The Notch Signaling Pathway and Breast Cancer: The Importance of Balance and Cellular Self-Control

Page: [38 - 50] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Notch is a cell signaling pathway that is highly conserved in all metazoans and is the master responsible for cell differentiation and cross communication with other signaling pathways such as Wingless and Hedgehog. In most cancers, the Notch signaling pathway is altered, causing normal controls of vital processes such as cell cycle, differentiation and apoptosis to be compromised, leading the cell to a carcinogenic state. However, the inherent nature of the Notch signaling pathway of regulating the activation or repression of other signaling pathways related to differentiation and cell cycle has caused the strategies against breast cancer to be even more specialized and to know more efficiently the suitable method againts the disease.

Methods: Different bibliographies and articles related to the Notch pathway and the biology of cancer were reviewed, especially with breast cancer, as well as the participation of other signaling pathways directly and indirectly related to the constitutive activation of the Notch pathway and relating the threads loose to create a general conceptual map of the wide effects of the malfunction of the Notch pathway in this disease so that we can understand from another point of view how this flow of information can be controlled.

Results: The study of Notch signaling during more than a decade has gave us new clues to elucidate the mechanisms of their finely orchestrated molecular functioning and how this signaling path interacts with another signaling pathways in differentiation, survival, cell cycle and apoptosis. Notch Signaling is a professional in the process of differentiation and cross-talk communication with another signaling pathways, especially with the WNT and Hh pathways. The responsibility of WNT pathway is to maintain the survival and growth controls, having direct effects on the cell cycle and the Hh pathway is to maintain a state of diferentiation trought the life of the cell and the cell migration instead, cell cycle and the response to growth stimuli of angiogenesis, exacerbated characteristics of many breast cancer.

Conclusion: This review highlights the complex communication network between the WNT, Hh and Notch Signaling and the therapies in the field of cancer that are not entirely effective, however, most of the therapies that are currently being developed are including the Notch Signaling as a target quite promising and is for its regulatory effect with other signaling pathways.

Keywords: Notch-signaling pathway, carcinogenesis, signal transduction, breast cancer, CSL, ligand-receptor binding (GSIs).

Graphical Abstract

[1]
Bravo A, Baizabal VM. La Vía de Señalización Notch y el Desarrollo Embrionario Animal. The Notch Signaling Pathway and Animal Embryonic Development REB 2005; 24(2): 87-96.
[2]
Udolph G, Rath P, Tio M, et al. On the roles of Notch, Delta, kuzbanian, and inscuteable during the development of Drosophila embryonic neuroblast lineages. Dev Biol 2009; 336(2): 156-68.
[http://dx.doi.org/10.1016/j.ydbio.2009.09.030] [PMID: 19782677]
[3]
Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol 2003; 14(2): 113-9.
[http://dx.doi.org/10.1016/S1084-9521(02)00179-9] [PMID: 12651094]
[4]
Bray SJ, Takada S, Harrison E, Shen S-C, Ferguson-Smith AC. The atypical mammalian ligand Delta-like homologue 1 (Dlk1) can regulate Notch signalling in Drosophila. BMC Dev Biol 2008; 8: 11.
[http://dx.doi.org/10.1186/1471-213X-8-11] [PMID: 18237417]
[5]
de Celis JF, Bray S, Garcia-Bellido A. Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development 1997; 124(10): 1919-28.
[PMID: 9169839]
[6]
Le Gall M, Giniger E. Identification of two binding regions for the suppressor of hairless protein within the intracellular domain of Drosophila notch. J Biol Chem 2004; 279(28): 29418-26.
[http://dx.doi.org/10.1074/jbc.M404589200] [PMID: 15123610]
[7]
Barolo S, Walker RG, Polyanovsky AD, Freschi G, Keil T, Posakony JW. A notch-independent activity of suppressor of hairless is required for normal mechanoreceptor physiology. Cell 2000; 103(6): 957-69.
[http://dx.doi.org/10.1016/S0092-8674(00)00198-7] [PMID: 11136980]
[8]
Raya A, Kawakami Y, Rodríguez-Esteban C, et al. Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 2004; 427(6970): 121-8.
[http://dx.doi.org/10.1038/nature02190] [PMID: 14712268]
[9]
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415): 770-6.
[http://dx.doi.org/10.1126/science.284.5415.770] [PMID: 10221902]
[10]
Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol 2000; 228(2): 151-65.
[http://dx.doi.org/10.1006/dbio.2000.9960] [PMID: 11112321]
[11]
Paz-Gómez D, Baizabal-Aguirre VM, Valdez-Alarcón JJ, et al. Structural analysis of point mutations in the Hairless gene and their association with the activity of the Hairless protein. Int J Biol Macromol 2008; 43(5): 426-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.08.012] [PMID: 18809430]
[12]
Furriols M, Bray S. Dissecting the mechanisms of suppressor of hairless function. Dev Biol 2000; 227(2): 520-32.
[http://dx.doi.org/10.1006/dbio.2000.9923] [PMID: 11071771]
[13]
Moloney DJ, Panin VM, Johnston SH, et al. Fringe is a glycosyltransferase that modifies Notch. Nature 2000; 406(6794): 369-75.
[http://dx.doi.org/10.1038/35019000] [PMID: 10935626]
[14]
Klueg KM, Muskavitch MA. Ligand-receptor interactions and trans-endocytosis of delta, Serrate and Notch: Members of the Notch signalling pathway in Drosophila. J Cell Sci 1999; 112(Pt 1): 3289-97.
[PMID: 10504334]
[15]
Lübke T, Marquardt T, von Figura K, Körner C. A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the golgi. J Biol Chem 1999; 274(37): 25986-9.
[http://dx.doi.org/10.1074/jbc.274.37.25986] [PMID: 10473542]
[16]
Okajima T, Irvine KD. Regulation of notch signaling by o-linked fucose. Cell 2002; 111(6): 893-904.
[http://dx.doi.org/10.1016/S0092-8674(02)01114-5] [PMID: 12526814]
[17]
Panin VM, Shao L, Lei L, Moloney DJ, Irvine KD, Haltiwanger RS. Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem 2002; 277(33): 29945-52.
[18]
Lai EC. Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 2002; 3(9): 840-5.
[19]
Contreras-Cornejo H, Saucedo-Correa G, Oviedo-Boyso J, et al. The CSL proteins, versatile transcription factors and context dependent corepressors of the notch signaling pathway. Cell Div 2016; 11(1): 12.
[http://dx.doi.org/10.1186/s13008-016-0025-2] [PMID: 27708688]
[20]
Tsuda L, Nagaraj R, Zipursky SL, Banerjee U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell 2002; 110(5): 625-37.
[http://dx.doi.org/10.1016/S0092-8674(02)00875-9] [PMID: 12230979]
[21]
Paroush Z, Finley RL Jr, Kidd T, et al. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 1994; 79(5): 805-15.
[http://dx.doi.org/10.1016/0092-8674(94)90070-1] [PMID: 8001118]
[22]
Oswald F, Kostezka U, Astrahantseff K, et al. SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J 2002; 21(20): 5417-26.
[http://dx.doi.org/10.1093/emboj/cdf549] [PMID: 12374742]
[23]
Oswald F, Winkler M, Cao Y, et al. RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol 2005; 25(23): 10379-90.
[http://dx.doi.org/10.1128/MCB.25.23.10379-10390.2005] [PMID: 16287852]
[24]
Iso T, Sartorelli V, Poizat C, et al. HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 2001; 21(17): 6080-9.
[http://dx.doi.org/10.1128/MCB.21.17.6080-6089.2001] [PMID: 11486045]
[25]
Ma PCM, Rould MA, Weintraub H, Pabo CO. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 1994; 77(3): 451-9.
[http://dx.doi.org/10.1016/0092-8674(94)90159-7] [PMID: 8181063]
[26]
Maier MM, Gessler M. Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem Biophys Res Commun 2000; 275(2): 652-60.
[http://dx.doi.org/10.1006/bbrc.2000.3354] [PMID: 10964718]
[27]
Jehn BM, Bielke W, Pear WS, Osborne BA. Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol 1999; 162(2): 635-8.
[PMID: 9916679]
[28]
Heitzler P, Simpson P. The choice of cell fate in the epidermis of Drosophila. Cell 1991; 64(6): 1083-92.
[PMID: 9916679]
[29]
Lathion S, Schaper J, Beard P, Raj K. Notch1 can contribute to viral-induced transformation of primary human keratinocytes. Cancer Res 2003; 63(24): 8687-94.
[PMID: 14695182]
[30]
Al-Hussaini H, Subramanyam D, Reedijk M, Sridhar SS. Notch signaling pathway as a therapeutic target in breast cancer. Mol Cancer Ther 2011; 10(1): 9-15.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0677] [PMID: 20971825]
[31]
Gallahan D, Callahan R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 1997; 14(16): 1883-90.
[http://dx.doi.org/10.1038/sj.onc.1201035] [PMID: 9150355]
[32]
Jhappan C, Gallahan D, Stahle C, et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 1992; 6(3): 345-55.
[http://dx.doi.org/10.1101/gad.6.3.345] [PMID: 1372276]
[33]
Robbins J, Blondel BJ, Gallahan D, Callahan R. Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol 1992; 66(4): 2594-9.
[http://dx.doi.org/10.1128/JVI.66.4.2594-2599.1992] [PMID: 1312643]
[34]
Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature 1995; 377(6547): 355-8.
[http://dx.doi.org/10.1038/377355a0] [PMID: 7566092]
[35]
Allenspach EJ, Maillard I. Notch signaling in cancer notch signaling in cancer 2007; 1(5): 466-76.
[36]
Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4): 649-61.
[http://dx.doi.org/10.1016/0092-8674(91)90111-B] [PMID: 1831692]
[37]
Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 2004; 18(1): 99-115.
[http://dx.doi.org/10.1101/gad.276304] [PMID: 14701881]
[38]
Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 1985; 43(3 Pt 2): 567-81.
[http://dx.doi.org/10.1016/0092-8674(85)90229-6] [PMID: 3935325]
[39]
Mazzone M, Selfors LM, Albeck J, et al. Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc Natl Acad Sci USA 2010; 107(11): 5012-7.
[http://dx.doi.org/10.1073/pnas.1000896107] [PMID: 20194747]
[40]
Maria EP, Colnaghi IC, Ghirelli O, Tumori IN. Elda Paolo Maria 1998; 4(February): 407-10.
[41]
Li P, Barraclough R, Fernig DG, Smith JA, Rudland PS. Stem cells in breast epithelia. Int J Exp Pathol 1998; 79(4): 193-206.
[http://dx.doi.org/10.1046/j.1365-2613.1998.00068.x] [PMID: 9797716]
[42]
Koukoulis GK, Virtanen I, Korhonen M, Laitinen L, Quaranta V, Gould VE. Immunohistochemical localization of integrins in the normal, hyperplastic, and neoplastic breast. Correlations with their functions as receptors and cell adhesion molecules. Am J Pathol 1991; 139(4): 787-99.
[PMID: 1928301]
[43]
Gusterson BA, Monaghan P, Mahendran R, Ellis J, O’Hare MJ. Identification of myoepithelial cells in human and rat breasts by anti-common acute lymphoblastic leukemia antigen antibody A12. J Natl Cancer Inst 1986; 77(2): 343-9.
[PMID: 2426509]
[44]
Bartek J, Taylor-Papadimitriou J, Miller N, Millis R. Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int J Cancer 1985; 36(3): 299-306.
[http://dx.doi.org/10.1002/ijc.1985.36.3.299] [PMID: 2411673]
[45]
Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 1998; 63(4): 201-13.
[http://dx.doi.org/10.1111/j.1432-0436.1998.00201.x] [PMID: 9745711]
[46]
Petersen OW, Lind Nielsen H, Gudjonsson T, Villadsen R, Rønnov-Jessen L, Bissell MJ. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res 2001; 3(4): 213-7.
[http://dx.doi.org/10.1186/bcr298] [PMID: 11434871]
[47]
Hodkinson PS, Elliott PA, Lad Y, et al. Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem 2007; 282(39): 28991-9001.
[http://dx.doi.org/10.1074/jbc.M703601200] [PMID: 17664272]
[48]
Kuroda K, Tani S, Tamura K, Minoguchi S, Kurooka H, Honjo T. Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 1999; 274(11): 7238-44.
[http://dx.doi.org/10.1074/jbc.274.11.7238] [PMID: 10066785]
[49]
de la Pompa JL, Wakeham A, Correia KM, et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 1997; 124(6): 1139-48.
[PMID: 9102301]
[50]
Endo Y, Osumi N, Wakamatsu Y. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 2002; 129(4): 863-73.
[PMID: 11861470]
[51]
Nofziger D, Miyamoto A, Lyons KM, Weinmaster G. Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 1999; 126(8): 1689-702.
[PMID: 10079231]
[52]
Rangarajan A, Syal R, Selvarajah S, Chakrabarti O, Sarin A, Krishna S. Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt. Virology 2001; 286(1): 23-30.
[http://dx.doi.org/10.1006/viro.2001.0867] [PMID: 11448155]
[53]
Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012; 4(5): 9.
[http://dx.doi.org/10.1101/cshperspect.a008052] [PMID: 22438566]
[54]
Okajima T, Xu A, Lei L, Irvine KD. Chaperone Activity of Protein 2005; 307(March): 1599-603.
[55]
Osipo C, Golde TE, Osborne BA, Miele LA. Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Invest 2008; 88(1): 11-7.
[http://dx.doi.org/10.1038/labinvest.3700700] [PMID: 18059366]
[56]
Guan E, Wang J, Laborda J, Norcross M, Baeuerle PA, Hoffman T. T cell leukemia-associated human Notch/translocation-associated Notch homologue has I kappa B-like activity and physically interacts with nuclear factor-kappa B proteins in T cells. J Exp Med 1996; 183(5): 2025-32.
[http://dx.doi.org/10.1084/jem.183.5.2025] [PMID: 8642313]
[57]
Gallahan D, Callahan R. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 1987; 61(1): 66-74.
[http://dx.doi.org/10.1128/JVI.61.1.66-74.1987] [PMID: 3023708]
[58]
Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 2004; 14(5): 779-86.
[http://dx.doi.org/10.3892/ijmm.14.5.779] [PMID: 15492845]
[59]
Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 2006; 168(3): 973-90.
[http://dx.doi.org/10.2353/ajpath.2006.050416] [PMID: 16507912]
[60]
Ntziachristos P, Lim JS, Sage J, Aifantis I. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 2014; 25(3): 318-34.
[http://dx.doi.org/10.1016/j.ccr.2014.02.018] [PMID: 24651013]
[61]
Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 2011; 1815(2): 197-213.
[PMID: 21193018]
[62]
Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 2007; 134(7): 1243-51.
[http://dx.doi.org/10.1242/dev.000786] [PMID: 17329370]
[63]
Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 1992; 6(12B)(12 PART B): 2620-34.
[http://dx.doi.org/10.1101/gad.6.12b.2620] [PMID: 1340473]
[64]
Grbavec D, Stifani S. Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 1996; 223(3): 701-5.
[http://dx.doi.org/10.1006/bbrc.1996.0959] [PMID: 8687460]
[65]
Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 2006; 133(13): 2467-76.
[http://dx.doi.org/10.1242/dev.02403] [PMID: 16728479]
[66]
Murata K, Hattori M, Hirai N, et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 2005; 25(10): 4262-71.
[http://dx.doi.org/10.1128/MCB.25.10.4262-4271.2005] [PMID: 15870295]
[67]
Castella P, Sawai S, Nakao K, Wagner JA, Caudy M. HES-1 repression of differentiation and proliferation in PC12 cells: role for the helix 3-helix 4 domain in transcription repression. Mol Cell Biol 2000; 20(16): 6170-83.
[http://dx.doi.org/10.1128/MCB.20.16.6170-6183.2000] [PMID: 10913198]
[68]
Hartman J, Müller P, Foster JS, Wimalasena J, Gustafsson JÅ, Ström A. HES-1 inhibits 17beta-estradiol and heregulin-beta1-mediated upregulation of E2F-1. Oncogene 2004; 23(54): 8826-33.
[http://dx.doi.org/10.1038/sj.onc.1208139] [PMID: 15467735]
[69]
Dubrulle J, Pourquié O. Coupling segmentation to axis formation. Development 2004; 131(23): 5783-93.
[http://dx.doi.org/10.1242/dev.01519] [PMID: 15539483]
[70]
Hirata H, Tomita K, Bessho Y, Kageyama R. Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J 2001; 20(16): 4454-66.
[http://dx.doi.org/10.1093/emboj/20.16.4454] [PMID: 11500373]
[71]
Ström A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson J-A. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci USA 2004; 101(6): 1566-71.
[http://dx.doi.org/10.1073/pnas.0308319100] [PMID: 14745018]
[72]
Foster JS, Henley DC, Bukovsky A, Seth P, Wimalasena J. Multifaceted Regulation of Cell Cycle Progression by Estrogen  Regulation of Cdk Inhibitors and Cdc25A Independent of Multifaceted Regulation of Cell Cycle Progression by Estrogen  Regulation of Cdk Inhibitors and Cdc25A Independent of Cyclin D1-Cdk4 Fu. Society 2001; 21(3): 794-810.
[73]
Müller P, Merrell KW, Crofts JD, et al. Estrogen-dependent downregulation of hairy and enhancer of split homolog-1 gene expression in breast cancer cells is mediated via a 3¢ distal element. J Endocrinol 2009; 200(3): 311-9.
[http://dx.doi.org/10.1677/JOE-08-0094] [PMID: 19039095]
[74]
Arnold A, Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 2005; 23(18): 4215-24.
[http://dx.doi.org/10.1200/JCO.2005.05.064] [PMID: 15961768]
[75]
Lamb J, Ladha MH, McMahon C, Sutherland RL, Ewen ME. Regulation of the functional interaction between cyclin D1 and the estrogen receptor. Mol Cell Biol 2000; 20(23): 8667-75.
[http://dx.doi.org/10.1128/MCB.20.23.8667-8675.2000] [PMID: 11073968]
[76]
Zwijsen RML, Buckle RS, Hijmans EM, Loomans CJM, Bernards R. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev 1998; 12(22): 3488-98.
[http://dx.doi.org/10.1101/gad.12.22.3488] [PMID: 9832502]
[77]
Kenny FS, Hui R, Musgrove EA. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res 1999; 5(8): 2069-76.
[PMID: 10473088]
[78]
Dressing GE, Knutson TP, Schiewer MJ, Knutson TP. Progesterone receptor-cyclin D1 complexes induce cell cycle-dependent transcriptional programs in breast cancer cells. Mol Endocrinol 2014; 28(4): 442-57.
[http://dx.doi.org/10.1210/me.2013-1196] [PMID: 24606123]
[79]
Faivre EJ, Lange CA. Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells. Mol Cell Biol 2007; 27(2): 466-80.
[http://dx.doi.org/10.1128/MCB.01539-06] [PMID: 17074804]
[80]
Fu M, Rao M, Wu K, et al. The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity. J Biol Chem 2004; 279(28): 29436-49.
[http://dx.doi.org/10.1074/jbc.M313466200] [PMID: 15123687]
[81]
Bienvenu F, Jirawatnotai S, Elias JE, et al. NIH Public Access 2010; 463(7279): 374-8.
[82]
Dou QP, Molnar G, Pardee AB. Cyclin D1/cdk2 kinase is present in a G1 phase-specific protein complex Yi1 that binds to the mouse thymidine kinase gene promoter. Biochem Biophys Res Commun 1994; 205(3): 1859-68.
[http://dx.doi.org/10.1006/bbrc.1994.2887] [PMID: 7811275]
[83]
Sweeney KJ, Swarbrick A, Sutherland RL, Musgrove EA. Lack of relationship between CDK Activity and G 1 cyclin expression in breast cancer Cells. Oncogene 1998.
[84]
Chytil A, Waltner-Law M, West R, et al. Construction of a cyclin D1-Cdk2 fusion protein to model the biological functions of cyclin D1-Cdk2 complexes. J Biol Chem 2004; 279(46): 47688-98.
[http://dx.doi.org/10.1074/jbc.M405938200] [PMID: 15355984]
[85]
Lin HM, Zhao L, Cheng SY. Cyclin D1 Is a Ligand-independent Co-repressor for Thyroid Hormone Receptors. J Biol Chem 2002; 277(32): 28733-41.
[http://dx.doi.org/10.1074/jbc.M203380200] [PMID: 12048199]
[86]
Behrens J, Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol 2004; 48(5-6): 477-87.
[http://dx.doi.org/10.1387/ijdb.041815jb] [PMID: 15349822]
[87]
Willert K, Jones KA. Wnt signaling: is the party in the nucleus? Genes Dev 2006; 20(11): 1394-404.
[http://dx.doi.org/10.1101/gad.1424006] [PMID: 16751178]
[88]
Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell 2005; 97(3): 185-96.
[http://dx.doi.org/10.1042/BC20040094] [PMID: 15715524]
[89]
Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007; 19(2): 150-8.
[http://dx.doi.org/10.1016/j.ceb.2007.02.007] [PMID: 17306971]
[90]
Radtke F, Clevers H. Self-Renewal and Cancer of the Gut: Two Sides of a Coin. Science (80- ) 2005; 307(5717): 1904-9.
[91]
van Es JH, Jay P, Gregorieff A, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 2005; 7(4): 381-6.
[http://dx.doi.org/10.1038/ncb1240] [PMID: 15778706]
[92]
Buono KD, Robinson GW, Martin C, et al. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 2006; 293(2): 565-80.
[http://dx.doi.org/10.1016/j.ydbio.2006.02.043] [PMID: 16581056]
[93]
Bouras T, Pal B, Vaillant F, et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 2008; 3(4): 429-41.
[http://dx.doi.org/10.1016/j.stem.2008.08.001] [PMID: 18940734]
[94]
Gopalakrishnan N, Saravanakumar M, Madankumar P, Thiyagu M, Devaraj H. Colocalization of β-catenin with Notch intracellular domain in colon cancer: a possible role of Notch1 signaling in activation of CyclinD1-mediated cell proliferation. Mol Cell Biochem 2014; 396(1-2): 281-93.
[http://dx.doi.org/10.1007/s11010-014-2163-7] [PMID: 25073953]
[95]
Ronchini C, Capobianco AJ. Notch(ic)-ER chimeras display hormone-dependent transformation, nuclear accumulation, phosphorylation and CBF1 activation. Oncogene 2000; 19(34): 3914-24.
[http://dx.doi.org/10.1038/sj.onc.1203719] [PMID: 10951584]
[96]
Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 2006; 103(24): 9262-7.
[http://dx.doi.org/10.1073/pnas.0603371103] [PMID: 16751266]
[97]
Mutational Loss of PTEN Induces Resistance to NOTCH1 Inhibition in T-Cell Leukemia. Clin Cancer Res 2007; 20(22): 5848-59.
[98]
Lee CW, Simin K, Liu Q, et al. A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res 2008; 10(6): R97.
[http://dx.doi.org/10.1186/bcr2200] [PMID: 19025652]
[99]
Raouf A, Zhao Y, To K, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008; 3(1): 109-18.
[http://dx.doi.org/10.1016/j.stem.2008.05.018] [PMID: 18593563]
[100]
Reedijk M, Odorcic S, Chang L, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005; 65(18): 8530-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1069] [PMID: 16166334]
[101]
Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res 2006; 66(3): 1517-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3054] [PMID: 16452208]
[102]
Alves-Guerra MC, Ronchini C, Capobianco AJ. Mastermind-like 1 is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 2007; 67(18): 8690-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1720] [PMID: 17875709]
[103]
Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell 2008; 133(3): 403-14.
[http://dx.doi.org/10.1016/j.cell.2008.04.013] [PMID: 18455982]
[104]
Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 2015; 172(17): 4228-37.
[http://dx.doi.org/10.1111/bph.13211] [PMID: 26040571]
[105]
Speiser J, Foreman K, Drinka E, et al. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int J Surg Pathol 2012; 20(2): 139-45.
[http://dx.doi.org/10.1177/1066896911427035] [PMID: 22084425]
[106]
KATOH Y. K. and M. K. Hedgehog signaling, epithelial-to-mesenchymal transition and MiRNA. Int J Mol Med 2008; 23(4): 521-7.
[107]
Merchant AA, Matsui W. Targeting Hedgehog--a cancer stem cell pathway. Clin Cancer Res 2010; 16(12): 3130-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2846] [PMID: 20530699]
[108]
Polkinghorn WR, Tarbell NJ. Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol 2007; 4(5): 295-304.
[http://dx.doi.org/10.1038/ncponc0794] [PMID: 17464337]
[109]
Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 2002; 62(16): 4773-80.
[PMID: 12183437]
[110]
Schüller U, Zhao Q, Godinho SA, et al. Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol Cell Biol 2007; 27(23): 8259-70.
[http://dx.doi.org/10.1128/MCB.00707-07] [PMID: 17893320]
[111]
Messersmith WA, Baker SD, Lassiter L, et al. Phase I trial of bortezomib in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res 2006; 12(4): 1270-5.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1942] [PMID: 16489083]
[112]
Bayet-Robert M, Kwiatkowski F, Leheurteur M, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 2010; 9(1): 8-14.
[http://dx.doi.org/10.4161/cbt.9.1.10392] [PMID: 19901561]
[113]
Veuger SJ, Curtin NJ, Smith GCM, Durkacz BW. Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Oncogene 2004; 23(44): 7322-9.
[http://dx.doi.org/10.1038/sj.onc.1207984] [PMID: 15286704]
[114]
Waldman AS, Waldman BC. Stimulation of intrachromosomal homologous recombination in mammalian cells by an inhibitor of poly(ADP-ribosylation). Nucleic Acids Res 1991; 19(21): 5943-7.
[http://dx.doi.org/10.1093/nar/19.21.5943] [PMID: 1945881]
[115]
Schultz N, Lopez E, Saleh-Gohari N, Helleday T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 2003; 31(17): 4959-64.
[http://dx.doi.org/10.1093/nar/gkg703] [PMID: 12930944]
[116]
Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004; 59(2)(Suppl.): 21-6.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[117]
Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68(4): 989-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2017] [PMID: 18281472]
[118]
Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer--current status and future directions. Ann Oncol 2009; 20(12): 1913-27.
[http://dx.doi.org/10.1093/annonc/mdp492] [PMID: 19901010]
[119]
Takebea N. Dat Nguyenb, Sherry XY. Targeting Notch Signaling Pathway in Cancer: Clinical Development Advances and Challenges. J Sex Med 2009; 6(2): 247-53.
[120]
Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003; 22(42): 6598-608.
[http://dx.doi.org/10.1038/sj.onc.1206758] [PMID: 14528285]
[121]
Tolcher AW, Messersmith WA, Mikulski SM, et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol 2012; 30(19): 2348-53.
[http://dx.doi.org/10.1200/JCO.2011.36.8282] [PMID: 22529266]
[122]
Global P, Jolla L. Cancer stem cells Synergistic Effect of the γ - Secretase Inhibitor PF-03084014 and Docetaxel in breast cancer models. 2013; 233-42.
[123]
Chen Y, Zheng S, Qi D, et al. Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One 2012; 7(10): e46512.
[http://dx.doi.org/10.1371/journal.pone.0046512] [PMID: 23056328]
[124]
Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010; 464(7291): 1052-7.
[http://dx.doi.org/10.1038/nature08878] [PMID: 20393564]
[125]
Hayashi I. Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene 2009; 6(6): 247-53.
[126]
Lamy M, Ferreira A, Dias JS, Braga S, Silva G, Barbas A. Notch out for breast cancer therapies. N Biotechnol 2017; 39(B): 215.