]
[101]
Veerasamy, N.; Carlson, E.C.; Carter, R.G. Expedient enantioselective synthesis of Cermizine D. Org. Lett., 2012, 14(6), 1596-1599.
[http://dx.doi.org/10.1021/ol300342n]
[102]
Liu, B.; Duan, S.; Sutterer, A.C.; Moeller, K.D. Oxidative cyclization based on reversing the polarity of enol ethers and ketene dithioacetals. Construction of a tetrahydrofuran ring and application to the synthesis of (+)-nemorensic acid. J. Am. Chem. Soc., 2002, 124(34), 10101-10111.
[http://dx.doi.org/10.1021/ja026739l]
[103]
Chen, Z.; Ye, T. Diastereoselective synthesis of the acyl side-chain and amino acid (2S, 3R)-3-hydroxy-3-methylproline fragments of polyoxypeptin A. Synlett, 2005, 18, 2781-2785.
[104]
Xu, J.; Shao, L.D.; Li, D.; Deng, X.; Liu, Y.C.; Zhao, Q.S.; Xia, C. Construction of tetracyclic 3-spirooxindole through cross-dehydrogenation of pyridinium: Applications in facile synthesis of (±)-corynoxine and (±)-corynoxine B. J. Am. Chem. Soc., 2014, 136(52), 17962-17965.
[http://dx.doi.org/10.1021/ja5121343]
[105]
Wang, K.; Zhou, X.Y.; Wang, Y.Y.; Li, M.M.; Li, Y.S.; Peng, L.Y.; Zhao, Q.S. Macrophyllionium and macrophyllines A and B, oxindole alkaloids from Uncaria macrophylla. J. Nat. Prod., 2010, 74(1), 12-15.
[http://dx.doi.org/10.1021/np1004938]
[106]
Seaton, J.C.; Marion, L. The structure of rhyncophylline. Can. J. Chem., 1957, 35(10), 1102-1108.
[http://dx.doi.org/10.1139/v57-150]
[107]
Jansen, K.L.; Prast, C.J. Ethnopharmacology of kratom and the mitragyna alkaloids. J. Ethnopharmacol., 1988, 23(1), 115-119.
[http://dx.doi.org/10.1016/0378-8741(88)90121-3]
[108]
Gonzalez-Coloma, A.; Escoubas, P.; Mizutani, J.; Lajide, L. Insect growth inhibitors from Machilus japonica. Phytochemistry, 1994, 35(3), 607-610.
[http://dx.doi.org/10.1016/S0031-9422(00)90571-5]
[109]
Nebois, P.; Greene, A.E. Novel enantioselective approach to γ-lactams from chiral enol ethers: Synthesis of (−)-statine. J. Org. Chem., 1996, 61(16), 5210-5211.
[http://dx.doi.org/10.1021/jo961035d]
[110]
Tian, J.; Moeller, K.D. Electrochemically assisted Heck reactions. Org. Lett., 2005, 7(24), 5381-5383.
[http://dx.doi.org/10.1021/ol0519487]
[111]
Miyaura, N.; Maeda, K.; Suginome, H. Palladium-catalyzed cross-coupling of (2-ethoxyvinyl) boranes with aryl and benzyl halides. A new method for conversion of organic halides into aldehydes with two more carbon atoms. J. Org. Chem., 1982, 47(11), 2117-2120.
[http://dx.doi.org/10.1021/jo00132a025]
[112]
Fuwa, H.; Sasaki, M. An efficient method for the synthesis of enol ethers and enecarbamates. Total syntheses of isoindolobenzazepine alkaloids, lennoxamine and chilenine. Org. Biomol. Chem., 2007, 5(12), 1849-1853.
[http://dx.doi.org/10.1039/b706087d]
[113]
Satoh, M.; Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reaction of (1-ethoxy-1-alken-2-yl) boranes with ortho-functionalized iodoarenes. A novel and convenient synthesis of benzofused heteroaromatic compounds. Synthesis, 1987, 4, 373-377.
[http://dx.doi.org/10.1055/s-1987-27949]
[114]
Sakamoto, T.; Kondo, Y.; Yasuhara, A.; Yamanaka, H. Condensed heteroaromatic ring systems. XVIII. Palladium-catalyzed cross-coupling reaction of aryl bromides with (Z)-1-ethoxy-2-tributylstannylethene and its utilization for construction of condensed heteroaromatics. Tetrahedron, 1991, 47(10-11), 1877-1886.
[http://dx.doi.org/10.1016/S0040-4020(01)96100-9]
[115]
Beletskaya, I.P.; Cheprakov, A.V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8), 3009-3066.
[http://dx.doi.org/10.1021/cr9903048]
[116]
Furstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Ed., 2000, 39(17), 3012-3043.
[http://dx.doi.org/10.1002/1521-3773(20000901)39:17<3012:AID-ANIE3012>3.0.CO;2-G]
[117]
Rehbein, J.; Hiersemann, M. Claisen rearrangement of aliphatic allyl vinyl ethers from 1912 to 2012: 100 years of electrophilic catalysis. Synthesis, 2013, 45(09), 1121-1159.
[http://dx.doi.org/10.1055/s-0032-1316869]
[118]
He, W.; Herrick, I.R.; Atesin, T.A.; Caruana, P.A.; Kellenberger, C.A.; Frontier, A.J. Polarizing the Nazarov cyclization: The impact of dienone substitution pattern on reactivity and selectivity. J. Am. Chem. Soc., 2008, 130(3), 1003-1011.
[http://dx.doi.org/10.1021/ja077162g]
[119]
Takayama, H.; Koike, T.; Aimi, N.; Sakai, S. A convenient method for converting saturated aldehydes to alpha, beta-unsaturated aldehydes elongated by one carbon atom. The palladium (II)-promoted oxidation of methyl enol ethers. J. Org. Chem., 1992, 57(7), 2173-2176.
[http://dx.doi.org/10.1021/jo00033a050]
[120]
Saeidi, M.; Mojtahedi, M.M.; Kaamyabi, S. Application of microwave irradiation techniques for the Witting reaction; J. Sci. I. R. Iran, 2000, pp. 217-219.
[121]
Balti, M.; Efrit, M.L.; Leadbeater, N.E. Preparation of vinyl ethers using a Wittig approach, and their subsequent hydrogenation employing continuous-flow processing. Tetrahedron Lett., 2016, 57(16), 1804-1806.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.037]
[122]
Pettit, G.R.; Green, B.; Dunn, G.L.; Sunder-Plassmann, P. Bufadienolidies. 4. Reaction of 20-oxo steroids with methoxymethylene triphenylphosphorane. J. Org. Chem., 1970, 35(5), 1385-1389.
[http://dx.doi.org/10.1021/jo00830a028]
[123]
Boren, H.B.; Eklind, K.; Garegg, P.J.; Lindberg, B.; Pilotti, A. Synthesis of 6-deoxy-D-manno-heptose. Acta Chem. Scand., 1972, 26(10), 4143-4146.
[http://dx.doi.org/10.3891/acta.chem.scand.26-4143]
[124]
Maehr, H.; Smallheer, J.M. A new approach to 4-substituted indoles. J. Org. Chem., 1981, 46(8), 1752-1755.
[http://dx.doi.org/10.1021/jo00321a053]
[125]
Demopoulos, V.J. Synthesis of 3‐(2‐Aminoethyl) pyrrole Derivatives. J. Heterocycl. Chem., 1988, 25(2), 635-638.
[http://dx.doi.org/10.1002/jhet.5570250249]
[126]
Mann, A.; Quaranta, L.; Reginato, G.; Taddei, M. A general synthesis of oligopeptides containing an oxirane ring in the place of a peptidic bond. Tetrahedron Lett., 1996, 37(15), 2651-2654.
[http://dx.doi.org/10.1016/0040-4039(96)00352-8]
[127]
Vollmer, M.S.; Effenberger, F.; Stecher, R.; Gompf, B.; Eisenmenger, W. Steroid‐Bridged thiophenes: Synthesis and self‐organization at the solid/liquid interface. Chemistry, 1999, 5(1), 96-101.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990104)5:1<96:AID-CHEM96>3.0.CO;2-9]
[128]
Li, Y.; Zhang, Q.; Wittlin, S.; Jin, H.X.; Wu, Y. Synthesis and in vitro antimalarial activity of spiro-analogues of peroxyplakoric acids. Tetrahedron, 2009, 65(34), 6972-6985.
[http://dx.doi.org/10.1016/j.tet.2009.06.050]