[3]
J. Wang, and C-I. Chang, Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis.IEEE trans. Geosci. remote sens.IEEE, vol. 44, pp. 1586-1600., 2006..
[6]
L.M. Bruce, C.H. Koger, and J. Li, Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction.IEEE Trans. Geosci. Remote Sens.IEEE, vol. 40, pp. 2331- 2338., 2002..
[7]
S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, Automatic reduction of hyperspectral imagery using wavelet spectral analysis.IEEE trans. Geosci. Remote SensIEEE, vol. 41, pp. 863-871., 2003..
[8]
C.H. Park, and M. Lee, On applying linear discriminant analysis for multi-labeled problems Patt. recog. let., vol. 29, pp. 878-887,, 2008.
[10]
H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy”, IEEE Trans. Patt. Anal. mach. intel., vol. 27. IEEE, pp. 1226-1238.2005,
[11]
M. Dash, and H. Liu, Feature selection for classification Intelligent data analysis, vol. 1, IOS Press, 1997, pp. 131-156..
[12]
Q. Dai, J-H. Cheng, D-W. Sun, and X-A. Zeng, “Advances in feature selection methods for hyperspectral image processing in food industry applications: a review”, Crit. Rev. food sci. nutrit., vol. 5. Taylor & Francis, 2015, pp. 1368-1382.
[14]
I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning., MIT press: Cambridge, 2016.
[19]
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classification of hyperspectral data”, IEEE J. Select. topics appl. earth observ. remote sens., vol. 7. IEEE, 2014, pp. 2094-2107.
[21]
M.F. Møller, "A scaled conjugate gradient algorithm for fast supervised learning", Neural Netw., vol. 6, pp. 525-533, .1993,
[22]
Y. Li, Y. Zhang, Z. Yuan, H. Guo, H. Pan, and J. Guo, "Marine Oil Spill Detection Based on the Comprehensive Use of Polarimetric SAR Data, Sustainability", Multidisciplin. Dig. Pub. Inst., vol. 10, p. 4408, 2018.
[23]
S. Zhou, Z. Xue, and P. Du, “Semisupervised Stacked Autoencoder With Cotraining for Hyperspectral Image Classification”, IEEE Trans. Geosci. Remote Sens., IEEE, 2019.
[25]
H. Holden, and E. LeDrew, "Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal components analysis, and derivative spectroscopy", Remote Sens. Environ., vol. 65, pp. 217-224, 1998.
[29]
B. Rasti, J.R. Sveinsson, M.O. Ulfarsson, and J.A. Benediktsson, "Hyperspectral image denoising using 3D wavelets Geoscience
and Remote Sensing Symposium (IGARSS), IEEE International,
2012, pp. 1349-1352",
[30]
R. Maini, and H. Aggarwal, “Study and comparison of various image edge detection techniques”, Int. J. image process., vol. Vol. 3. IJIP, 2009, pp. 1-11.
[33]
Q. Du, and J.E. Fowler, "“Hyperspectral image compression using JPEG2000 and principal component analysis”, IEEE Geosci. Remote sens", Let.vol. 4, 2007, pp. 201-205. [IEEE
[34]
A. Karami, M. Yazdi, and G. Mercier, “Compression of hyperspectral images using discerete wavelet transform and tucker decomposition”, IEEE J. select. topics appl. earth observ. remote sens., vol. 5. IEEE, 2012, pp. 444-450.
[35]
S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence.IEEE, vol. 11, pp. 674-693., 1989..
[39]
F. Module, "Atmospheric correction module: Quac and flaash users guide", Version, vol. 4, p. 44, 2009.
[40]
J. Gruninger, and S. Adler-Golden, Process for finding endmembers in a data set. US Patent 7680337-B2, 2010..
[42]
B.L. Davis, T.F. Rodriguez, and G.B. Rhoads, inventors; Digimarc Corporation, assignee. Longitudinal dermoscopic study employing smartphone-based image registration.US Patent US 14/288,890. 2014 Oct 23..
[43]
L. Xiaoqiang, Y. Yuan, and Z. Xiangtao, Transfer learning-based hyperspectral image super-resolution method CN Patent CN107301372A , 2017.