Pharmacokinetic Differences of Grape Seed Procyanidins According to the Gavage Administration Between Normal Rats and Alzheimer's Disease Rats

Page: [119 - 128] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Grape Seed Procyanidins (GSP) refers to a type of natural polyphenols that have to roust antioxidant capacity. Studies have shed light on the fact that GSP significantly impacts the alleviation of Alzheimer's Disease (AD).

Objective: This study aimed at investigating whether there exists a pharmacokinetics difference in GSP between normal and AD rats, a rapid UPLC-MS/MS methodology, for the detection of its content in plasma samples was put forward. We carried out an analysis of the plasma concentrations of procyanidin B2, procyanidin B3, catechin and epicatechin in normal and AD rats over time for determining the plasma concentration of GSP.

Methods: We made use of 400 μL of methanol for the protein precipitation solvent in the plasma treatment. The chromatographic separation was carried out on a C18 column at a temperature of 20 °C. The mobile phase was a gradient of 0.1% formic acid in water and methanol within 15 min.

Results: In the current research work, the plasma concentrations of procyanidin B2, procyanidin B3, catechin and epicatechin in AD rats were significantly higher as compared with those in normal rats (P < 0.05) and the content of epicatechin constituted the highest as compared with catechin, procyanidin B2 and procyanidin B3 following the administration of GSP.

Conclusion: We discovered the better absorptions of these analytes in the AD group as compared with that in the normal group, providing an analytical basis for treating the AD with procyanidins.

Keywords: Grape seed procyanidins, UPLC-MS/MS, pharmacokinetics, Alzheimer's disease, plasma concentration, gavage administration.

Graphical Abstract

[1]
Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem., 2018, 253, 132-138.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.163] [PMID: 29502813]
[2]
Sano, A. Safety assessment of 4-week oral intake of proanthocyanidin-rich grape seed extract in healthy subjects. Food Chem. Toxicol. 2017.108(Pt B), 519-523.
[http://dx.doi.org/10.1016/j.fct.2016.11.021] [PMID: 27889390]
[3]
Luo, L.; Cui, Y.; Cheng, J.; Fang, B.; Wei, Z.; Sun, B. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid. Food Chem., 2018, 256, 203-211.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.097] [PMID: 29606439]
[4]
Caridi, A.; Bruno, A.D.; Piscopo, A.; Poiana, M.; Sidari, R. Study of the inheritability of the yeast trait “interaction with natural antioxidant activity of red wine” in four generations of Saccharomyces cerevisiae and its enhancing by spore clone selection and hybridization.J. Eur. Food Res. Technol., 2015, 240(5), 1059-1063.
[http://dx.doi.org/10.1007/s00217-014-2409-3]
[5]
Joshi, S.S.; Kuszynski, C.A.; Bagchi, D. The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract. Curr. Pharm. Biotechnol., 2001, 2(2), 187-200.
[http://dx.doi.org/10.2174/1389201013378725] [PMID: 11480422]
[6]
Cui, Y.; Ma, S.; Zhang, C.; Li, D.; Yang, B.; Lv, P.; Xing, Q.; Huang, T.; Yang, G.L.; Cao, W.; Guan, F. Pharmacological activation of the Nrf2 pathway by 3H-1, 2-dithiole-3-thione is neuroprotective in a mouse model of Alzheimer disease. Behav. Brain Res., 2018, 336, 219-226.
[http://dx.doi.org/10.1016/j.bbr.2017.09.011] [PMID: 28887195]
[7]
Wen, Z.; Hou, W.; Wu, W.; Zhao, Y.; Dong, X.; Bai, X.; Peng, L.; Song, L. Cellular Longevity, 6′-O-Galloylpaeoniflorin Attenuates Cerebral Ischemia Reperfusion-Induced Neuroinflammation and Oxidative Stress via PI3K/Akt/Nrf2 Activation.J. Oxid. Med. Cell. Longev., 2018, 2018, 1-14.
[8]
Cai, Z.; Zhao, B.; Ratka, A. Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromolecular Med., 2011, 13(4), 223-250.
[http://dx.doi.org/10.1007/s12017-011-8155-9] [PMID: 21901428]
[9]
Tong, Y.; Zhou, W.; Fung, V.; Christensen, M.A.; Qing, H.; Sun, X.; Song, W. Oxidative stress potentiates BACE1 gene expression and Abeta generation. J. Neural Transm. (Vienna), 2005, 112(3), 455-469.
[http://dx.doi.org/10.1007/s00702-004-0255-3] [PMID: 15614428]
[10]
Lian, Q.; Nie, Y.; Zhang, X.; Tan, B.; Cao, H.; Chen, W.; Gao, W.; Chen, J.; Liang, Z.; Lai, H.; Huang, S.; Xu, Y.; Jiang, W.; Huang, P. Effects of grape seed proanthocyanidin on Alzheimer’s disease in vitro and in vivo. Exp. Ther. Med., 2016, 12(3), 1681-1692.
[http://dx.doi.org/10.3892/etm.2016.3530] [PMID: 27588088]
[11]
Li, L.; Yu, Z.; Sun, B.; Zhang, H.; Tao, W.; Tian, J.; Ye, X.; Chen, S. The neuroprotective effects of Chinese bayberry leaves proanthocyanidins. J. Journal of Functional Foods, 2018, 40, 554-563.
[http://dx.doi.org/10.1016/j.jff.2017.08.031]
[12]
Aybast?Er, N.; Dawbaa, S.; Demir, C. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry. J. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1072, 328-335.
[http://dx.doi.org/10.1016/j.jchromb.2017.11.044]
[13]
Chu, H.; Tang, Q.; Huang, H.; Hao, W.; Wei, X. Grape-seed proanthocyanidins inhibit the lipopolysaccharide-induced inflammatory mediator expression in RAW264.7 macrophages by suppressing MAPK and NF-κb signal pathways. Environ. Toxicol. Pharmacol., 2016, 41(1), 159-166.
[http://dx.doi.org/10.1016/j.etap.2015.11.018] [PMID: 26708200]
[14]
Sung, N.Y.; Yang, M.S.; Song, D.S.; Byun, E.B.; Kim, J.K.; Park, J.H.; Song, B.S.; Lee, J.W.; Park, S.H.; Park, H.J.; Byun, M.W.; Byun, E.H.; Kim, J.H. The procyanidin trimer C1 induces macrophage activation via NF-κB and MAPK pathways, leading to Th1 polarization in murine splenocytes. Eur. J. Pharmacol., 2013, 714(1-3), 218-228.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.059] [PMID: 23770004]
[15]
Ferri, M.; Bin, S.; Vallini, V.; Fava, F.; Michelini, E.; Roda, A.; Minnucci, G.; Bucchi, G.; Tassoni, A. Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities. N. Biotechnol., 2016, 33(3), 338-344.
[http://dx.doi.org/10.1016/j.nbt.2015.12.004] [PMID: 26705904]
[16]
Liu, Q.F.; Shi, X.J.; Li, Z.D.; Zhong, M.K.; Jiao, Z.; Wang, B. Pharmacokinetic comparisons of berberine and palmatine in normal and metabolic syndrome rats. J. Ethnopharmacol., 2014, 151(1), 287-291.
[http://dx.doi.org/10.1016/j.jep.2013.10.031] [PMID: 24269776]
[17]
Spencer, J.P.; Chaudry, F.; Pannala, A.S.; Srai, S.K.; Debnam, E.; Rice-Evans, C. Decomposition of cocoa procyanidins in the gastric milieu. Biochem. Biophys. Res. Commun., 2000, 272(1), 236-241.
[http://dx.doi.org/10.1006/bbrc.2000.2749] [PMID: 10872833]
[18]
Rios, L.Y.; Bennett, R.N.; Lazarus, S.A.; Rémésy, C.; Scalbert, A.; Williamson, G. Cocoa procyanidins are stable during gastric transit in humans. Am. J. Clin. Nutr., 2002, 76(5), 1106-1110.
[http://dx.doi.org/10.1093/ajcn/76.5.1106] [PMID: 12399286]
[19]
Zhu, Q.Y.; Holt, R.R.; Lazarus, S.A.; Ensunsa, J.L.; Hammerstone, J.F.; Schmitz, H.H.; Keen, C.L. Stability of the flavan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J. Agric. Food Chem., 2002, 50(6), 1700-1705.
[http://dx.doi.org/10.1021/jf011228o] [PMID: 11879061]
[20]
Gu, L.; House, S.E.; Rooney, L.; Prior, R.L. Sorghum bran in the diet dose dependently increased the excretion of catechins and microbial-derived phenolic acids in female rats. J. Agric. Food Chem., 2007, 55(13), 5326-5334.
[http://dx.doi.org/10.1021/jf070100p] [PMID: 17536823]
[21]
Alfaro-Viquez, E.; Esquivel-Alvarado, D.; Madrigal-Carballo, S.; Krueger, C.G.; Reed, J.D. Cranberry proanthocyanidin-chitosan hybrid nanoparticles as a potential inhibitor of extra-intestinal pathogenic Escherichia coli invasion of gut epithelial cells. Int. J. Biol. Macromol., 2018, 111, 415-420.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.033] [PMID: 29325748]
[22]
Casanova-Martí, À.; Serrano, J.; Portune, K.J.; Sanz, Y.; Blay, M.T.; Terra, X.; Ardévol, A.; Pinent, M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct., 2018, 9(3), 1672-1682.
[http://dx.doi.org/10.1039/C7FO02028G] [PMID: 29473070]
[23]
Ou, K.; Gu, L. Absorption and metabolism of proanthocyanidins.J. J. Funct. Foods, 2014, 7(1), 43-53.
[24]
Cueva, C.; Sánchez-Patán, F.; Monagas, M.; Walton, G.E.; Gibson, G.R.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol. Ecol., 2013, 83(3), 792-805.
[http://dx.doi.org/10.1111/1574-6941.12037] [PMID: 23121387]
[25]
Smith, A.H.; Mackie, R.I. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl. Environ. Microbiol., 2004, 70(2), 1104-1115.
[http://dx.doi.org/10.1128/AEM.70.2.1104-1115.2004] [PMID: 14766594]
[26]
Wang, D.; Ho, L.; Faith, J.; Ono, K.; Janle, E.M.; Lachcik, P.J.; Cooper, B.R.; Jannasch, A.H.; D’Arcy, B.R.; Williams, B.A.; Ferruzzi, M.G.; Levine, S.; Zhao, W.; Dubner, L.; Pasinetti, G.M. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol. Nutr. Food Res., 2015, 59(6), 1025-1040.
[http://dx.doi.org/10.1002/mnfr.201400544] [PMID: 25689033]
[27]
Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; Bianchetti, A.; Volta, G.D.; Turla, M.; Cotelli, M.S.; Gennuso, M.; Prelle, A.; Zanetti, O.; Lussignoli, G.; Mirabile, D.; Bellandi, D.; Gentile, S.; Belotti, G.; Villani, D.; Harach, T.; Bolmont, T.; Padovani, A.; Boccardi, M.; Frisoni, G.B. INDIA-FBP Group. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, 49, 60-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[28]
Ghaisas, S.; Maher, J.; Kanthasamy, A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther., 2016, 158, 52-62.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.012] [PMID: 26627987]
[29]
Wang, J.; Ye, F.; Cheng, X.; Zhang, X.; Liu, F.; Liu, G.; Ni, M.; Qiao, S.; Zhou, W.; Zhang, Y. The Effects of LW-AFC on Intestinal Microbiome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease. J. Alzheimers Dis., 2016, 53(3), 907-919.
[http://dx.doi.org/10.3233/JAD-160138] [PMID: 27340848]
[30]
Cui, B.; Su, D.; Li, W.; She, X.; Zhang, M.; Wang, R.; Zhai, Q. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 190-205.
[http://dx.doi.org/10.1186/s12974-018-1223-4] [PMID: 29933742]
[31]
Lin, L.; Zheng, L.J.; Zhang, L. J. Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease. Mol. Neurobiol., 2018, 55(11), 8243-8250.
[http://dx.doi.org/10.1007/s12035-018-0983-2] [PMID: 29524051]