Identification of Inhibitors against Botulinum Neurotoxins: 8-Hydroxyquinolines Hold Promise

Page: [1694 - 1706] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Botulinum neurotoxins (BoNTs) are the most toxic category A biological warfare agents. There is no therapeutics available for BoNT intoxication yet, necessitating the development of a medical countermeasure against these neurotoxins. The discovery of small molecule-based drugs has revolutionized in the last two decades resulting in the identification of several small molecule inhibitors of BoNTs. However, none progressed to clinical trials. 8-Hydroxyquinolines scaffold-based molecules are important ‘privileged structures’ that can be exploited as inhibitors of a diverse range of targets. In this review, our study of recent reports suggests the development of 8-hydroxyquinoline derived molecules as a potential drug may be on the horizon.

Keywords: Botulinum Neurotoxins (BoNTs), 8-hydroxyquinoline (8-HQ), Small Molecule Inhibitors (SMIs), SNARE proteins, DataWarrior, drug-likeness.

Graphical Abstract

[1]
Johnson, E.A.; Bradshaw, M. Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon, 2001, 39(11), 1703-1722. [http://dx.doi.org/10.1016/S0041-0101(01)00157-X]. [PMID: 11595633].
[2]
Schantz, E.J.; Johnson, E.A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev., 1992, 56, 80-99. [PMID: 1579114].
[3]
Montecucco, C.; Rasotto, M.B. On botulinum neurotoxin variability. MBio, 2015, 6, 02131-14. [http://dx.doi.org/10.1128/mBio.02131-14]. [PMID: 25564463].
[4]
Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol., 2014, 12(8), 535-549. [http://dx.doi.org/10.1038/nrmicro3295]. [PMID: 24975322].
[5]
Smith, T.J.; Hill, K.K.; Raphael, B.H. Historical and current perspectives on Clostridium botulinum diversity. Res. Microbiol., 2015, 166(4), 290-302. [http://dx.doi.org/10.1016/j.resmic.2014.09.007]. [PMID: 25312020].
[6]
Barash, J.R.; Arnon, S.S. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J. Infect. Dis., 2014, 209(2), 183-191. [http://dx.doi.org/10.1093/infdis/jit449]. [PMID: 24106296].
[7]
Maslanka, S.E.; Lúquez, C.; Dykes, J.K.; Tepp, W.H.; Pier, C.L.; Pellett, S.; Raphael, B.H.; Kalb, S.R.; Barr, J.R.; Rao, A.; Johnson, E.A. A novel botulinum neurotoxin, previously reported as serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes A and F and is neutralized with serotype A antitoxin. J. Infect. Dis., 2016, 213(3), 379-385. [http://dx.doi.org/10.1093/infdis/jiv327]. [PMID: 26068781].
[8]
CDC (Centers for Disease Control). Botulism outbreak associated with eating fermented food- Alaska 2001. CDC MMWR.. 2001.www.cdc.gov/mmwr/preview/mmwrhtml/mm5032a2.htm
[9]
Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; Lillibridge, S.; Osterholm, M.T.; O’Toole, T.; Parker, G.; Perl, T.M.; Russell, P.K.; Swerdlow, D.L.; Tonat, K. Working Group on Civilian Biodefense. Botulinum toxin as a biological weapon: Medical and public health management. JAMA, 2001, 285(8), 1059-1070.
[http://dx.doi.org/10.1001/jama.285.8.1059] [PMID: 11209178]
[10]
Patel, K.; Halevi, S.; Melman, P.; Schwartz, J.; Cai, S.; Singh, B.R. A novel surface plasmon resonance biosensor for the rapid detection of botulinum neurotoxins. Biosen, 2017, 7(3), 32.
[http://dx.doi.org/10.3390/bios7030032]
[11]
Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev., 2000, 80(2), 717-766.
[http://dx.doi.org/10.1152/physrev.2000.80.2.717] [PMID: 10747206]
[12]
Hatheway, C.L.; Johnson, E.A. Clostridium; the spore bearing anaerobes.Topley and Wilson’s microbiology and microbial infections, 9th ed; Oxford University Press: New York, 1998, pp. 731-782.
[13]
Oguma, K.; Fujinaga, Y.; Inoue, K. Structure and function of Clostridium botulinum toxins. Microbiol. Immunol., 1995, 39(3), 161-168.
[http://dx.doi.org/10.1111/j.1348-0421.1995.tb02184.x] [PMID: 7603360]
[14]
Bajjalieh, S.M. Synaptic vesicle docking and fusion. Curr. Opin. Neurobiol., 1999, 9(3), 321-328.
[http://dx.doi.org/10.1016/S0959-4388(99)80047-6] [PMID: 10395572]
[15]
Schantz, E.J.; Johnson, E.A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev., 1992, 56, 80-99.
[PMID: 1579114]
[16]
Turton, K.; Chaddock, J.A.; Acharya, K.R. Botulinum and tetanus neurotoxins: Structure, function and therapeutic utility. Trends Biochem. Sci., 2002, 27(11), 552-558.
[http://dx.doi.org/10.1016/S0968-0004(02)02177-1] [PMID: 12417130]
[17]
Humeau, Y.; Doussau, F.; Grant, N.J.; Poulain, B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie, 2000, 82(5), 427-446.
[http://dx.doi.org/10.1016/S0300-9084(00)00216-9] [PMID: 10865130]
[18]
Rossetto, O.; Schiavo, G.; Montecucco, C.; Poulain, B.; Deloye, F.; Lozzi, L.; Shone, C.C. SNARE motif and neurotoxins. Nature, 1994, 372(6505), 415-416.
[http://dx.doi.org/10.1038/372415a0] [PMID: 7984234]
[19]
Brunger, A.T.; Breidenbach, M.A.; Jin, R.; Fischer, A.; Santos, J.S.; Montal, M. Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog., 2007, 3(9), 1191-1194.
[http://dx.doi.org/10.1371/journal.ppat.0030113] [PMID: 17907800]
[20]
Simpson, L.L. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 167-193.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121554] [PMID: 14744243]
[21]
Rowland, L.P. Stroke, spasticity, and botulinum toxin. N. Engl. J. Med., 2002, 347(6), 382-383.
[http://dx.doi.org/10.1056/NEJMp020071] [PMID: 12167679]
[22]
Münchau, A.; Bhatia, K.P. Uses of botulinum toxin injection in medicine today. BMJ, 2000, 320(7228), 161-165.
[http://dx.doi.org/10.1136/bmj.320.7228.161] [PMID: 10634738]
[23]
Montecucco, C.; Molgó, J. Botulinal neurotoxins: Revival of an old killer. Curr. Opin. Pharmacol., 2005, 5(3), 274-279.
[http://dx.doi.org/10.1016/j.coph.2004.12.006] [PMID: 15907915]
[24]
Shukla, H.D.; Sharma, S.K. Clostridium botulinum: A bug with beauty and weapon. Crit. Rev. Microbiol., 2005, 31, 11-18.
[http://dx.doi.org/10.1080/10408410590912952] [PMID: 15839401]
[25]
Black, R.E.; Gunn, R.A. Hypersensitivity reactions associated with botulinal antitoxin. Am. J. Med., 1980, 69(4), 567-570.
[http://dx.doi.org/10.1016/0002-9343(80)90469-6] [PMID: 7191633]
[26]
Arnon, S.S.; Schechter, R.; Maslanka, S.E.; Jewell, N.P.; Hatheway, C.L. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med., 2006, 354(5), 462-471.
[http://dx.doi.org/10.1056/NEJMoa051926] [PMID: 16452558]
[27]
Schiavo, G.; Rossetto, O.; Montecucco, C. Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Semin. Cell Biol., 1994, 5(4), 221-229.
[http://dx.doi.org/10.1006/scel.1994.1028] [PMID: 7994006]
[28]
Patel, K.; Cai, S.; Singh, B.R. Current strategies for designing antidotes against botulinum neurotoxins. Expert Opin. Drug Discov., 2014, 9(3), 319-333.
[http://dx.doi.org/10.1517/17460441.2014.884066]
[29]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002] [PMID: 14522049]
[30]
Adler, M.; Deshpande, S.S.; Apland, J.P.; Murray, B.; Borrell, A. Reversal of BoNT/A-mediated inhibition of muscle paralysis by 3,4-diaminopyridine and roscovitine in mouse phrenic nerve-hemidiaphragm preparations. Neurochem. Int., 2012, 61(6), 866-873.
[http://dx.doi.org/10.1016/j.neuint.2012.07.015] [PMID: 22841859]
[31]
Bakry, N.; Kamata, Y.; Simpson, L.L. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J. Pharmacol. Exp. Ther., 1991, 258(3), 830-836.
[PMID: 1653841]
[32]
Kalandakanond, S.; Coffield, J.A. Cleavage of SNAP-25 by botulinum toxin type A requires receptor-mediated endocytosis, pH-dependent translocation, and zinc. J. Pharmacol. Exp. Ther., 2001, 296(3), 980-986.
[PMID: 11181932]
[33]
Simpson, L.L. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J. Pharmacol. Exp. Ther., 1983, 225(3), 546-552.
[PMID: 6864519]
[34]
Simpson, L.L.; Coffield, J.A.; Bakry, N. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J. Pharmacol. Exp. Ther., 1994, 269(1), 256-262.
[PMID: 8169833]
[35]
Nakai, Y.; Pellett, S.; Tepp, W.H.; Johnson, E.A.; Janda, K.D. Toosendanin: Synthesis of the AB-ring and investigations of its anti-botulinum properties (Part II). Bioorg. Med. Chem., 2010, 18(3), 1280-1287.
[http://dx.doi.org/10.1016/j.bmc.2009.12.030] [PMID: 20044261]
[36]
Azarnia Tehran, D.; Pirazzini, M.; Leka, O.; Mattarei, A.; Lista, F.; Binz, T.; Rossetto, O.; Montecucco, C. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell. Microbiol., 2017, 19(2)
[http://dx.doi.org/10.1111/cmi.12647] [PMID: 27404998]
[37]
Šilhár, P.; Silvaggi, N.R.; Pellett, S.; Čapková, K.; Johnson, E.A.; Allen, K.N.; Janda, K.D. Evaluation of adamantane hydroxamates as botulinum neurotoxin inhibitors: Synthesis, crystallography, modeling, kinetic and cellular based studies. Bioorg. Med. Chem., 2013, 21(5), 1344-1348.
[http://dx.doi.org/10.1016/j.bmc.2012.12.001] [PMID: 23340139]
[38]
Pirazzini, M.; Rossetto, O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin. Drug Discov., 2017, 12(5), 497-510.
[http://dx.doi.org/10.1080/17460441.2017.1303476] [PMID: 28271909]
[39]
Chan, S.H.; Chui, C.H.; Chan, S.W.; Kok, S.H.; Chan, D.; Tsoi, M.Y.; Leung, P.H.; Lam, A.K.; Chan, A.S.; Lam, K.H.; Tang, J.C. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med. Chem. Lett., 2012, 4(2), 170-174.
[http://dx.doi.org/10.1021/ml300238z] [PMID: 24900641]
[40]
Prati, F.; Bergamini, C.; Fato, R.; Soukup, O.; Korabecny, J.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L. Novel 8-Hydroxyquinoline derivatives as multi target compounds for the treatment of Alzheimer′s disease. ChemMedChem, 2016, 11(12), 1284-1295.
[http://dx.doi.org/10.1002/cmdc.201600014] [PMID: 26880501]
[41]
Jacobsen, J.A.; Fullagar, J.L.; Miller, M.T.; Cohen, S.M. Identifying chelators for metalloprotein inhibitors using a fragment-based approach. J. Med. Chem., 2011, 54(2), 591-602.
[http://dx.doi.org/10.1021/jm101266s] [PMID: 21189019]
[42]
Pippi, B.; Reginatto, P.; Machado, G.D.R.M.; Bergamo, V.Z.; Lana, D.F.D.; Teixeira, M.L.; Franco, L.L.; Alves, R.J.; Andrade, S.F.; Fuentefria, A.M.V.Z.; Lana, D.F.D.; Teixeira, M.L.; Fuentefria, A.M. Evaluation of 8-Hydroxyquinoline derivatives as hits for antifungal drug design. Med. Mycol., 2017, 55(7), 763-773.
[http://dx.doi.org/10.1093/mmy/myx003] [PMID: 28159993]
[43]
Lage, L.M.; Barichello, J.M.; Lage, D.P.; Mendonça, D.V.; Carvalho, A.M.; Rodrigues, M.R.; Menezes-Souza, D.; Roatt, B.M.; Alves, R.J.; Tavares, C.A.; Coelho, E.A.; Duarte, M.C. An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis. Parasitol. Res., 2016, 115(11), 4083-4095.
[http://dx.doi.org/10.1007/s00436-016-5181-4] [PMID: 27365053]
[44]
Capodagli, G.C.; Sedhom, W.G.; Jackson, M.; Ahrendt, K.A.; Pegan, S.D. A noncompetitive inhibitor for Mycobacterium tuberculosis’s class IIa fructose 1,6-bisphosphate aldolase. Biochemistry, 2014, 53, 202-213.
[http://dx.doi.org/10.1021/bi401022b] [PMID: 24325645]
[45]
Serrao, E.; Debnath, B.; Otake, H.; Kuang, Y.; Christ, F.; Debyser, Z.; Neamati, N. Fragment-based discovery of 8-hydroxyquinoline inhibitors of the HIV-1 integrase-lens epithelium-derived growth factor/p75 (IN-LEDGF/p75) interaction. J. Med. Chem., 2013, 56(6), 2311-2322.
[http://dx.doi.org/10.1021/jm301632e] [PMID: 23445471]
[46]
Dickerson, T.J.; Smith, G.R.; Pelletier, J.C.; Reitz, A.B. 8-Hydroxyquinoline and hydroxamic acid inhibitors of botulinum neurotoxin BoNT/A. Curr. Top. Med. Chem., 2014, 14(18), 2094-2102.
[http://dx.doi.org/10.2174/1568026614666141022095114] [PMID: 25335884]
[47]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: Applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[48]
Duarte, C.D.; Barreiro, E.J.; Fraga, C.A. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini Rev. Med. Chem., 2007, 7(11), 1108-1119.
[http://dx.doi.org/10.2174/138955707782331722] [PMID: 18045214]
[49]
Song, Y.; Chen, W.; Kang, D.; Zhang, Q.; Zhan, P.; Liu, X. “Old friends in new guise”: Exploiting privileged structures for scaffold re-evolution/refining. Comb. Chem. High Throughput Screen., 2014, 17(6), 536-553.
[http://dx.doi.org/10.2174/1386207317666140122101631] [PMID: 24446784]
[50]
Roxas-Duncan, V.; Enyedy, I.; Montgomery, V.A.; Eccard, V.S.; Carrington, M.A.; Lai, H.; Gul, N.; Yang, D.C.; Smith, L.A. Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob. Agents Chemother., 2009, 53(8), 3478-3486.
[http://dx.doi.org/10.1128/AAC.00141-09] [PMID: 19528275]
[51]
Bremer, P.T.; Adler, M.; Phung, C.H.; Singh, A.K.; Janda, K.D. Newly designed quinolinol inhibitors mitigate the effects of botulinum neurotoxin A in enzymatic, cell-based, and ex vivo assays. J. Med. Chem., 2017, 60(1), 338-348.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01393] [PMID: 27966961]
[52]
Montgomery, V.A.; Ahmed, S.A.; Olson, M.A.; Mizanur, R.M.; Stafford, R.G.; Roxas-Duncan, V.I.; Smith, L.A. Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors. Toxicon, 2015, 98, 12-19.
[http://dx.doi.org/10.1016/j.toxicon.2015.02.012] [PMID: 25707753]
[53]
Bompiani, K.M.; Caglič, D.; Krutein, M.C.; Benoni, G.; Hrones, M.; Lairson, L.L.; Bian, H.; Smith, G.R.; Dickerson, T.J. High-throughput screening uncovers novel botulinum neurotoxin inhibitor chemotypes. ACS Comb. Sci., 2016, 18(8), 461-474.
[http://dx.doi.org/10.1021/acscombsci.6b00033] [PMID: 27314875]
[54]
Harrell, W.A., Jr; Vieira, R.C.; Ensel, S.M.; Montgomery, V.; Guernieri, R.; Eccard, V.S.; Campbell, Y.; Roxas-Duncan, V.; Cardellina, J.H., II; Webb, R.P.; Smith, L.A. A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A. Bioorg. Med. Chem. Lett., 2017, 27(3), 675-678.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.019] [PMID: 28043798]
[55]
Caglič, D.; Krutein, M.C.; Bompiani, K.M.; Barlow, D.J.; Benoni, G.; Pelletier, J.C.; Reitz, A.B.; Lairson, L.L.; Houseknecht, K.L.; Smith, G.R.; Dickerson, T.J. Identification of clinically viable quinolinol inhibitors of botulinum neurotoxin A light chain. J. Med. Chem., 2014, 57(3), 669-676.
[http://dx.doi.org/10.1021/jm4012164] [PMID: 24387280]
[56]
Minnow, Y.V.; Goldberg, R.; Tummalapalli, S.R.; Rotella, D.P.; Goodey, N.M. Mechanism of inhibition of botulinum neurotoxin type A light chain by two quinolinol compounds. Arch. Biochem. Biophys., 2017, 618, 15-22.
[http://dx.doi.org/10.1016/j.abb.2017.01.006] [PMID: 28137423]
[57]
Adler, M.; Dinterman, R.E.; Wannemacher, R.W. Protection by the heavy metal chelator N,N,N′,N′-tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) against the lethal action of botulinum neurotoxin A and B. Toxicon, 1997, 35(7), 1089-1100.
[http://dx.doi.org/10.1016/S0041-0101(96)00215-2] [PMID: 9248007]
[58]
Sander, T.; Freyss, J.; von Korff, M.; Reich, J.R.; Rufener, C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model., 2009, 49(2), 232-246.
[http://dx.doi.org/10.1021/ci800305f] [PMID: 19434825]
[59]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[60]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J.; Feeney, J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[61]
Prediction of Drug-Like Properties, Gisbert Schneider. Austin (TX): Landes Bioscience; 2000,. , 2013.
[62]
Daina, A.; Michielin, O.; Zoete, V. Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717-42730.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]