Combination of Experimental and Computational Approaches: Recent Developments in Catalytic Organic and Bioorganic Reactions

Page: [1379 - 1380] Pages: 2

  • * (Excluding Mailing and Handling)

[1]
Mirsafaei, R.; Heravi, M.M.; Ahmadi, S.; Moslemin, M.H.; Hosseinnejad, T. In situ prepared copper nanoparticles on modified KIT-5 as an efficientrecyclable catalyst and its applications in click reactions in water. J. Mol. Catal. A: Chem., 2015, 402, 100-108.
[2]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev., 2008, 37, 2096-2126.
[3]
Pratt, L.M.; Voit, S.; Okeke, F.N.; Kambe, N. Nickel-catalyzed alkyl coupling reactions: evaluation of computational methods. J. Phys. Chem. A, 2011, 115, 2281-2290.
[4]
Suzanne, M.A.; Gayan, W.B.; Patrick, J.R.; Daniel, D.E.; David, Q.A.; Jeffrey, L.J.; Kenneth, K.D. Synthetic Fe/Cu complexes: Toward understanding heme-copper oxidase structure and function. Chem. Rev., 2018, 118, 10840-11022.
[5]
Zhu, R.; Zhang, D.; Guo, J.; Mu, J.; Duan, C.; Liu, C. Mechanism study of the gold-catalyzed cycloisomerization of α-Aminoallenes: oxidation state of active species and influence of counterion. J. Phys. Chem. A, 2010, 114, 4689-4696.
[6]
Hosseinnejad, T.; Ebrahimpour-Malmir, F.; Fattahi, B. Computational investigations of click-derived 1, 2, 3-triazoles as keystone ligands for complexation with transition metals: A review. RSC Adv, 2018, 8, 12232-12259.
[7]
Heravi, M.M.; Hosseinnejad, T.; Nazari, N. Computational investigations on structural and electronic properties of CuI nanoparticles immobilized on modified poly(styrene-co-maleic anhydride), leading to unexpected but an efficient catalyzed synthesis of 1,4-dihydropyridine via Hantzsch pyridine synthesis. Can. J. Chem., 2017, 92, 530-536.
[8]
Baie Lashaki, T.; Oskooie, H.A.; Hosseinnejad, T.; Heravi, M.M. CuI nanoparticleson modified poly (styrene-co-maleic anhydride) as an effective catalyst in regioselective synthesis of 1,2,3-triazoles via click reaction: A joint experimental and computational study. J. Coord. Chem., 2017, 70, 1815-1834.
[9]
Chen, Z.; Wang, H.; Qiang, Su. N.; Duan, S.; Shen, T.; Xu, X. Beyond mean-field microkinetics: toward accurate and efficient theoretical modeling in heterogeneous catalysis. ACS Catal., 2018, 8, 5816-5826.
[10]
Fabiola, E. Medina, Rui P.P.; Neves, Maria J.; Ramos, Pedro A. Fernandes, QM/MM Study of the reaction mechanism of the dehydratase domain from mammalian fatty acid synthase. ACS Catal., 2018, 8, 10267-10278.
[11]
Mazzone, G.; Russo, N.; Sicilia, E. Gold(I)-catalyzed hydration of 1,2-diphenylacetylene: Computational insights. J. Chem. Theory Comput., 2010, 6, 2782-2789.
[12]
Limé, E.; Lundholm, M.D.; Forbes, A.; Wiest, O.; Helquist, P.; Norrby, P. Stereoselectivity in asymmetric catalysis: The case of ruthenium-catalyzed ketone hydrogenation. J. Chem. Theory Comput., 2014, 10, 2427-2435.