Determination of Dysregulated miRNA Expression Levels by qRT-PCR after the Application of Usnic Acid to Breast Cancer

Page: [548 - 558] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background and Purpose: Breast cancer still remains to be one of the most threatening cancer types in women. Recent studies have allowed scientists to better investigate the potential use of natural compounds in the treatment of breast cancers. Usnic acid is a secondary metabolite extracted from lichen species and has many biological activities. The response of microRNAs regulated by drug molecules may provide useful diagnostic and prognostic biomarkers, as well as potential therapeutics for breast cancers. Although the aberrant expression of microRNAs was observed after drug treatment, the regulatory mechanisms remain partially known. Micro RNAs (miRNAs) play an important role in gene regulation at the post-transcriptional level.

Methods: In this study, we used quantitative Real-Time PCR (qRT-PCR) technology to demonstrate that usnic acid significantly changes the expression profile of miRNAs.

Results: Eleven miRNAs were significantly and differentially expressed in breast cancer cells after treatment with usnic acid. Three miRNAs were up-regulated, while eight were down-regulated in usnic acid treated cells. Target prediction and GO analysis revealed many target genes and their related pathways that are potentially regulated by usnic acid regulated differentially expressed miRNAs. We found that usnic acid treatment caused significant changes in the expression of hsa-miR-5006-5p, hsa-miR-892c-3p, hsa-miR-4430, hsa-miR-5194, hsa-miR-3198, hsa-miR-3171, hsa-miR-933 and hsa-miR-185-3p in breast cancer cells.

Conclusion: Usnic acid response miRNAs might play important regulatory roles in the tumorigenesis and development of breast cancer, and they could serve as prognostic predictors for breast cancer patients.

Keywords: Usnic acid, miRNAs, qRT-PCR, breast cancer, secondary metabolite, prognosis.

Graphical Abstract

[1]
Abedi, N.; Mohammadi-Yeganeh, S.; Koochaki, A.; Karami, F.; Paryan, M. miR-141 as potential suppressor of β-catenin in breast cancer. Tumour Biol., 2015, 36(12), 9895-9901.
[http://dx.doi.org/10.1007/s13277-015-3738-y] [PMID: 26164002]
[2]
Prat, A.; Pineda, E.; Adamo, B.; Galvan, P.; Fernandez, A.; Gaba, L.; Diez, M.; Viladot, M.; Arance, A.; Munoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer Breast24, 2015, 24(2), 26-35.
[3]
Mejía-Pedroza, R.A.; Espinal-Enríquez, J.; Hernández-Lemus, E. Pathway-Based drug repositioning for breast cancer molecular subtypes. Front. Pharmacol., 2018, 9, 905.
[http://dx.doi.org/10.3389/fphar.2018.00905] [PMID: 30158869]
[4]
Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15(3), 421-432.
[http://dx.doi.org/10.1007/s10456-012-9270-4] [PMID: 22669534]
[5]
Ebrahim, H.Y.; Akl, M.R.; Elsayed, H.E.; Hill, R.A.; El Sayed, K.A. Usnic acid benzylidene analogues as potent mechanistic target of rapamycin inhibitors for the control of breast malignancies. J. Nat. Prod., 2017, 80(4), 932-952.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00917] [PMID: 28245124]
[6]
Kiliç, N.; Islakoglu, Y.O.; Buyuk, İ.; Gur-Dedeoglu, B.; Cansaran-Duman, D. Determination of usnic acid responsive miRNAs in breast cancer cell lines. Anti-Cancer. Agents Med. Chem., 2019, 19(12), 1463-1472.
[7]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[8]
Volinia, S.; Calin, G.A.; Liu, C.G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; Prueitt, R.L.; Yanaihara, N.; Lanza, G.; Scarpa, A.; Vecchione, A.; Negrini, M.; Harris, C.C.; Croce, C.M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA, 2006, 103(7), 2257-2261.
[http://dx.doi.org/10.1073/pnas.0510565103] [PMID: 16461460]
[9]
Tam, W. The emergent role of microRNAs in molecular diagnostics of cancer. J. Mol. Diagn., 2008, 10(5), 411-414.
[http://dx.doi.org/10.2353/jmoldx.2008.080067] [PMID: 18687791]
[10]
Ghorbanmehr, N.; Gharbi, S.; Korsching, E.; Tavallaei, M.; Einollahi, B.; Mowla, S.J. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate, 2019, 79(1), 88-95.
[PMID: 30194772]
[11]
Castillo-Martin, M.; Domingo-Domenech, J.; Karni-Schmidt, O.; Matos, T.; Cordon-Cardo, C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol., 2010, 28(4), 401-408.
[http://dx.doi.org/10.1016/j.urolonc.2009.04.019] [PMID: 20610278]
[12]
Croce, C.M.; Calin, G.A. miRNAs, cancer, and stem cell division. Cell, 2005, 122(1), 6-7.
[http://dx.doi.org/10.1016/j.cell.2005.06.036] [PMID: 16009126]
[13]
Vlachos, I.S.; Konstantinos, Z.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res., 2015, 43, W460-W466.
[PMID: 25977294]
[14]
Dweep, H.; Gretz, N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat. Methods, 2015, 12(8), 697-697.
[http://dx.doi.org/10.1038/nmeth.3485] [PMID: 26226356]
[15]
Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife, 2015, 4(4)
[PMID: 26267216]
[16]
García, D.M.; Baek, D.; Shin, C.; Bell, G.W.; Grimson, A.; Bartel, D.P. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol., 2011, 18(10), 1139-1146.
[http://dx.doi.org/10.1038/nsmb.2115] [PMID: 21909094]
[17]
Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[18]
Yang, R.; Xing, L.; Wang, M.; Chi, H.; Zhang, L.; Chen, J. Comprehensive analysis of differentially expressed profiles of lncRNAs/mRNAs and miRNAs with associated ceRNA networks in triple-negative breast cancer. Cell. Physiol. Biochem., 2018, 50(2), 473-488.
[http://dx.doi.org/10.1159/000494162] [PMID: 30308479]
[19]
Abdel-Fatah, T.M.; Middleton, F.K.; Arora, A.; Agarwal, D.; Chen, T.; Moseley, P.M.; Perry, C.; Doherty, R.; Chan, S.; Green, A.R.; Rakha, E.; Ball, G.; Ellis, I.O.; Curtin, N.J.; Madhusudan, S. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol. Oncol., 2015, 9(3), 569-585.
[http://dx.doi.org/10.1016/j.molonc.2014.10.013] [PMID: 25468710]
[20]
Bartek, J.; Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 2003, 3(5), 421-429.
[http://dx.doi.org/10.1016/S1535-6108(03)00110-7] [PMID: 12781359]
[21]
Minn, Y.K.; Lee, D.H.; Hyung, W.J.; Kim, J.E.; Choi, J.; Yang, S.H.; Song, H.; Lim, B.J.; Kim, S.H. MicroRNA-200 family members and ZEB2 are associated with brain metastasis in gastric adenocarcinoma. Int. J. Oncol., 2014, 45(6), 2403-2410.
[http://dx.doi.org/10.3892/ijo.2014.2680] [PMID: 25270520]
[22]
Min, S.K.; Jung, S.Y.; Kang, H.K.; Park, S.A.; Lee, J.H.; Kim, M.J.; Min, B.M. Functional diversity of miR-146a-5p and TRAF6 in normal and oral cancer cells. Int. J. Oncol., 2017, 51(5), 1541-1552.
[http://dx.doi.org/10.3892/ijo.2017.4124] [PMID: 29048658]
[23]
Chen, W.; Zhao, X.; Dong, Z.; Cao, G.; Zhang, S. Identification of microRNA profiles in salivary adenoid cystic carcinoma cells during metastatic progression. Oncol. Lett., 2014, 7(6), 2029-2034.
[http://dx.doi.org/10.3892/ol.2014.1975] [PMID: 24932284]
[24]
Slattery, M.L.; Trivellas, A.; Pellatt, A.J.; Mullany, L.E.; Stevens, J.R.; Wolff, R.K.; Herrick, J.S. Genetic variants in the TGFβ-signaling pathway influence expression of miRNAs in colon and rectal normal mucosa and tumor tissue. Oncotarget, 2017, 8(10), 16765-16783.
[http://dx.doi.org/10.18632/oncotarget.14508] [PMID: 28061442]
[25]
Staff, S.; Isola, J.; Jumppanen, M.; Tanner, M. Aurora-A gene is frequently amplified in basal-like breast cancer. Oncol. Rep., 2010, 23(2), 307-312.
[PMID: 20043089]
[26]
O’Brien, S.L.; Fagan, A.; Fox, E.J.; Millikan, R.C.; Culhane, A.C.; Brennan, D.J.; McCann, A.H.; Hegarty, S.; Moyna, S.; Duffy, M.J.; Higgins, D.G.; Jirström, K.; Landberg, G.; Gallagher, W.M. CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. Int. J. Cancer, 2007, 120(7), 1434-1443.
[http://dx.doi.org/10.1002/ijc.22413] [PMID: 17205517]
[27]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[28]
Raccurt, M.; Tam, S.P.; Lau, P.; Mertani, H.C.; Lambert, A.; Garcia-Caballero, T.; Li, H.; Brown, R.J.; McGuckin, M.A.; Morel, G.; Waters, M.J. Suppressor of cytokine signalling gene expression is elevated in breast carcinoma. Br. J. Cancer, 2003, 89(3), 524-532.
[http://dx.doi.org/10.1038/sj.bjc.6601115] [PMID: 12888825]
[29]
Agarwal, A.K.; Garg, A. Enzymatic activity of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 11: upregulated in breast and cervical cancers. J. Lipid Res., 2010, 51(8), 2143-2152.
[http://dx.doi.org/10.1194/jlr.M004762] [PMID: 20363836]
[30]
Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis. Model. Mech., 2013, 6(6), 1353-1363.
[http://dx.doi.org/10.1242/dmm.011338] [PMID: 24203995]
[31]
Avci, C.B.; Harman, E.; Dodurga, Y.; Susluer, S.Y.; Gunduz, C. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac. J. Cancer Prev., 2013, 14(2), 765-768.
[http://dx.doi.org/10.7314/APJCP.2013.14.2.765] [PMID: 23621234]
[32]
Kwon, D.; Liew, H. miRNA profile of neuroprotection mechanism of echinomycin in Parkinson’s disease. Mol. Cell. Toxicol., 2017, 13(2), 229-238.
[http://dx.doi.org/10.1007/s13273-017-0025-6]
[33]
Zhang, Y.; Li, M.; Ding, Y.; Fan, Z.; Zhang, J.; Zhang, H.; Jiang, B.; Zhu, Y. Serum MicroRNA profile in patients with colon adenomas or cancer. BMC Med. Genomics, 2017, 10(1), 23.
[http://dx.doi.org/10.1186/s12920-017-0260-7] [PMID: 28427387]
[34]
Wei, Y.; He, R.; Wu, Y.; Gan, B.; Wu, P.; Qiu, X.; Lan, A.; Chen, G.; Wang, Q.; Lin, X.; Chen, Y.; Mo, Z. Comprehensive investigation of aberrant microRNA profiling in bladder cancer tissues. Tumour Biol., 2016, 37(9), 12555-12569.
[http://dx.doi.org/10.1007/s13277-016-5121-z] [PMID: 27350368]
[35]
Yao, Y.; Suo, A.L.; Li, Z.F.; Liu, L.Y.; Tian, T.; Ni, L.; Zhang, W.G.; Nan, K.J.; Song, T.S.; Huang, C. MicroRNA profiling of human gastric cancer. Mol. Med. Rep., 2009, 2(6), 963-970.
[PMID: 21475928]
[36]
Nishida, N.; Nagahara, M.; Sato, T.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Sugihara, K.; Doki, Y.; Mori, M. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clin. Cancer Res., 2012, 18(11), 3054-3070.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1078] [PMID: 22452939]
[37]
Shah, M.Y.; Pan, X.; Fix, L.N.; Farwell, M.A.; Zhang, B. 5-Fluorouracil drug alters the microRNA expression profiles in MCF-7 breast cancer cells. J. Cell. Physiol., 2011, 226(7), 1868-1878.
[http://dx.doi.org/10.1002/jcp.22517] [PMID: 21506117]
[38]
Gits, C.M.; van Kuijk, P.F.; de Rijck, J.C.; Muskens, N.; Jonkers, M.B.; van IJcken, W.F.; Mathijssen, R.H.; Verweij, J.; Sleijfer, S.; Wiemer, E.A. MicroRNA response to hypoxic stress in soft tissue sarcoma cells: microRNA mediated regulation of HIF3α. BMC Cancer, 2014, 14(429), 429.
[http://dx.doi.org/10.1186/1471-2407-14-429] [PMID: 24927770]
[39]
Li, G.; Qiu, Y.; Su, Z.; Ren, S.; Liu, C.; Tian, Y.; Liu, Y. Genome-wide analyses of radioresistance-associated miRNA expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS One, 2013, 8(12) e84486
[http://dx.doi.org/10.1371/journal.pone.0084486] [PMID: 24367666]
[40]
Clausen, M.J.; Melchers, L.J.; Mastik, M.F.; Slagter-Menkema, L.; Groen, H.J.; Laan, B.F.; van Criekinge, W.; de Meyer, T.; Denil, S.; van der Vegt, B.; Wisman, G.B.; Roodenburg, J.L.; Schuuring, E. RAB25 expression is epigenetically downregulated in oral and oropharyngeal squamous cell carcinoma with lymph node metastasis. Epigenetics, 2016, 11(9), 653-663.
[http://dx.doi.org/10.1080/15592294.2016.1205176] [PMID: 27379752]
[41]
Zou, M.X.; Huang, W.; Wang, X.B.; Li, J.; Lv, G.H.; Wang, B.; Deng, Y.W. Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients. Eur. Spine J., 2015, 24(8), 1738-1746.
[http://dx.doi.org/10.1007/s00586-015-3927-9] [PMID: 25850393]
[42]
Namba, T.; Tian, F.; Chu, K.; Hwang, S.Y.; Yoon, K.W.; Byun, S.; Hiraki, M.; Mandinova, A.; Lee, S.W. CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. Cell Rep., 2013, 5(2), 331-339.
[http://dx.doi.org/10.1016/j.celrep.2013.09.020] [PMID: 24139803]
[43]
Proestling, K.; Hebar, A.; Pruckner, N.; Marton, E.; Vinatzer, U.; Schreiber, M. The Pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PLoS One, 2012, 7(10) e47325
[http://dx.doi.org/10.1371/journal.pone.0047325] [PMID: 23071787]
[44]
Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, T.; Jensen, M.C.; Mischel, P.S.; Stokoe, D.; Pieper, R.O. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med., 2007, 13(1), 84-88.
[http://dx.doi.org/10.1038/nm1517] [PMID: 17159987]
[45]
Samuels-Lev, Y.; O’Connor, D.J.; Bergamaschi, D.; Trigiante, G.; Hsieh, J.K.; Zhong, S.; Campargue, I.; Naumovski, L.; Crook, T.; Lu, X. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell, 2001, 8(4), 781-794.
[http://dx.doi.org/10.1016/S1097-2765(01)00367-7] [PMID: 11684014]
[46]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[47]
Nakagawa, T.; Zhu, H.; Morishima, N.; Li, E.; Xu, J.; Yankner, B.A.; Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000, 403(6765), 98-103.
[http://dx.doi.org/10.1038/47513] [PMID: 10638761]
[48]
Koenig, U.; Eckhart, L.; Tschachler, E. Evidence that caspase-13 is not a human but a bovine gene. Biochem. Biophys. Res. Commun., 2001, 285(5), 1150-1154.
[http://dx.doi.org/10.1006/bbrc.2001.5315] [PMID: 11478774]