Recent Advances in Application of Azobenzenes Grafted on Mesoporous Silica Nanoparticles in Controlled Drug Delivery Systems Using Light as External Stimulus

Page: [1001 - 1016] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.

Keywords: MSN, Light, DDS, photoswitches, azobenzenes, nanocarriers.

Graphical Abstract

[1]
Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother., 2019, 109, 1100-1111.
[http://dx.doi.org/10.1016/j.biopha.2018.10.167] [PMID: 30551360]
[2]
Liong, M.; Angelos, S.; Choi, E.; Patel, K.; Stoddart, J.F.; Zink, J.F. Mesostructured multifunctional nanoparticles for imaging and drug delivery. J. Mater. Chem., 2009, 19, 6251-6257.
[http://dx.doi.org/10.1039/b902462j]
[3]
Gohy, J-F.; Zhao, Y. Photo-responsive block copolymer micelles: design and behavior. Chem. Soc. Rev., 2013, 42(17), 7117-7129.
[http://dx.doi.org/10.1039/c3cs35469e] [PMID: 23364156]
[4]
Kang, X.; Cheng, Z.; Yang, D.; Ma, P.; Shang, M.; Peng, C.; Dai, Y.; Lin, J. Design and synthesis of multifunctional drug carriers based on Luminescent Rattle-Typem mesoporous silica microspheres with a Thermosensitive hydrogel as a controlled switch. Adv. Funct. Mater., 2012, 22, 1470-1481.
[http://dx.doi.org/10.1002/adfm.201102746]
[5]
Yuan, Z.; Zhao, D.; Yi, X.; Zhuo, R.; Li, F. Steric protected and illumination-activated tumor targeting accessory for endowing drug-delivery systems with tumor selectivity. Adv. Funct. Mater., 2014, 24, 1799-1807.
[http://dx.doi.org/10.1002/adfm.201301309]
[6]
Ferris, D.P.; Zhao, Y-L.; Khashab, N.M.; Khatib, H.A.; Stoddart, J.F.; Zink, J.I. Light-operated mechanized nanoparticles. J. Am. Chem. Soc., 2009, 131(5), 1686-1688.
[http://dx.doi.org/10.1021/ja807798g] [PMID: 19159224]
[7]
Vrouwe, M.G.; Pines, A.; Overmeer, R.M.; Hanada, K.; Mullenders, L.H.F. UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J. Cell Sci., 2011, 124(Pt 3), 435-446.
[http://dx.doi.org/10.1242/jcs.075325] [PMID: 21224401]
[8]
Banerjee, G.; Gupta, N.; Kapoor, A.; Raman, G. UV induced bystander signaling leading to apoptosis. Cancer Lett., 2005, 223(2), 275-284.
[http://dx.doi.org/10.1016/j.canlet.2004.09.035] [PMID: 15896462]
[9]
Kalka, K.; Merk, H.; Mukhtar, H. Photodynamic therapy in dermatology. J. Am. Acad. Dermatol., 2000, 42(3), 389-413.
[http://dx.doi.org/10.1016/S0190-9622(00)90209-3] [PMID: 10688709]
[10]
Rajendran, M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagn. Photodyn. Ther., 2016, 13, 175-187.
[http://dx.doi.org/10.1016/j.pdpdt.2015.07.177] [PMID: 26241780]
[11]
Cheng, Z.; Lin, J. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers. Macromol. Rapid Commun., 2015, 36(9), 790-827.
[http://dx.doi.org/10.1002/marc.201400588] [PMID: 25808559]
[12]
Álvarez, M.; Best, A.; Unger, A.; Alonso, J.M.; del Campo, A.; Schmelzeisen, M.; Koynov, K.; Kreiter, M. Near-Field lithography by Two-Photon induced photocleavage of organic monolayers. Adv. Funct. Mater., 2010, 20, 4265-4272.
[http://dx.doi.org/10.1002/adfm.201000939]
[13]
Álvarez, M.; Best, A.; Pradhan-Kadam, S.; Koynov, K.; Jonas, U.; Kreiter, M. Single-Photon and Two-Photon induced photocleavage for monolayers of an alkyltriethoxylsilane with a photoprotected carboxylic ester. Adv. Mater., 2008, 20, 4563-4567.
[http://dx.doi.org/10.1002/adma.200800746]
[14]
Yang, D.; Ma, P.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev., 2015, 44(6), 1416-1448.
[http://dx.doi.org/10.1039/C4CS00155A] [PMID: 24988288]
[15]
He, S.; Krippes, K.; Ritz, S.; Chen, Z.; Best, A.; Butt, H-J.; Mailänder, V.; Wu, S. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem. Commun. (Camb.), 2015, 51(2), 431-434.
[http://dx.doi.org/10.1039/C4CC07489K] [PMID: 25407146]
[16]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5), 889-896.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[17]
Lee, J.E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res., 2011, 44(10), 893-902.
[http://dx.doi.org/10.1021/ar2000259] [PMID: 21848274]
[18]
Liu, J.; Li, C.; Li, F. Fluorescence turn-on chemodosimeter-functionalized mesoporous silica nanoparticles and their application in cell imaging. J. Mater. Chem., 2011, 21, 7175-7181.
[http://dx.doi.org/10.1039/c1jm10803d]
[19]
Popat, A.; Hartono, S.B.; Stahr, F.; Liu, J.; Qiao, S.Z.; Qing Max Lu, G. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 2011, 3(7), 2801-2818.
[http://dx.doi.org/10.1039/c1nr10224a] [PMID: 21547299]
[20]
Salinas, A.J.; Esbrit, P.; Vallet-Regí, M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci., 2013, 1, 40-51.
[http://dx.doi.org/10.1039/C2BM00071G]
[21]
Vitale-Brovarone, C.; Baino, F.; Miola, M.; Mortera, R.; Onida, B.; Verné, E. Glass-ceramic scaffolds containing silica mesophases for bone grafting and drug delivery. J. Mater. Sci. Mater. Med., 2009, 20(3), 809-820.
[http://dx.doi.org/10.1007/s10856-008-3635-7] [PMID: 19020955]
[22]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[23]
Scherer, G.W.; Brinker, C.J. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st ed; Elsevier, 1990.
[24]
Casado, N.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Current development and applications of ordered mesoporous silicas and other sol–gel silica-based materials in food sample preparation for xenobiotics analysis. Trends Analyt. Chem., 2017, 88, 167-184.
[http://dx.doi.org/10.1016/j.trac.2017.01.001]
[25]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[26]
Tanev, P.T.; Pinnavaia, T.J. A neutral templating route to mesoporous molecular sieves. Science, 1995, 267(5199), 865-867.
[http://dx.doi.org/10.1126/science.267.5199.865] [PMID: 17813916]
[27]
Yu, C.; Yua, Y.; Zhao, D. Highly ordered large caged cubic mesoporous silica 23 structures templated by triblock PEO–PBO–PEO copolymer. Chem. Commun. (Camb.), 2000, 24, 575-576.
[http://dx.doi.org/10.1039/b000603n]
[28]
Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. Engl., 2006, 45(20), 3216-3251.
[http://dx.doi.org/10.1002/anie.200503075] [PMID: 16676373]
[29]
Vallet-Regi, M.; Ramila, A.; del Real, R.P.; Perez-Pariente, J. A new property of mcm-41: Drug delivery system. Chem. Mater., 2001, 13, 308-311.
[http://dx.doi.org/10.1021/cm0011559]
[30]
Wu, S-H.; Hung, Y.; Mou, C-Y. Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. (Camb.), 2011, 47(36), 9972-9985.
[http://dx.doi.org/10.1039/c1cc11760b] [PMID: 21716992]
[31]
She, X.; Chen, L.; Yi, Z.; Li, C.; He, C.; Feng, C.; Wang, T.; Shigdar, S.; Duan, W.; Kong, L. Tailored mesoporous silica nanoparticles for controlled drug delivery: Platform fabrication, targeted delivery, and computational design and analysis. Mini Rev. Med. Chem., 2018, 18(11), 976-989.
[http://dx.doi.org/10.2174/1389557516666160505114814] [PMID: 27145854]
[32]
Stein, A.; Melde, B.J. Schroden. Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. R. C. Adv. Mater., 2000, 12, 1403-1419.
[33]
Lim, M.H.; Stein, A. Comparative studies of grafting and direct synthesis of inorganic-organic hybrid mesoporous materials. Chem. Mater., 1999, 11, 3285-3295.
[http://dx.doi.org/10.1021/cm990369r]
[34]
Zhu, C-L.; Lu, C-H.; Song, X-Y.; Yang, H-H.; Wang, X-R. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J. Am. Chem. Soc., 2011, 133(5), 1278-1281.
[http://dx.doi.org/10.1021/ja110094g] [PMID: 21214180]
[35]
Mal, N.K.; Fujiwara, M.; Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 2003, 421(6921), 350-353.
[http://dx.doi.org/10.1038/nature01362] [PMID: 12540896]
[36]
Cotí, K.K.; Belowich, M.E.; Liong, M.; Ambrogio, M.W.; Lau, Y.A.; Khatib, H.A.; Zink, J.I.; Khashab, N.M.; Stoddart, J.F. Mechanised nanoparticles for drug delivery. Nanoscale, 2009, 1(1), 16-39.
[http://dx.doi.org/10.1039/b9nr00162j] [PMID: 20644858]
[37]
Baeza, A.; Guisasola, E. RuizHernández, E.; Vallet-Regí, M. Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chem. Mater., 2012, 24, 517-524.
[http://dx.doi.org/10.1021/cm203000u]
[38]
Liu, J.; Du, X. pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. Mater. Chem., 2010, 20, 3642-3649.
[http://dx.doi.org/10.1039/b915510d]
[39]
Luo, Z.; Cai, K.; Hu, Y.; Zhao, L.; Liu, P.; Duan, L.; Yang, W. Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 640-643.
[http://dx.doi.org/10.1002/anie.201005061] [PMID: 21226142]
[40]
Yang, X.; Liu, X.; Liu, Z.; Pu, F.; Ren, J.; Qu, X. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater., 2012, 24(21), 2890-2895.
[http://dx.doi.org/10.1002/adma.201104797] [PMID: 22539076]
[41]
Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int. J. Nanomedicine, 2016, 12, 87-110.
[http://dx.doi.org/10.2147/IJN.S117495] [PMID: 28053526]
[42]
Mal, N.K.; Fujiwara, M.; Tanaka, Y.; Taguchi, T.; Matsukata, M. Photo-Switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41. Chem. Mater., 2003, 15, 3385-3394.
[http://dx.doi.org/10.1021/cm0343296]
[43]
Guardado-Alvarez, T.M.; Sudha Devi, L.; Russell, M.M.; Schwartz, B.J.; Zink, J.I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc., 2013, 135(38), 14000-14003.
[http://dx.doi.org/10.1021/ja407331n] [PMID: 24015927]
[44]
Aznar, E.; Casasús, R.; García-Acosta, B.; Marcos, M.D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Amorós, P. Photochemical and chemical Two‐Channel control of functional nanogated hybrid architectures. Adv. Mater., 2007, 19, 2228-2231.
[http://dx.doi.org/10.1002/adma.200601958]
[45]
Lin, Q.; Huang, Q.; Li, C.; Bao, C.; Liu, Z.; Li, F.; Zhu, L. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process. J. Am. Chem. Soc., 2010, 132(31), 10645-10647.
[http://dx.doi.org/10.1021/ja103415t] [PMID: 20681684]
[46]
Zheng, Y.B.; Hao, Q.; Yang, Y-W.; Huang, T.J. Light-driven Artificial molecular machines. J. Nanophotonics, 2010, 4(042501), 1-26.
[47]
Agostini, A.; Sancenón, F.; Martínez-Máñez, R.; Marcos, M.D.; Soto, J.; Amorós, P. A photoactivated molecular gate. Chemistry, 2012, 18(39), 12218-12221.
[http://dx.doi.org/10.1002/chem.201201127] [PMID: 22907729]
[48]
Chang, Y.T.; Liao, P.Y.; Sheu, H.S.; Tseng, Y.J.; Cheng, F.Y.; Yeh, C.S. Near-infrared light-responsive intracellular drug and siRNA release using au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater., 2012, 24(25), 3309-3314.
[http://dx.doi.org/10.1002/adma.201200785] [PMID: 22648937]
[49]
Yang, J.; Shen, D.; Zhou, L. Spatially confined fabrication of core–shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater., 2013, 25(15), 3030-3037.
[http://dx.doi.org/10.1021/cm401115b]
[50]
Yang, Y-W.; Sun, Y-L.; Song, N. Switchable host-guest systems on surfaces. Acc. Chem. Res., 2014, 47(7), 1950-1960.
[http://dx.doi.org/10.1021/ar500022f] [PMID: 24635353]
[51]
Vivero-Escoto, J.L.; Slowing, I.I.; Wu, C.W.; Lin, V.S. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc., 2009, 131(10), 3462-3463.
[http://dx.doi.org/10.1021/ja900025f] [PMID: 19275256]
[52]
Zhao, Y.; Ikeda, T. Azobenzene-Containing block copolymer micelles: Toward light controllable nanocarriers. Smart Light Responsive Materials - Azobenzene-containing Polymers and Liquid Crystals; John Wiley & Sons: Hoboken, NJ, 2009.
[http://dx.doi.org/10.1002/9780470439098.ch6]
[53]
Hunger, K.; Mischke, P.; Rieper, W. Azo Dyes. In Ullmann's Encyclopedia of Industrial Chemistry, Verlag GmbH & Co.: Weinheim, 2011.
[54]
Beharry, A.A.; Sadovski, O.; Woolley, G.A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc., 2011, 133(49), 19684-19687.
[http://dx.doi.org/10.1021/ja209239m] [PMID: 22082305]
[55]
Beharry, A.A.; Sadovski, O.; Woolley, G.A. Photo-control of peptide conformation on a timescale of seconds with a conformationally constrained, blue-absorbing, photo-switchable linker. Org. Biomol. Chem., 2008, 6(23), 4323-4332.
[http://dx.doi.org/10.1039/b810533b] [PMID: 19005591]
[56]
Gu, W-X.; Li, Q-L.; Lu, H.; Fang, L.; Chen, Q.; Yang, Y-W.; Gao, H. Construction of stable polymeric vesicles based on azobenzene and beta-cyclodextrin grafted poly(glycerol methacrylate)s for potential applications in colon-specific drug delivery. Chem. Commun. (Camb.), 2015, 51(22), 4715-4718.
[http://dx.doi.org/10.1039/C5CC00628G] [PMID: 25692460]
[57]
Akiba, U.; Minaki, D.; Anzai, J.I. Photosensitive Layer-by-Layer assemblies containing azobenzene groups: Synthesis and biomedical applications. Polymers (Basel), 2017, 9(11), 553-569.
[http://dx.doi.org/10.3390/polym9110553] [PMID: 30965853]
[58]
Geng, S.; Wang, Y.; Wang, L.; Kouyama, T.; Gotoh, T.; Wada, S.; Wang, J.Y. A Light-Responsive self-assembly formed by a cationic azobenzene derivative and SDS as a drug delivery system. Sci. Rep., 2017, 7(39202), 39202.
[http://dx.doi.org/10.1038/srep39202] [PMID: 28051069]
[59]
Samanta, S.; Beharry, A.A.; Sadovski, O.; McCormick, T.M.; Babalhavaeji, A.; Tropepe, V.; Woolley, G.A. Photoswitching azo compounds in vivo with red light. J. Am. Chem. Soc., 2013, 135(26), 9777-9784.
[http://dx.doi.org/10.1021/ja402220t] [PMID: 23750583]
[60]
Merino, E.; Ribagorda, M. Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J. Org. Chem., 2012, 8, 1071-1090.
[http://dx.doi.org/10.3762/bjoc.8.119] [PMID: 23019434]
[61]
Zeyat, G.; Rück-Braun, K. Building photoswitchable 3,4′-AMPB peptides: Probing chemical ligation methods with reducible azobenzene thioesters. Beilstein J. Org. Chem., 2012, 8, 890-896.
[http://dx.doi.org/10.3762/bjoc.8.101] [PMID: 23015839]
[62]
Sell, H.; Näther, C.; Herges, R.; Beilstein, J. Amino-substituted diazocines as pincer-type photochromic switches. Beilstein J. Org. Chem., 2013, 9, 1-7.
[http://dx.doi.org/10.3762/bjoc.9.1] [PMID: 23399830]
[63]
García-Amorós, J.; Velasco, D. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem., 2012, 8, 1003-1017.
[http://dx.doi.org/10.3762/bjoc.8.113] [PMID: 23019428]
[64]
Renner, C.; Moroder, L. Azobenzene as conformational switch in model peptides. Chem. Bio. Chem., 2006, 7(6), 868-878.
[http://dx.doi.org/10.1002/cbic.200500531] [PMID: 16642526]
[65]
Merino, E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev., 2011, 40(7), 3835-3853.
[http://dx.doi.org/10.1039/c0cs00183j] [PMID: 21409258]
[66]
Yager, K.G.; Barrett, C.J. Novel photo-switching using azobenzene functional materials. Photochem. Photobiol. Chem, 2006, 182, 250-261.
[67]
Hallas, G.; Jalil, M.A. The effects of cyclic terminal groups in 4-aminoazobenzene and related azo dyes. Part 6. Electronic absorption spectra of some monoazo dyes derived from N-phenyliso-indoline. Dyes Pigments, 1996, 32, 129-133.
[http://dx.doi.org/10.1016/0143-7208(96)00030-7]
[68]
Hallas, G.; Marsden, R.; Hepworth, J.D.; Mason, D. The effects of cyclic terminal groups in 4-aminoazobenzene and related azo dyes. Part 3. Electronic absorption spectra of some monoazo dyes derived from N-phenylmorpholine, N-(phenyl)thiomorpholine, N-(phenyl)thiomorpholine 1,1-dioxide, and N-acetyl-N′-phenylpiperazine. J. Chem. Soc. Perkin Trans., 1986, II, 123-126.
[http://dx.doi.org/10.1039/P29860000123]
[69]
Bléger, D.; Schwarz, J.; Brouwer, A.M.; Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc., 2012, 134(51), 20597-20600.
[http://dx.doi.org/10.1021/ja310323y] [PMID: 23236950]
[70]
Siewertsen, R.; Neumann, H.; Buchheim-Stehn, B.; Herges, R.; Näther, C.; Renth, F.; Temps, F. Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S(1)(n π*) absorption bands. J. Am. Chem. Soc., 2009, 131(43), 15594-15595.
[http://dx.doi.org/10.1021/ja906547d] [PMID: 19827776]
[71]
Laprell, L.; Hüll, K.; Stawski, P.; Schön, C.; Michalakis, S.; Biel, M.; Sumser, M.P.; Trauner, D. Restoring light sensitivity in blind retinae using a photochromic AMPA receptor agonist. ACS Chem. Neurosci., 2016, 7(1), 15-20.
[http://dx.doi.org/10.1021/acschemneuro.5b00234] [PMID: 26495755]
[72]
Hartrampf, F.W.; Barber, D.M.; Gottschling, K.; Leippe, P.; Hollmann, M.; Trauner, D. Development of a Photoswitchable Antagonist of NMDA Receptors. Tetrahedron, 2017, 73, 4905-4912.
[http://dx.doi.org/10.1016/j.tet.2017.06.056]
[73]
Mourot, A.; Herold, C.; Kienzler, M.A.; Kramer, R.H. Understanding and improving photo-control of ion channels in nociceptors with azobenzene photo-switches. Br. J. Pharmacol., 2018, 175(12), 2296-2311.
[http://dx.doi.org/10.1111/bph.13923] [PMID: 28635081]
[74]
Broichhagen, J.; Frank, J.A.; Johnston, N.R.; Mitchell, R.K.; Šmid, K.; Marchetti, P.; Bugliani, M.; Rutter, G.A.; Trauner, D.; Hodson, D.J. A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem. Commun. (Camb.), 2015, 51(27), 6018-6021.
[http://dx.doi.org/10.1039/C5CC01224D] [PMID: 25744824]
[75]
Yeoh, Y.Q.; Yu, J.; Polyak, S.W.; Horsley, J.R.; Abell, A.D. Photopharmacological control of cyclic antimicrobial peptides. Chem- BioChem, 2018, 19(24), 2591-2597.
[http://dx.doi.org/10.1002/cbic.201800618] [PMID: 30324702]
[76]
Thapaliya, E.R.; Zhao, J.; Ellis-Davies, G.C.R. Locked-Azobenzene: Testing the scope of a unique photoswitchable scaffold for cell physiology. ACS Chem. Neurosci., 2019, 10(5), 2481-2488.
[http://dx.doi.org/10.1021/acschemneuro.8b00734] [PMID: 30767510]
[77]
Peng, L.; Liu, S.; Feng, A.; Yuan, J. Polymeric nanocarriers based on cyclodextrins for drug delivery: Host-Guest interaction as stimuli responsive linker. Mol. Pharm., 2017, 14(8), 2475-2486.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00160] [PMID: 28463008]
[78]
Zhang, X.; Ma, X.; Wang, K.; Lin, S.; Zhu, S.; Dai, Y.; Xia, F. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems. Macromol. Rapid Commun., 2018, 39(11) e1800142
[http://dx.doi.org/10.1002/marc.201800142] [PMID: 29682842]
[79]
Luboch, E.; Poleska-Muchlado, Z.; Jamrógiewicz, M.; Biernat, J.F. Cyclodextrin combinations with azocompounds, in K. Gloe (ed.), Macrocyclic Chemistry: Current Trends and Future Perspectives, 203-218.© 2005 Springer. Printed in the Netherlands.
[80]
Liu, Y.; Zhao, Y-L.; Chen, Y.; Guo, D-S. Assembly behavior of inclusion complexes of β-cyclodextrin with 4-hydroxyazobenzene and 4-aminoazobenzene. Org. Biomol. Chem., 2005, 3(4), 584-591.
[http://dx.doi.org/10.1039/B415946B] [PMID: 15703792]
[81]
Bortolus, P.; Monti, S. Cis - Trans photoisomerization of azobenzene-cyclodextrin inclusion complexes. J. Phys. Chem., 1987, 91, 5046-5050.
[http://dx.doi.org/10.1021/j100303a032]
[82]
Sanchez, A.M.; de Rossi, R.H. Effect of β-cyclodextrin on the thermal Cis-trans isomerization of azobenzenes. J. Org. Chem., 1996, 61, 3446-3451.
[http://dx.doi.org/10.1021/jo951028+]
[83]
Zhang, L.; Zhang, H.; Gao, F.; Peng, H.; Ruan, Y.; Xu, Y.; Weng, W. Host–guest interaction between fluoro-substituted azobenzene derivative and cyclodextrins. RSC Advances, 2015, 5, 12007-12014.
[http://dx.doi.org/10.1039/C4RA13283A]
[84]
Wang, D.; Wagner, M.; Butt, H.J.; Wu, S. Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue. Soft Matter, 2015, 11(38), 7656-7662.
[http://dx.doi.org/10.1039/C5SM01888A] [PMID: 26292617]
[85]
Huang, H.; Juan, A.; Katsonis, N.; Huskens, J. Competitive inclusion of molecular photo-switches in host cavities. Tetrahedron, 2017, 73, 4913-4917.
[http://dx.doi.org/10.1016/j.tet.2017.05.026]
[86]
Wang, D.; Wagner, M.; Saydjari, A.K.; Mueller, J.; Winzen, S.; Butt, H-J.; Wu, S. A photoresponsive orthogonal supramolecular complex based on host-guest interactions. Chemistry, 2017, 23(11), 2628-2634.
[http://dx.doi.org/10.1002/chem.201604634] [PMID: 27925694]
[87]
Wang, D.; Wu, S. Red-Light-Responsive supramolecular valves for photocontrolled drug release from mesoporous nanoparticles. Langmuir, 2016, 32, 632-636.
[http://dx.doi.org/10.1021/acs.langmuir.5b04399] [PMID: 26700509]
[88]
Zhao, J.; He, Z.; Li, B.; Cheng, T.; Liu, G. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles. Mater. Sci. Eng. C, 2017, 73, 1-7.
[http://dx.doi.org/10.1016/j.msec.2016.12.056] [PMID: 28183586]
[89]
Yu, J.; Qu, H.; Dong, T.; Rong, M.; Yang, L.; Liu, H. A reversible light-responsive assembly system based on host-guest interaction for controlled release. New J. Chem., 2018, 42, 6532-6537.
[http://dx.doi.org/10.1039/C8NJ00014J]
[90]
Wang, F.; Ju, E.; Guan, Y.; Ren, J.; Qu, X. Light-Mediated reversible modulation of ros level in living cells by using an activity-controllable nanozyme. Small, 2017, 13(25), 1-6.
[http://dx.doi.org/10.1002/smll.201603051] [PMID: 28508454]
[91]
Wang, M.; Wang, T.; Wang, D.; Jiang, W.; Fu, J. Acid and light stimuli-responsive mesoporous silica nanoparticles for controlled release. J. Mater. Sci., 2019, 54, 6199-6211.
[http://dx.doi.org/10.1007/s10853-019-03325-x]
[92]
Chang, D.; Yuan, Z.; Yan, W.; Han, D.; Wang, Q.; Zou, L. Light/chemo dual-controlled supramolecular assembly with multi-modes based on the self-sorting function. Dyes Pigm., 2019, 160, 726-730.
[http://dx.doi.org/10.1016/j.dyepig.2018.08.067]
[93]
Tang, Y.; Lu, X.; Yin, C.; Zhao, H.; Hu, W.; Hu, X.; Li, Y.; Yang, Z.; Lu, F.; Fan, Q.; Huang, W. Chemiluminescence-initiated and in situ-enhanced photoisomerization for tissue-depth-independent photo-controlled drug release. Chem. Sci. (Camb.), 2018, 10(5), 1401-1409.
[http://dx.doi.org/10.1039/C8SC04012E] [PMID: 30809357]