Mini-Reviews in Medicinal Chemistry

Author(s): Miao Li, Meng Pan, Chengzhong You and Jun Dou*

DOI: 10.2174/1389557519666190904141922

The Therapeutic Potential of miR-7 in Cancers

Page: [1707 - 1716] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

MiRNAs play an important role in cancers. As a potent tumor suppressor, miRNA-7(miR-7) has been demonstrated to inhibit the diverse fundamental biological processes in multiple cancer types including initiation, growth and metastasis by targeting a number of molecules and signaling pathways. This current review summarizes and discusses the relationship between miR-7 and cancers and the therapeutic potential of miR-7 in cancers. It may provide new integrative understanding for future study on the role of miR-7 in cancers.

Keywords: miR-7, tumors, cancer cell signaling, therapy, RISC, ceRNA.

Graphical Abstract

[1]
Li, X.; Yang, W.; Lou, L.; Chen, Y.; Wu, S.; Ding, G. microRNA: a promising diagnostic biomarker and therapeutic target for hepatocellular carcinoma. Dig. Dis. Sci., 2014, 59(6), 1099-1107.
[http://dx.doi.org/10.1007/s10620-013-3006-1] [PMID: 24390674]
[2]
Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543), 853-858.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[3]
Zhao, J.; Tao, Y.; Zhou, Y.; Qin, N.; Chen, C.; Tian, D.; Xu, L. MicroRNA-7: A promising new target in cancer therapy. Cancer Cell Int., 2015, 15, 103.
[http://dx.doi.org/10.1186/s12935-015-0259-0] [PMID: 26516313]
[4]
Horsham, J.L.; Ganda, C.; Kalinowski, F.C.; Brown, R.A.; Epis, M.R.; Leedman, P.J. MicroRNA-7: A miRNA with expanding roles in development and disease. Int. J. Biochem. Cell Biol., 2015, 69, 215-224.
[http://dx.doi.org/10.1016/j.biocel.2015.11.001] [PMID: 26546742]
[5]
Bravo-Egana, V.; Rosero, S.; Molano, R.D.; Pileggi, A.; Ricordi, C.; Domínguez-Bendala, J.; Pastori, R.L. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun., 2008, 366(4), 922-926.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.052] [PMID: 18086561]
[6]
Reddy, S.D.; Ohshiro, K.; Rayala, S.K.; Kumar, R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res., 2008, 68(20), 8195-8200.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2103] [PMID: 18922890]
[7]
Ning, B.F.; Ding, J.; Liu, J.; Yin, C.; Xu, W.P.; Cong, W.M.; Zhang, Q.; Chen, F.; Han, T.; Deng, X.; Wang, P.Q.; Jiang, C.F.; Zhang, J.P.; Zhang, X.; Wang, H.Y.; Xie, W.F. Hepatocyte nuclear factor 4α-nuclear factor-κB feedback circuit modulates liver cancer progression. Hepatology, 2014, 60(5), 1607-1619.
[http://dx.doi.org/10.1002/hep.27177] [PMID: 24752868]
[8]
McInnes, N.; Sadlon, T.J.; Brown, C.Y.; Pederson, S.; Beyer, M.; Schultze, J.L.; McColl, S.; Goodall, G.J.; Barry, S.C. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene, 2012, 31(8), 1045-1054.
[http://dx.doi.org/10.1038/onc.2011.293] [PMID: 21743493]
[9]
Chou, Y.T.; Lin, H.H.; Lien, Y.C.; Wang, Y.H.; Hong, C.F.; Kao, Y.R.; Lin, S.C.; Chang, Y.C.; Lin, S.Y.; Chen, S.J.; Chen, H.C.; Yeh, S.D.; Wu, C.W. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res., 2010, 70(21), 8822-8831.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0638] [PMID: 20978205]
[10]
Zhao, X.D.; Lu, Y.Y.; Guo, H.; Xie, H.H.; He, L.J.; Shen, G.F.; Zhou, J.F.; Li, T.; Hu, S.J.; Zhou, L.; Han, Y.N.; Liang, S.L.; Wang, X.; Wu, K.C.; Shi, Y.Q.; Nie, Y.Z.; Fan, D.M. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis. J. Cell Biol., 2015, 210(4), 613-627.
[http://dx.doi.org/10.1083/jcb.201501073] [PMID: 26261179]
[11]
Chen, Y.J.; Chien, P.H.; Chen, W.S.; Chien, Y.F.; Hsu, Y.Y.; Wang, L.Y.; Chen, J.Y.; Lin, C.W.; Huang, T.C.; Yu, Y.L.; Huang, W.C.; Hepatitis, B.; Virus-Encoded, X.; Hepatitis, B.; Virus-Encoded, X. Protein Downregulates EGFR Expression via Inducing MicroRNA-7 in Hepatocellular Carcinoma Cells. Evid. Based Complement. Alternat. Med., 2013.2013682380
[http://dx.doi.org/10.1155/2013/682380] [PMID: 23840262]
[12]
Zhang, H.; Cai, K.; Wang, J.; Wang, X.; Cheng, K.; Shi, F.; Jiang, L.; Zhang, Y.; Dou, J. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells, 2014, 32(11), 2858-2868.
[http://dx.doi.org/10.1002/stem.1795] [PMID: 25070049]
[13]
Wu, H.; Sun, S.; Tu, K.; Gao, Y.; Xie, B.; Krainer, A.R.; Zhu, J. A splicing-independent function of SF2/ASF in microRNA processing. Mol. Cell, 2010, 38, 67-77.
[http://dx.doi.org/10.1016/j.molcel.2010.02.021] [PMID: 20385090]
[14]
Li, Y.J.; Wang, C.H.; Zhou, Y.; Liao, Z.Y.; Zhu, S.F.; Hu, Y.; Chen, C.; Luo, J.M.; Wen, Z.K.; Xu, L. TLR9 signaling repressed tumor suppressor miR-7 expression through up-regulation of HuR in human lung cancer cells. Cancer Cell Int., 2013, 13, 90.
[http://dx.doi.org/10.1186/1475-2867-13-90] [PMID: 24004462]
[15]
Lebedeva, S.; Jens, M.; Theil, K.; Schwanhäusser, B.; Selbach, M.; Landthaler, M.; Rajewsky, N. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 2011, 43(3), 340-352.
[http://dx.doi.org/10.1016/j.molcel.2011.06.008] [PMID: 21723171]
[16]
Choudhury, N.R.; de Lima Alves, F.; de Andrés-Aguayo, L.; Graf, T.; Cáceres, J.F.; Rappsilber, J.; Michlewski, G. Tissue-specific control of brain-enriched miR-7 biogenesis. Genes Dev., 2013, 27(1), 24-38.
[http://dx.doi.org/10.1101/gad.199190.112] [PMID: 23307866]
[17]
Wang, Y.; Vogel, G.; Yu, Z.; Richard, S. The QKI-5 and QKI-6 RNA binding proteins regulate the expression of microRNA 7 in glial cells. Mol. Cell. Biol., 2013, 33(6), 1233-1243.
[http://dx.doi.org/10.1128/MCB.01604-12] [PMID: 23319046]
[18]
Liu, L.; Liu, F.B.; Huang, M.; Xie, K.; Xie, Q.S.; Liu, C.H.; Shen, M.J.; Huang, Q. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. HBPD Intl , 2019, S1499- 3872(19), 30039-6.
[http://dx.doi.org/10.1016/j.hbpd.2019.03.003] [PMID: 30898507]
[19]
Zhang, X.; Yang, D.; Wei, Y. Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer. OncoTargets Ther., 2018, 11, 3979-3987.
[http://dx.doi.org/10.2147/OTT.S158316] [PMID: 30022841]
[20]
Liu, X.; Fu, Q.; Li, S.; Liang, N.; Li, F.; Li, C.; Sui, C.; Dionigi, G.; Sun, H. LncRNA FOXD2-AS1 Functions as a Competing Endogenous RNA to Regulate TERT Expression by Sponging miR-7-5p in Thyroid Cancer. Front. Endocrinol. (Lausanne), 2019, 10, 207.
[http://dx.doi.org/10.3389/fendo.2019.00207] [PMID: 31024447]
[21]
Zhang, X.; Zhao, X.; Li, Y.; Zhou, Y.; Zhang, Z. Long noncoding RNA SOX21-AS1 promotes cervical cancer progression by competitively sponging miR-7/VDAC1. J. Cell. Physiol., 2019.
[http://dx.doi.org/10.1002/jcp.28371] [PMID: 30912129]
[22]
Yu, S.; Wang, D.; Shao, Y.; Zhang, T.; Xie, H.; Jiang, X.; Deng, Q.; Jiao, Y.; Yang, J.; Cai, C.; Sun, L. SP1-induced lncRNA TINCR overexpression contributes to colorectal cancer progression by sponging miR-7-5p. Aging (Albany NY), 2019, 11(5), 1389-1403.
[http://dx.doi.org/10.18632/aging.101839] [PMID: 30853664]
[23]
Gao, D.; Qi, X.; Zhang, X.; Fang, K.; Guo, Z.; Li, L. hsa_circRNA_0006528 as a competing endogenous RNA promotes human breast cancer progression by sponging miR-7-5p and activating the MAPK/ERK signaling pathway. Mol. Carcinog., 2019, 58(4), 554-564.
[http://dx.doi.org/10.1002/mc.22950] [PMID: 30520151]
[24]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[25]
Cui, Y.X.; Bradbury, R.; Flamini, V.; Wu, B.; Jordan, N.; Jiang, W.G. MicroRNA-7 suppresses the homing and migration potential of human endothelial cells to highly metastatic human breast cancer cells. Br. J. Cancer, 2017, 117, 89-101.
[http://dx.doi.org/10.1038/bjc.2017.156] [PMID: 28571043]
[26]
Foekens, J.A.; Sieuwerts, A.M.; Smid, M.; Look, M.P.; de Weerd, V.; Boersma, A.W.; Klijn, J.G.; Wiemer, E.A.; Martens, J.W. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13021-13026.
[http://dx.doi.org/10.1073/pnas.0803304105] [PMID: 18755890]
[27]
Webster, R.J.; Giles, K.M.; Price, K.J.; Zhang, P.M.; Mattick, J.S.; Leedman, P.J. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J. Biol. Chem., 2009, 284(9), 5731-5741.
[http://dx.doi.org/10.1074/jbc.M804280200] [PMID: 19073608]
[28]
Shi, Y.; Luo, X.; Li, P.; Tan, J.; Wang, X.; Xiang, T.; Ren, G. miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ. Cancer Lett., 2015, 358, 27-36.
[http://dx.doi.org/10.1016/j.canlet.2014.12.014] [PMID: 25511742]
[29]
Huynh, F.C.; Jones, F.E. MicroRNA-7 inhibits multiple oncogenic pathways to suppress HER2Δ16 mediated breast tumorigenesis and reverse trastuzumab resistance. PLoS One, 2014, 9(12)e114419
[http://dx.doi.org/10.1371/journal.pone.0114419] [PMID: 25532106]
[30]
Li, Q.; Zhu, F.; Chen, P. miR-7 and miR-218 epigenetically control tumor suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer. Biochem. Biophys. Res. Commun., 2012, 424(1), 28-33.
[http://dx.doi.org/10.1016/j.bbrc.2012.06.028] [PMID: 22705304]
[31]
Kong, X.; Li, G.; Yuan, Y.; He, Y.; Wu, X.; Zhang, W.; Wu, Z.; Chen, T.; Wu, W.; Lobie, P.E.; Zhu, T. MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS One, 2012, 7(8)e41523
[http://dx.doi.org/10.1371/journal.pone.0041523] [PMID: 22876288]
[32]
Ma, X.; Yan, W.; Dai, Z.; Gao, X.; Ma, Y.; Xu, Q.; Jiang, J.; Zhang, S. Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway. Drug Des. Devel. Ther., 2016, 10, 1419-1441.
[http://dx.doi.org/10.2147/DDDT.S102541] [PMID: 27143851]
[33]
Lee, K.M.; Choi, E.J.; Kim, I.A. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother. Oncol., 2011, 101, 171-176.
[http://dx.doi.org/10.1016/j.radonc.2011.05.050] [PMID: 21676478]
[34]
Yu, N.; Huangyang, P.; Yang, X.; Han, X.; Yan, R.; Jia, H.; Shang, Y.; Sun, L. microRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J. Biol. Chem., 2013, 288(27), 19633-19642.
[http://dx.doi.org/10.1074/jbc.M113.475657] [PMID: 23720754]
[35]
Pogribny, I.P.; Filkowski, J.N.; Tryndyak, V.P.; Golubov, A.; Shpyleva, S.I.; Kovalchuk, O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer, 2010, 127(8), 1785-1794.
[http://dx.doi.org/10.1002/ijc.25191] [PMID: 20099276]
[36]
Masuda, M.; Miki, Y.; Hata, S.; Takagi, K.; Sakurai, M.; Ono, K.; Suzuki, K.; Yang, Y.; Abe, E.; Hirakawa, H.; Ishida, T.; Suzuki, T.; Ohuchi, N.; Sasano, H. An induction of microRNA, miR-7 through estrogen treatment in breast carcinoma. J. Transl. Med., 2012, 10(Suppl. 1), S2.
[http://dx.doi.org/10.1186/1479-5876-10-S1-S2] [PMID: 23227519]
[37]
Kastl, L.; Brown, I.; Schofield, A.C. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res. Treat., 2012, 131(2), 445-454.
[http://dx.doi.org/10.1007/s10549-011-1424-3] [PMID: 21399894]
[38]
Gao, D.; Zhang, X.; Liu, B.; Meng, D.; Fang, K.; Guo, Z.; Li, L. Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics, 2017, 9(9), 1175-1188.
[http://dx.doi.org/10.2217/epi-2017-0055] [PMID: 28803498]
[39]
Dou, J.; Gu, N. Biomarkers of cancer stem cells.Advances in Cancer Stem Cell Biology; Scatena, R.; Mordente, A; Giardina, B., Ed.; Springer: New York, 2011, pp. 45-67.
[40]
Gong, C.; Tan, W.; Chen, K.; You, N.; Zhu, S.; Liang, G.; Xie, X.; Li, Q.; Zeng, Y.; Ouyang, N.; Li, Z.; Zeng, M.; Zhuang, S.; Lau, W.Y.; Liu, Q.; Yin, D.; Wang, X.; Su, F.; Song, E. Prognostic Value of a BCSC-associated MicroRNA Signature in Hormone Receptor-Positive HER2-Negative Breast Cancer. Exp. Biol. Med., 2016, 11, 199-209.
[http://dx.doi.org/10.1016/j.ebiom.2016.08.016] [PMID: 27566954]
[41]
Okuda, H.; Xing, F.; Pandey, P.R.; Sharma, S.; Watabe, M.; Pai, S.K.; Mo, Y.Y.; Iiizumi-Gairani, M.; Hirota, S.; Liu, Y.; Wu, K.; Pochampally, R.; Watabe, K. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res., 2013, 73(4), 1434-1444.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2037] [PMID: 23384942]
[42]
Akalay, I.; Tan, T.Z.; Kumar, P.; Janji, B.; Mami-Chouaib, F.; Charpy, C.; Vielh, P.; Larsen, A.K.; Thiery, J.P.; Sabbah, M.; Chouaib, S. Targeting WNT1-inducible signaling pathway protein 2 alters human breast cancer cell susceptibility to specific lysis through regulation of KLF-4 and miR-7 expression. Oncogene, 2015, 34(17), 2261-2271.
[http://dx.doi.org/10.1038/onc.2014.151] [PMID: 24931170]
[43]
Liu, Y.; Du, Y.; Hu, X.; Zhao, L.; Xia, W. Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. BMC Cancer, 2018, 18(1), 367.
[http://dx.doi.org/10.1186/s12885-018-4255-3] [PMID: 29614984]
[44]
Su, C.; Han, Y.; Zhang, H.; Li, Y.; Yi, L.; Wang, X.; Zhou, S.; Yu, D.; Song, X.; Xiao, N.; Cao, X.; Liu, Z. CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-κB signalling. J. Cell. Mol. Med., 2018, 22(6), 3097-3107.
[http://dx.doi.org/10.1111/jcmm.13587] [PMID: 29532994]
[45]
Cheng, M.W.; Shen, Z.T.; Hu, G.Y.; Luo, L.G. Prognostic significance of microRNA-7 and its roles in the regulation of cisplatin resistance in lung adenocarcinoma. Cell. Physiol. Biochem., 2017, 42(2), 660-672.
[http://dx.doi.org/10.1159/000477884] [PMID: 28618418]
[46]
Lei, L.; Chen, C.; Zhao, J.; Wang, H.; Guo, M.; Zhou, Y.; Luo, J.; Zhang, J.; Xu, L. Targeted expression of miR-7 operated by TTF-1 promoter inhibited the growth of human lung cancer through the NDUFA4 pathway. Mol. Ther. Nucleic Acids, 2017, 6, 183-197.
[http://dx.doi.org/10.1016/j.omtn.2016.12.005] [PMID: 28325285]
[47]
Mou, K.; Gu, W.; Gu, C.; Zhang, J.; Qwang, W.; Ren, G.; Tian, J. Relationship between miR-7 expression and treatment outcomes with gefitinib in non-small cell lung cancer. Oncol. Lett., 2016, 12(6), 4613-4617.
[http://dx.doi.org/10.3892/ol.2016.5290] [PMID: 28105168]
[48]
Zhao, J.G.; Men, W.F.; Tang, J. MicroRNA-7 enhances cytotoxicity induced by gefitinib in non-small cell lung cancer via inhibiting the EGFR and IGF1R signalling pathways. Contemp. Oncol. (Pozn.), 2015, 19(3), 201-206.
[http://dx.doi.org/10.5114/wo.2015.52655] [PMID: 26557760]
[49]
Vera-Puente, O.; Rodriguez-Antolin, C.; Salgado-Figueroa, A.; Michalska, P.; Pernia, O.; Reid, B.M.; Rosas, R.; Garcia-Guede, A. SacristÁn, S.; Jimenez, J.; Esteban-Rodriguez, I.; Martin, M.E.; Sellers, T.A.; León, R.; Gonzalez, V.M.; De Castro, J.; Ibanez de Caceres, I. MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species. Transl. Res., 2018, 200, 1-17.
[http://dx.doi.org/10.1016/j.trsl.2018.06.005] [PMID: 30053382]
[50]
Zhang, X.; Zhang, X.; Hu, S.; Zheng, M.; Zhang, J.; Zhao, J.; Zhang, X.; Yan, B.; Jia, L.; Zhao, J.; Wu, K.; Yang, A.; Zhang, R. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Res., 2017, 45(10), 5930-5944.
[http://dx.doi.org/10.1093/nar/gkx317] [PMID: 28459998]
[51]
Chakrabarti, M.; Ray, S.K. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: Overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis, 2016, 21(3), 312-328.
[http://dx.doi.org/10.1007/s10495-015-1198-x] [PMID: 26573275]
[52]
Bhere, D.; Tamura, K.; Wakimoto, H.; Choi, S.H.; Purow, B.; Debatisse, J.; Shah, K. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro-oncol., 2018, 20(2), 215-224.
[http://dx.doi.org/10.1093/neuonc/nox138] [PMID: 29016934]
[53]
Kefas, B.; Godlewski, J.; Comeau, L.; Li, Y.; Abounader, R.; Hawkinson, M.; Lee, J.; Fine, H.; Chiocca, E.A.; Lawler, S.; Purow, B. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res., 2008, 68(10), 3566-3572.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6639] [PMID: 18483236]
[54]
Liu, X.; Li, G.; Su, Z.; Jiang, Z.; Chen, L.; Wang, J.; Yu, S.; Liu, Z. Poly(amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells. Oncol. Rep., 2013, 29(4), 1387-1394.
[http://dx.doi.org/10.3892/or.2013.2283] [PMID: 23404538]
[55]
Liu, Z.; Jiang, Z.; Huang, J.; Huang, S.; Li, Y.; Yu, S.; Yu, S.; Liu, X. miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int. J. Oncol., 2014, 44(5), 1571-1580.
[http://dx.doi.org/10.3892/ijo.2014.2322] [PMID: 24603851]
[56]
Wang, B.; Sun, F.; Dong, N.; Sun, Z.; Diao, Y.; Zheng, C.; Sun, J.; Yang, Y.; Jiang, D. MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas. Diagn. Pathol., 2014, 9, 211.
[http://dx.doi.org/10.1186/s13000-014-0211-y] [PMID: 25394492]
[57]
Wang, W.; Dai, L.X.; Zhang, S.; Yang, Y.; Yan, N.; Fan, P.; Dai, L.; Tian, H.W.; Cheng, L.; Zhang, X.M.; Li, C.; Zhang, J.F.; Xu, F.; Shi, G.; Chen, X.L.; Du, T.; Li, Y.M.; Wei, Y.Q.; Deng, H.X. Regulation of epidermal growth factor receptor signaling by plasmid-based microRNA-7 inhibits human malignant gliomas growth and metastasis in vivo. Neoplasma, 2013, 60(3), 274-283.
[http://dx.doi.org/10.4149/neo_2013_036] [PMID: 23373996]
[58]
Liu, Z.; Liu, Y.; Li, L.; Xu, Z.; Bi, B.; Wang, Y.; Li, J.Y. MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumour Biol., 2014, 35(10), 10177-10184.
[http://dx.doi.org/10.1007/s13277-014-2318-x] [PMID: 25027403]
[59]
Xu, B.; Yang, T.; Wang, Z.; Zhang, Y.; Liu, S.; Shen, M. CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value. Cancer Manag. Res., 2018, 10, 4871-4880.
[http://dx.doi.org/10.2147/CMAR.S178213] [PMID: 30425578]
[60]
Xu, N.; Lian, Y.J.; Dai, X.; Wang, Y.J. miR-7 Increases Cisplatin Sensitivity of Gastric Cancer Cells Through Suppressing mTOR. Technol. Cancer Res. Treat., 2017.1533034617717863
[http://dx.doi.org/10.1177/1533034617717863] [PMID: 28693382]
[61]
Zhao, X.; Dou, W.; He, L.; Liang, S.; Tie, J.; Liu, C.; Li, T.; Lu, Y.; Mo, P.; Shi, Y.; Wu, K.; Nie, Y.; Fan, D. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene, 2013, 32(11), 1363-1372.
[http://dx.doi.org/10.1038/onc.2012.156] [PMID: 22614005]
[62]
Chen, W.Q.; Hu, L.; Chen, G.X.; Deng, H.X. Role of microRNA-7 in digestive system malignancy. World J. Gastrointest. Oncol., 2016, 8(1), 121-127.
[http://dx.doi.org/10.4251/wjgo.v8.i1.121] [PMID: 26798443]
[63]
Yang, Z.; Shi, X.; Li, C.; Wang, X.; Hou, K.; Li, Z.; Zhang, X.; Fan, Y.; Qu, X.; Che, X.; Liu, Y. Long non-coding RNA UCA1 upregulation promotes the migration of hypoxia-resistant gastric cancer cells through the miR-7-5p/EGFR axis. Exp. Cell Res., 2018, 368(2), 194-201.
[http://dx.doi.org/10.1016/j.yexcr.2018.04.030] [PMID: 29723509]
[64]
Pan, H.; Li, T.; Jiang, Y.; Pan, C.; Ding, Y.; Huang, Z.; Yu, H.; Kong, D. Overexpression of Circular RNA ciRS-7 Abrogates the Tumor Suppressive Effect of miR-7 on Gastric Cancer via PTEN/PI3K/AKT Signaling Pathway. J. Cell. Biochem., 2018, 119, 440-446.
[http://dx.doi.org/10.1002/jcb.26201] [PMID: 28608528]
[65]
Wu, W.; Liu, S.; Liang, Y.; Zhou, Z.; Liu, X. MiR-7 inhibits progression of hepatocarcinoma by targeting KLF-4 and promises a novel diagnostic biomarker. Cancer Cell Int., 2017, 17, 31.
[http://dx.doi.org/10.1186/s12935-017-0386-x] [PMID: 28239300]
[66]
Higuchi, T.; Todaka, H.; Sugiyama, Y.; Ono, M.; Tamaki, N.; Hatano, E.; Takezaki, Y.; Hanazaki, K.; Miwa, T.; Lai, S.; Morisawa, K.; Tsuda, M.; Taniguchi, T.; Sakamoto, S. Suppression of MicroRNA-7 (miR-7) Biogenesis by Nuclear Factor 90-Nuclear Factor 45 Complex (NF90-NF45) Controls Cell Proliferation in Hepatocellular Carcinoma. J. Biol. Chem., 2016, 291(40), 21074-21084.
[http://dx.doi.org/10.1074/jbc.M116.748210] [PMID: 27519414]
[67]
Yang, X.; Xiong, Q.; Wu, Y.; Li, S.; Ge, F. Quantitative proteomics reveals the regulatory networks of circular RNA CDR1as in hepatocellular carcinoma cells. J. Proteome Res., 2017, 16(10), 3891-3902.
[http://dx.doi.org/10.1021/acs.jproteome.7b00519] [PMID: 28892615]
[68]
Wang, Y.; Wang, Q.; Song, J. Inhibition of autophagy potentiates the proliferation inhibition activity of microRNA-7 in human hepatocellular carcinoma cells. Oncol. Lett., 2017, 14(3), 3566-3572.
[http://dx.doi.org/10.3892/ol.2017.6573] [PMID: 28927113]
[69]
Fang, Y.; Xue, J.L.; Shen, Q.; Chen, J.; Tian, L. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology, 2012, 55(6), 1852-1862.
[http://dx.doi.org/10.1002/hep.25576] [PMID: 22234835]
[70]
Kabir, T.D.; Ganda, C.; Brown, R.M.; Beveridge, D.J.; Richardson, K.L.; Chaturvedi, V.; Candy, P.; Epis, M.; Wintle, L.; Kalinowski, F.; Kopp, C.; Stuart, L.M.; Yeoh, G.C.; George, J.; Leedman, P.J. A microRNA-7/growth arrest specific 6/TYRO3 axis regulates the growth and invasiveness of sorafenib-resistant cells in human hepatocellular carcinoma. Hepatology, 2018, 67, 216-231.
[http://dx.doi.org/10.1002/hep.29478] [PMID: 28833396]
[71]
Hu, H.; Yang, L.; Li, L.; Zeng, C. Long non-coding RNA KCNQ1OT1 modulates oxaliplatin resistance in hepatocellular carcinoma through miR-7-5p/ABCC1 axis. Biochem. Biophys. Res. Commun., 2018, 503(4), 2400-2406.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.168] [PMID: 29966655]
[72]
Ma, C.; Qi, Y.; Shao, L.; Liu, M.; Li, X.; Tang, H. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells. IUBMB Life, 2013, 65(12), 1026-1034.
[http://dx.doi.org/10.1002/iub.1231] [PMID: 24339204]
[73]
Zhang, X.; Hu, S.; Zhang, X.; Wang, L.; Zhang, X.; Yan, B.; Zhao, J.; Yang, A.; Zhang, R. MicroRNA-7 arrests cell cycle in G1 phase by directly targeting CCNE1 in human hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2014, 443(3), 1078-1084.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.095] [PMID: 24370822]
[74]
Gao, Y.; Lin, L.; Li, T.; Yang, J.; Wei, Y. The role of miRNA-223 in cancer: Function, diagnosis and therapy. Gene, 2017, 616, 1-7.
[http://dx.doi.org/10.1016/j.gene.2017.03.021] [PMID: 28322994]
[75]
Li, F.; Wang, F.; Zhu, C.; Wei, Q.; Zhang, T.; Zhou, Y.L. miR-221 suppression through nanoparticle-based miRNA delivery system for hepatocellular carcinoma therapy and its diagnosis as a potential biomarker. Int. J. Nanomedicine, 2018, 13, 2295-2307.
[http://dx.doi.org/10.2147/IJN.S157805] [PMID: 29713162]
[76]
Thakral, S.; Ghoshal, K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr. Gene Ther., 2015, 15(2), 142-150.
[http://dx.doi.org/10.2174/1566523214666141224095610] [PMID: 25537773]
[77]
Kitano, M.; Rahbari, R.; Patterson, E.E.; Steinberg, S.M.; Prasad, N.B.; Wang, Y.; Zeiger, M.A.; Kebebew, E. Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples. Thyroid, 2012, 22(3), 285-291.
[http://dx.doi.org/10.1089/thy.2011.0313] [PMID: 22304369]
[78]
Santos, J.I.; Teixeira, A.L.; Dias, F.; Maurício, J.; Lobo, F.; Morais, A.; Medeiros, R. Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: Evidences from in vitro and in vivo studies. Tumour Biol., 2014, 35(7), 7105-7113.
[http://dx.doi.org/10.1007/s13277-014-1918-9] [PMID: 24760272]
[79]
Raychaudhuri, M.; Bronger, H.; Buchner, T.; Kiechle, M.; Weichert, W.; Avril, S. MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat., 2017, 162(3), 511-521.
[http://dx.doi.org/10.1007/s10549-017-4132-9] [PMID: 28181130]
[80]
Ahmed, F.E.; Ahmed, N.C.; Vos, P.W.; Bonnerup, C.; Atkins, J.N.; Casey, M.; Nuovo, G.J.; Naziri, W.; Wiley, J.E.; Mota, H.; Allison, R.R. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics, 2013, 10(3), 93-113.
[PMID: 23741026]
[81]
Wang, S.; Xiang, J.; Li, Z.; Lu, S.; Hu, J.; Gao, X.; Yu, L.; Wang, L.; Wang, J.; Wu, Y.; Chen, Z.; Zhu, H. A plasma microRNA panel for early detection of colorectal cancer. Int. J. Cancer, 2015, 136, 152-161.
[http://dx.doi.org/10.1002/ijc.28136] [PMID: 23456911]
[82]
Ye, T.; Yang, M.; Huang, D.; Wang, X.; Xue, B.; Tian, N.; Xu, X.; Bao, L.; Hu, H.; Lv, T.; Huang, Y. MicroRNA-7 as a potential therapeutic target for aberrant NF-κB-driven distant metastasis of gastric cancer. J. Exp. Clin. Cancer Res., 2019, 38, 55.
[http://dx.doi.org/10.1186/s13046-019-1074-6] [PMID: 30728051]
[83]
Nagano, Y.; Toiyama, Y.; Okugawa, Y.; Imaoka, H.; Fujikawa, H.; Yasuda, H.; Yoshiyama, S.; Hiro, J.; Kobayashi, M.; Ohi, M.; Araki, T.; Inoue, Y.; Mohri, Y.; Kusunoki, M. MicroRNA-7 Is Associated with Malignant Potential and Poor Prognosis in Human Colorectal Cancer. Anticancer Res., 2016, 36(12), 6521-6526.
[http://dx.doi.org/10.21873/anticanres.11253] [PMID: 27919977]
[84]
Hong, C.F.; Lin, S.Y.; Chou, Y.T.; Wu, C.W. MicroRNA-7 Compromises p53 Protein-dependent Apoptosis by Controlling the Expression of the Chromatin Remodeling Factor SMARCD1. J. Biol. Chem., 2016, 291(4), 1877-1889.
[http://dx.doi.org/10.1074/jbc.M115.667568] [PMID: 26542803]
[85]
Trang, P.; Wiggins, J.F.; Daige, C.L.; Cho, C.; Omotola, M.; Brown, D.; Weidhaas, J.B.; Bader, A.G.; Slack, F.J. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther., 2011, 19(6), 1116-1122.
[http://dx.doi.org/10.1038/mt.2011.48] [PMID: 21427705]
[86]
Baigude, H.; Rana, T.M. Interfering nanoparticles for silencing microRNAs. Methods Enzymol., 2012, 509, 339-353.
[http://dx.doi.org/10.1016/B978-0-12-391858-1.00017-4] [PMID: 22568914]
[87]
Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]