Design of Rhenium Compounds in Targeted Anticancer Therapeutics

Page: [3306 - 3322] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Many rhenium (Re) complexes with potential anticancer properties have been synthesized in the recent years with the aim to overcome the clinical limitations of platinum agents. Re(I) tricarbonyl complexes are the most common but Re compounds with higher oxidation states have also been investigated, as well as hetero-metallic complexes and Re-loaded self-assembling devices. Many of these compounds display promising cytotoxic and phototoxic properties against malignant cells but all Re compounds are still at the stage of preclinical studies.

Methods: The present review focused on the rhenium based cancer drugs that were in preclinical and clinical trials were examined critically. The detailed targeted interactions and experimental evidences of Re compounds reported by the patentable and non-patentable research findings used to write this review.

Results: In the present review, we described the most recent and promising rhenium compounds focusing on their potential mechanism of action including, phototoxicity, DNA binding, mitochondrial effects, oxidative stress regulation or enzyme inhibition. Many ligands have been described that modulating the lipophilicity, the luminescent properties, the cellular uptake, the biodistribution, and the cytotoxicity, the pharmacological and toxicological profile.

Conclusion: Re-based anticancer drugs can also be used in targeted therapies by coupling to a variety of biologically relevant targeting molecules. On the other hand, combination with conventional cytotoxic molecules, such as doxorubicin, allowed to take into profit the targeting properties of Re for example toward mitochondria. Through the example of the diseleno-Re complex, we showed that the main target could be the oxidative status, with a down-stream regulation of signaling pathways, and further on selective cell death of cancer cells versus normal cells.

Keywords: Rhenium, targeted therapy, cancer, personalized treatment, oxidative stress markers, signaling pathways.

[1]
Collery P, Poirier LA, Manfait M, Etienne JC. Metal ions in biology and medicine. Paris: John Libbey Eurotext 1990; p. 600.
[2]
Anastassopoulou J, Collery P, Etienne JC, Theophanides T. Metal ions in biology and medicine. Paris: John Libbey Eurotext 1992; p. 453.
[3]
Collery P, Poirier L, Littlefield N, Etienne JC. Metal ions in biology and medicine. Paris: John Libbey Eurotext 1994; p. 585.
[4]
Collery P, Corbella J, Domingo JL, Etienne JC, Llobet JM. Metal ions in biology and medicine. Paris: John Libbey Eurotext 1996; p. 703.
[5]
Collery P, Brätter P, Negretti de Brätter V, Khassanova L, Etienne JC. Metal ions in biology and medicine. Paris: John Libbey Eurotext 1998; p. 775.
[6]
Centeno J, Collery P, Vernet G, Finkelman RB, Gibb H, Etienne JC. Metal ions in biology and medicine. Paris: John Libbey Eurotext 2000; p. 816.
[7]
Khassanova LK, Collery P, Maymard I, Khassanova Z, Etienne JC. Metal ions in biology and medicine. Paris: John Libbey Eurotext 2002; p. 662.
[8]
Cser MA, Sziklai Laszlo I, Etienne JC, et al. Metal ions in biology and medicine. Paris: John Libbey Eurotext 2004; p. 568.
[9]
Alpoim MC, Morais PV, Santos MA, Cristovao A, Centeno JA, Collery P. Metal ions in biology and medicine. Paris: John Libbey Eurotext 2006; p. 580.
[10]
Collery P, Maymard I, Theophanides T, Khassanova L, Collery T. Metal ions in biology and medicine. Paris: John Libbey Eurotext 2008; p. 937.
[11]
Pele L, Powell JJ, Kinrad S, et al. Metal ions in biology and medicine. Paris: John Libbey Eurotext 2011; p. 307.
[12]
Vucina J, Han R. [Production and therapeutic use of rhenium-186, 188--the future of radionuclides]. Med Pregl 2003; 56(7-8): 362-5.
[http://dx.doi.org/10.2298/MPNS0308362V] [PMID: 14587255]
[13]
Deutsch E, Brodack JW, Deutsch KF. Radiation synovectomy revisited. Eur J Nucl Med 1993; 20(11): 1113-27.
[http://dx.doi.org/10.1007/BF00173494] [PMID: 8287881]
[14]
Li S, Liu J, Zhang H, Tian M, Wang J, Zheng X. Rhenium-188 HEDP to treat painful bone metastases. Clin Nucl Med 2001; 26(11): 919-22.
[http://dx.doi.org/10.1097/00003072-200111000-00006] [PMID: 11595844]
[15]
Wang S-J, Lin W-Y, Chen MN, et al. Rhenium-188 microspheres: a new radiation synovectomy agent. Nucl Med Commun 1998; 19(5): 427-33.
[http://dx.doi.org/10.1097/00006231-199805000-00004] [PMID: 9853331]
[16]
Leonidova A, Gasser G. Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chem Biol 2014; 9(10): 2180-93.
[http://dx.doi.org/10.1021/cb500528c] [PMID: 25137157]
[17]
Gasser G, Ott I, Metzler-Nolte N. Organometallic anticancer compounds. J Med Chem 2011; 54(1): 3-25.
[http://dx.doi.org/10.1021/jm100020w] [PMID: 21077686]
[18]
Konkankit CC, Marker SC, Knopf KM, Wilson JJ. Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium. Dalton Trans 2018; 47(30): 9934-74.
[http://dx.doi.org/10.1039/C8DT01858H] [PMID: 29904760]
[19]
Kaur T, Lee WZ, Ravikanth M. Rhenium(I) tricarbonyl complexes of meso-Tetraaryl-21,23-diheteroporphyrins. Inorg Chem 2016; 55(11): 5305-11.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00214] [PMID: 27214498]
[20]
Kermagoret A, Morgant G, D’Angelo J, et al. Synthesis, structural characterization and biological activity against several human tumor cell lines of four rhenium(I) diseleno-ethers complexes: Re(CO)3Cl(PhSe(CH2)2SePh), Re(CO)3Cl(PhSe(CH2)3SePh), Re(CO)3Cl(HO2C–CH2Se(CH2)2SeCH2–CO2H) and Re(CO)3Cl(HO2CCH2Se(CH2)3SeCH2CO2H). Polyhedron 2011; 30: 347-54.
[http://dx.doi.org/10.1016/j.poly.2010.10.026]
[21]
Collery P, Mohsen A, Kermagoret A, et al. Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer. Invest New Drugs 2015; 33(4): 848-60.
[http://dx.doi.org/10.1007/s10637-015-0265-z] [PMID: 26108551]
[22]
Konkankit CC, Vaughn BA, MacMillan SN, Boros E, Wilson JJ. Combinatorial synthesis to identify a potent, necrosis-inducing rhenium anticancer agent. Inorg Chem 2019; 58(6): 3895-909.
[http://dx.doi.org/10.1021/acs.inorgchem.8b03552] [PMID: 30793900]
[23]
Muñoz-Osses M, Siegmund D, Gómez A, et al. Influence of the substituent on the phosphine ligand in novel Rhenium(I) aldehydes. Synthesis, computational studies and first insights into the antiproliferative activity. Dalton Trans 2018; 47(39): 13861-9.
[http://dx.doi.org/10.1039/C8DT03160F] [PMID: 30225486]
[24]
Simpson PV, Falasca M, Massi M. Properties and prospects for Rhenium(I) tricarbonyl N-heterocyclic carbene complexes. Chem Commun (Camb) 2018; 54(88): 12429-38.
[http://dx.doi.org/10.1039/C8CC06596A] [PMID: 30302483]
[25]
Ghosh S, Paul SS, Mitra J, Mukherjea KK. Rhenium(II) nitrosyl complexes: synthesis, characterization, DFT calculations and DNA nuclease activity. J Coord Chem 2014; 67: 1809-34.
[http://dx.doi.org/10.1080/00958972.2014.924622]
[26]
Lane SR, Sisay N, Carney B, et al. Re(V) and Re(III) complexes with sal2phen and triphenylphosphine: rearrangement, oxidation and reduction. Dalton Trans 2011; 40(1): 269-76.
[http://dx.doi.org/10.1039/C0DT00993H] [PMID: 21079821]
[27]
Shtemenko N, Collery P, Shtemenko A. Dichlorotetra-μ-isobutyratodirhenium(III): enhancement of cisplatin action and RBC-stabilizing properties. Anticancer Res 2007; 27(4B): 2487-92.
[PMID: 17695543]
[28]
Martínez-Lillo J, Mastropietro TF, Lappano R, et al. Rhenium(IV) compounds inducing apoptosis in cancer cells. Chem Commun (Camb) 2011; 47(18): 5283-5.
[http://dx.doi.org/10.1039/c1cc11038a] [PMID: 21448489]
[29]
Köpf-Maier P, Klapötke T. Ionic rhenocene derivatives with antitumor activity. Cancer Chemother Pharmacol 1992; 29(5): 361-6.
[http://dx.doi.org/10.1007/BF00686004] [PMID: 1551174]
[30]
Suntharalingam K, Awuah SG, Bruno PM, et al. Necroptosis-inducing rhenium(V) oxo complexes. J Am Chem Soc 2015; 137(8): 2967-74.
[http://dx.doi.org/10.1021/ja511978y] [PMID: 25698398]
[31]
Clarke C, Cowley AR, Dilworth JR, Donnelly PS. Pyridylthiocarbazide complexes of rhenium with potential radiopharmaceutical applications. Dalton Trans 2004; (16): 2402-3.
[http://dx.doi.org/10.1039/b406439a] [PMID: 15303150]
[32]
North AJ, Karas JA, Ma MT, et al. Rhenium and technetium-oxo complexes with thioamide derivatives of pyridylhydrazine bifunctional chelators conjugated to the tumour targeting peptides octreotate and cyclic-RGDfK. Inorg Chem 2017; 56(16): 9725-41.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01247] [PMID: 28766938]
[33]
Martínez-Lillo J, Armentano D, De Munno G, Lloret F, Julve M, Faus J. Synthesis, crystal structure and magnetic properties of an oxalato-bridged Re(IV)Mo(VI) heterobimetallic complex. Dalton Trans 2011; 40(18): 4818-20.
[http://dx.doi.org/10.1039/C0DT01323D] [PMID: 21180753]
[34]
Sanchis-Perucho A, Rojas-Dotti C, Moliner N, Martínez-Lillo J. Field-induced slow relaxation of magnetisation in an anionic heterotetranuclear [ZnIIRe] system. Dalton Trans 2019; 48(2): 370-3.
[http://dx.doi.org/10.1039/C8DT03728K] [PMID: 30357217]
[35]
Pitchumony TS, Banevicius L, Janzen N, Zubieta J, Valliant JF. Isostructural nuclear and luminescent probes derived from stabilized [2 + 1] rhenium(I)/technetium(I) organometallic complexes. Inorg Chem 2013; 52(23): 13521-8.
[http://dx.doi.org/10.1021/ic401972g] [PMID: 24228697]
[36]
Oyarzo J, Acuña A, Klahn H, et al. Isomeric and hybrid ferrocenyl/cyrhetrenyl aldimines: a new family of multifunctional compounds. Dalton Trans 2018; 47(5): 1635-49.
[http://dx.doi.org/10.1039/C7DT04142J] [PMID: 29327756]
[37]
Luengo A, Fernández-Moreira V, Marzo I, Gimeno MC. Trackable metallodrugs combining luminescent Re(I) and bioactive Au(I) fragments. Inorg Chem 2017; 56(24): 15159-70.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02470] [PMID: 29172469]
[38]
Quental L, Raposinho P, Mendes F, et al. Combining imaging and anticancer properties with new heterobimetallic Pt(ii)/M(i) (M= Re, 99mTc) complexes. Dalton Trans 2017; 46(42): 14523-36.
[http://dx.doi.org/10.1039/C7DT00043J] [PMID: 28164201]
[39]
Echeverría C, Becerra A, Nuñez-Villena F, et al. The paramagnetic and luminescent [Re6Se8I6]3- cluster. Its potential use as an antitumoral and biomarker agent. New J Chem 2012; 36: 927-32.
[http://dx.doi.org/10.1039/c2nj21016a]
[40]
Shtemenko NI, Zabitskaya ED, Berzenina OV, Yegorova DE, Shtemenko AV. Liposomal forms of rhenium cluster compounds: enhancement of biological activity. Chem Biodivers 2008; 5(8): 1660-7.
[http://dx.doi.org/10.1002/cbdv.200890153] [PMID: 18729101]
[41]
Yu SH, Patra M, Ferrari S, et al. Linker chemistry dictates the delivery of a phototoxic organometallic rhenium(I) complex to human cervical cancer cells from core crosslinked star polymer nanoparticles. Mater Chem B 2018; 6: 7805-10.
[http://dx.doi.org/10.1039/C8TB02464B]
[42]
Morimoto T, Ishitani O. Modulation of the photophysical, photochemical, and electrochemical properties of Re(I) diimine complexes by interligand interactions. Acc Chem Res 2017; 50(11): 2673-83.
[http://dx.doi.org/10.1021/acs.accounts.7b00244] [PMID: 28994292]
[43]
Lo KK-W. Luminescent Rhenium(I) and Iridium(III) polypyridine complexes as biological probes, imaging reagents, and photocytotoxic agents. Acc Chem Res 2015; 48(12): 2985-95.
[http://dx.doi.org/10.1021/acs.accounts.5b00211] [PMID: 26161527]
[44]
Lee LC, Leung KK, Lo KK-W. Recent development of luminescent Rhenium(I) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 2017; 46(47): 16357-80.
[http://dx.doi.org/10.1039/C7DT03465B] [PMID: 29110007]
[45]
Bertrand HC, Clède S, Guillot R, Lambert F, Policar C. Luminescence modulations of rhenium tricarbonyl complexes induced by structural variations. Inorg Chem 2014; 53(12): 6204-23.
[http://dx.doi.org/10.1021/ic5007007] [PMID: 24905983]
[46]
Yip AM-H, Lo KK-W. Luminescent Rhenium(I), Ruthenium(II), And Iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord Chem Rev 2018; 361: 138-63.
[http://dx.doi.org/10.1016/j.ccr.2018.01.021]
[47]
Raszeja LJ, Siegmund D, Cordes AL, et al. Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging. Chem Commun (Camb) 2017; 53(5): 905-8.
[http://dx.doi.org/10.1039/C6CC07553C] [PMID: 28008445]
[48]
Palmioli A, Aliprandi A, Septiadi D, et al. Glyco-functionalized dinuclear Rhenium(I) complexes for cell imaging. Org Biomol Chem 2017; 15(7): 1686-99.
[http://dx.doi.org/10.1039/C6OB02559E] [PMID: 28134389]
[49]
Shestopalov MA, Zubareva KE, Khripko OP, et al. The first water-soluble hexarhenium cluster complexes with a heterocyclic ligand environment: synthesis, luminescence, and biological properties. Inorg Chem 2014; 53(17): 9006-13.
[http://dx.doi.org/10.1021/ic500553v] [PMID: 25142977]
[50]
Kirgan RA, Sullivan BP, Rillema DP. Photochemistry and photophysics of coordination compounds: rhenium. Top Curr Chem 2007; 281: 45-100.
[http://dx.doi.org/10.1007/128_2007_143]
[51]
Hostachy S, Policar C, Delsuc N. Re(I) carbonyl complexes: multimodal platforms for inorganic chemical biology. Coordin Chem 2017; 351: 172-8.
[http://dx.doi.org/10.1016/j.ccr.2017.05.004]
[52]
Leonidova A, Pierroz V, Rubbiani R, Heier J, Ferrari S, Gasser G. Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes. Dalton Trans 2014; 43(11): 4287-94.
[http://dx.doi.org/10.1039/C3DT51817E] [PMID: 23982882]
[53]
Kastl A, Dieckmann S, Wähler K, et al. Rhenium complexes with visible-light-induced anticancer activity. ChemMedChem 2013; 8(6): 924-7.
[http://dx.doi.org/10.1002/cmdc.201300060] [PMID: 23568508]
[54]
Wähler K, Ludewig A, Szabo P, Harms K, Meggers E. Rhenium complexes with red-light-induced anticancer activity. Eur J Inorg Chem 2014; 2014(5): 807-11.
[http://dx.doi.org/10.1002/ejic.201301474] [PMID: 25050081]
[55]
Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ. Photoactivated in vitro anticancer activity of Rhenium(I) tricarbonyl complexes bearing water-soluble phosphines. Inorg Chem 2018; 57(3): 1311-31.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02747] [PMID: 29323880]
[56]
Huang Q, Wang S, Zhou J, Zhong X, Huang Y. Albumin-assisted exfoliated ultrathin rhenium disulfide nanosheets as a tumor targeting and dualstimuli-responsive drug delivery system for a combination chemo-photothermal treatment. RSC Advances 2018; 8: 4624-33.
[http://dx.doi.org/10.1039/C7RA13454A]
[57]
Luengo A, Fernandez-Moreira V, Marzo I, Gimeno MC. Bioactive heterobimetallic Re(I)/Au(I) complexes containing bidentate N-heterocyclic carbenes. Organometallics 2018; 37: 3993-4001.
[http://dx.doi.org/10.1021/acs.organomet.8b00601]
[58]
Solovieva AO, Kirakci K, Ivanov AA, et al. Singlet oxygen production and biological activity of hexanuclear chalcocyanide rhenium cluster complexes [Re6Q8(CN)6]4- (Q = S, Se, Te). Inorg Chem 2017; 56(21): 13491-9.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02212] [PMID: 28990789]
[59]
Manav N, Kesavan PE, Ishida M, et al. Phosphorescent rhenium-dipyrrinates: efficient photosensitizers for singlet oxygen generation. Dalton Trans 2019; 48(7): 2467-78.
[http://dx.doi.org/10.1039/C8DT04540B] [PMID: 30694280]
[60]
Kumar U, Roy S, Jha RK, Vidhyapriya P, Sakthivel N, Manimaran B. Selenolato-bridged Manganese(I)-based dinuclear metallacycles as potential anticancer agents and photo-CORMs. ACS Omega 2019; 4: 1923-30.
[http://dx.doi.org/10.1021/acsomega.8b03177]
[61]
Zobi F, Degonda A, Schaub MC, Bogdanova AY. CO releasing properties and cytoprotective effect of cis-trans-[Re(II) (CO)2Br2L2]n complexes. Inorg Chem 2010; 49(16): 7313-22.
[http://dx.doi.org/10.1021/ic100458j] [PMID: 20690741]
[62]
Pierri AE, Pallaoro A, Wu G, Ford PC. A luminescent and biocompatible photoCORM. J Am Chem Soc 2012; 134(44): 18197-200.
[http://dx.doi.org/10.1021/ja3084434] [PMID: 23077984]
[63]
Chakraborty I, Carrington SJ, Roseman G, Mascharak PK. Synthesis, structures, and CO release capacity of a family of water-soluble photoCORMs: assessment of the biocompatibility and their phototoxicity toward human breast cancer cells. Inorg Chem 2017; 56(3): 1534-45.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02623] [PMID: 28079376]
[64]
Chakraborty I, Jimenez J, Sameera WMC, Kato M, Mascharak PK. Luminescent Re(I) carbonyl complexes as trackable photoCORMs for CO delivery to cellular targets. Inorg Chem 2017; 56(5): 2863-73.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02999] [PMID: 28225252]
[65]
Carrington SJ, Chakraborty I, Bernard JML, Mascharak PK. A theranostic two-tone luminescent photoCORM derived from Re(I) and (2-Pyridyl)-benzothiazole: trackable CO delivery to malignant cells. Inorg Chem 2016; 55(16): 7852-8.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00511] [PMID: 27082125]
[66]
Chakraborty I, Carrington SJ, Mascharak PK. Photodelivery of CO by designed photoCORMs: correlation between absorption in the visible region and metal-CO bond labilization in carbonyl complexes. ChemMedChem 2014; 9(6): 1266-74.
[http://dx.doi.org/10.1002/cmdc.201402007] [PMID: 24756950]
[67]
Kianfar E, Schäfer C, Lornejad-Schäfer MR, Portenkirchner E, Knör G. New photo-CORMs: deeply-coloured biocompatible rhenium complexes for the controlled release of carbon monoxide. Inorg Chim Acta 2015; 435: 174-7.
[http://dx.doi.org/10.1016/j.ica.2015.05.035]
[68]
Chakraborty I, Jimenez J, Mascharak PK. CO-Induced apoptotic death of colorectal cancer cells by a luminescent photoCORM grafted on biocompatible carboxymethyl chitosan. Chem Commun (Camb) 2017; 53(40): 5519-22.
[http://dx.doi.org/10.1039/C7CC02842C] [PMID: 28466932]
[69]
Zobi F, Spingler B, Fox T, Alberto R. Toward novel DNA binding metal complexes: structure and basic kinetic data of [M(9MeG)2(CH3OH)(CO)3]+(M = 99Tc, Re). Inorg Chem 2003; 42(9): 2818-20.
[http://dx.doi.org/10.1021/ic030028m] [PMID: 12716167]
[70]
Zobi F, Blacque O, Schmalle HW, Spingler B, Alberto R. Head-to-head (HH) and head-to-tail (HT) conformers of cis-bis guanine ligands bound to the [Re(CO)3]+ core. Inorg Chem 2004; 43(6): 2087-96.
[http://dx.doi.org/10.1021/ic035012a] [PMID: 15018532]
[71]
Zobi F, Spingler B, Alberto R. Guanine and plasmid DNA binding of mono- and trinuclear fac-[Re(CO)3]+ complexes with amino acid ligands. ChemBioChem 2005; 6(8): 1397-405.
[http://dx.doi.org/10.1002/cbic.200400453] [PMID: 15959921]
[72]
Zobi F, Blacque O, Sigel RK, Alberto R. Binding interaction of [Re(H2O)3(CO)3]+ with the DNA fragment d(CpGpG). Inorg Chem 2007; 46(25): 10458-60.
[http://dx.doi.org/10.1021/ic701647m] [PMID: 18001120]
[73]
Ma D-L, Che C-M, Siu F-M, Yang M, Wong K-Y. DNA binding and cytotoxicity of Ruthenium(II) and Rhenium(I) complexes of 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine. Inorg Chem 2007; 46(3): 740-9.
[http://dx.doi.org/10.1021/ic061518s] [PMID: 17257015]
[74]
Parson C, Smith V, Krauss C, et al. The effect of novel rhenium compounds on lymphosarcoma, PC-3 prostate and myeloid leukemia cancer cell lines and an investigation on the DNA binding properties of one of these compounds through electronic spectroscopy. J Bioprocess Biotech 2013; 4(1): 141.
[http://dx.doi.org/10.4172/2155-9821.10001] [PMID: 25221731]
[75]
Parson C, Smith V, Krauss C, et al. Anticancer properties of novel rhenium pentylcarbanato compounds against MDA-MB-468(HTB-132) triple node negative human breast cancer cell lines. Br J Pharm Res 2015; 4(3): 362-7.
[http://dx.doi.org/10.9734/BJPR/2014/4697] [PMID: 25419517]
[76]
Banerjee HN, Vaughan D, Boston A, et al. The effects of synthesized rhenium acetylsalicylate compounds on human astrocytoma cell lines. J Cancer Sci Ther 2018; 10(2): 512.
[http://dx.doi.org/10.4172/1948-5956.1000512] [PMID: 29707104]
[77]
Medley J, Payne G, Banerjee HN, et al. DNA-binding and cytotoxic efficacy studies of organorhenium pentylcarbonate compounds. Mol Cell Biochem 2015; 398(1-2): 21-30.
[http://dx.doi.org/10.1007/s11010-014-2201-5] [PMID: 25262122]
[78]
Balakrishnan G, Rajendran T, Senthil Murugan K, et al. Interaction of rhenium(I) complex carrying long alkyl chain with calf thymus DNA: Cytotoxic and cell imaging studies. Inorg Chim Acta 2015; 434: 51-9.
[http://dx.doi.org/10.1016/j.ica.2015.04.036]
[79]
Wilder PT, Weber DJ, Winstead A, et al. Unprecedented anticancer activities of organorhenium sulfonato and carboxylato complexes against hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells. Mol Cell Biochem 2018; 441(1-2): 151-63.
[http://dx.doi.org/10.1007/s11010-017-3181-z] [PMID: 28913709]
[80]
Ma D-L, Che C-M, Siu F-M, Yang M, Wong K-Y. DNA binding and cytotoxicity of Ruthenium(II) and Rhenium(I) complexes of 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine. Inorg Chem 2007; 46(3): 740-9.
[http://dx.doi.org/10.1021/ic061518s] [PMID: 17257015]
[81]
Prater ME, Mindiola DJ, Ouyang X, Dunbar KR. A quadruply-bonded dirhenium complex bridged by two N1/N6 adenate ligands. Inorg Chem Commun 1998; 1: 475-7.
[http://dx.doi.org/10.1016/S1387-7003(98)00127-0]
[82]
Shtemenko NI, Chifotides HT, Domasevitch KV, et al. Synthesis, X-ray structure, interactions with DNA, remarkable in vivo tumor growth suppression and nephroprotective activity of cis-tetrachloro-dipivalato dirhenium(III). J Inorg Biochem 2013; 129: 127-34.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.09.001] [PMID: 24121302]
[83]
Shtemenko AV, Chifotides HT, Yegorova DE, Shtemenko NI, Dunbar KR. Synthesis and X-ray crystal structure of the dirhenium complex Re2(i-C3H7COO)4Cl2 and its interactions with the DNA purine nucleobases. J Inorg Biochem 2015; 153: 114-20.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.06.012] [PMID: 26315264]
[84]
Ismail MB, Booysen IN, Akerman MP. Oxorhenium(V) complexes with bidentate carbohydrazide Schiff bases: synthesis, characterization and DNA interaction studies. Transition Met Chem 2017; 42: 405-12.
[http://dx.doi.org/10.1007/s11243-017-0143-y]
[85]
Brink A, Helliwell JR. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents. IUCrJ 2017; 4(Pt 3): 283-90.
[http://dx.doi.org/10.1107/S2052252517003475] [PMID: 28512575]
[86]
Binkley SL, Leeper TC, Rowlett RS, Herrick RS, Ziegler CJ. Re(CO)(3)(H(2)O)(3)(+) binding to lysozyme: structure and reactivity. Metallomics 2011; 3(9): 909-16.
[http://dx.doi.org/10.1039/c1mt00065a] [PMID: 21805003]
[87]
Lecina J, Palacios Ò, Atrian S, Capdevila M, Suades J. Rhenium and technetium tricarbonyl, M(CO)3 (+) (M = Tc, Re), binding to mammalian metallothioneins: new insights into chemical and radiopharmaceutical implications. J Biol Inorg Chem 2015; 20(3): 465-74.
[http://dx.doi.org/10.1007/s00775-014-1226-2] [PMID: 25511253]
[88]
Lecina J, Carrer A, Álvarez-Larena A, Mazzi U, Melendez-Alafort L, Suades J. New bioconjugated rhenium carbonyls by transmetalation reaction with zinc derivatives. Organometallics 2012; 31: 5884-93.
[http://dx.doi.org/10.1021/om300394v]
[89]
Frin KPM, Nascimento VM. Rhenium(I) polypyridine complexes as luminescence-based sensors for the BSA protein. J Braz Chem Soc 2016; 27: 179-85.
[90]
Zhang KY, Tso KKS, Louie MW, Liu HW, Lo KKW. A phosphorescent Rhenium(I) tricarbonyl polypyridine complex appended with a fructose pendant that exhibits photocytotoxicity and enhanced uptake by breast cancer cells. Organometallics 2013; 32: 5098-102.
[http://dx.doi.org/10.1021/om400612f]
[91]
Skiba J, Bernaś T, Trzybiński D, et al. Mitochondria targeting with luminescent Rhenium(I) complexes. Molecules 2017; 22(5): 809.
[http://dx.doi.org/10.3390/molecules22050809] [PMID: 28505142]
[92]
Yang J, Zhao JX, Cao Q, et al. Simultaneously inducing and tracking cancer cell metabolism repression by mitochondria-immobilized Rhenium(I) complex. ACS Appl Mater Interfaces 2017; 9(16): 13900-12.
[http://dx.doi.org/10.1021/acsami.7b01764] [PMID: 28368110]
[93]
Kitanovic I, Can S, Alborzinia H, et al. A deadly organometallic luminescent probe: anticancer activity of a ReI bisquinoline complex. Chemistry 2014; 20(9): 2496-507.
[http://dx.doi.org/10.1002/chem.201304012] [PMID: 24464824]
[94]
Wang F-X, Liang J-H, Zhang H, et al. Mitochondria-accumulating rhenium(I) tricarbonyl complexes induce cell death via irreversible oxidative stress and glutathione metabolism disturbance. ACS Appl Mater Interfaces 2019; 11(14): 13123-33.
[http://dx.doi.org/10.1021/acsami.9b01057] [PMID: 30888144]
[95]
Imstepf S, Pierroz V, Rubbiani R, et al. Organometallic rhenium complexes divert doxorubicin to the mitochondria. Angew Chem Int Ed Engl 2016; 55(8): 2792-5.
[http://dx.doi.org/10.1002/anie.201511432] [PMID: 26799241]
[96]
Garcia CV, Parrilha GL, Rodrigues BL, et al. Tricarbonylrhenium(I) complexes with 2-acetylpyridine-derived hydrazones are cytotoxic to NCI-H460 human large cell lung cancer. New J Chem 2016; 40: 7379-87.
[http://dx.doi.org/10.1039/C6NJ00050A]
[97]
Reece SY, Nocera DG. Direct tyrosine oxidation using the MLCT excited states of rhenium polypyridyl complexes. J Am Chem Soc 2005; 127(26): 9448-58.
[http://dx.doi.org/10.1021/ja0510360] [PMID: 15984872]
[98]
Shtemenko N, Pirozhkova-Patalah IV, Shtemenko A. Screening and testing strategy for biological activity of rhenium cluster compounds. In: Metal Ions in Biology and Medicine. Paris: John Libbey Eurotext 2000; 6: pp. 616-8.
[99]
Shtemenko NI, Collery P, Shtemenko AV. Recent advantages in applications of cluster rhenium compounds as antitumor agents. In: Metal Ions in Biology and Medicine . Paris: John Libbey Eurotext 2008; 10: pp. 441-5.
[100]
Leus I, Zabitskaya E, Collery P, Shamelashvili K, Yegorova D, Shtemenko N. Investigation of antioxidant properties of the cluster rhenium compound in the model of tumor growth. In: Metal Ions in Biology and Medicine. Paris: John Libbey Eurotext 2008; 10: pp. 339-402.
[101]
Shtemenko A, Shtemenko N, Oliyvnyk SA, Zelenuk MA. Lyposome forms of rhenium cluster compounds in models of haemolytic anemia. In: Metal Ions in Biology and Medicine. Paris: John Libbey Eurotext 2002; 7: pp. 558-61.
[102]
Pirozhkova-Patalah IV, Shtemenko NI. Influence of cis-[Re2GABA2Cl4]Cl2 on the antioxidant defense system parameters of normal human blood. Biochemistry (Mosc) 2001; 66(7): 721-4.
[http://dx.doi.org/10.1023/A:1010200426222] [PMID: 11563950]
[103]
Collery P, Shtemenko N, Shtemenko A, et al. Supplementation by rhenium compounds instead of iron compounds during the treatment by erythropoietin of anemia in cancer patients. In: Metal Ions in Biology and Medicine. Paris: John Libbey Eurotext 2004; 8: pp. 534-7.
[104]
Shamelashvili KL, Shtemenko NI, Leus LV, Babiy SO, Shtemenko OV. Changes in oxidative stress intensity in blood of tumor-bearing rats following different modes of administration of rhenium-platinum system. Ukr Biochem J 2016; 88(4): 29-39.
[http://dx.doi.org/10.15407/ubj88.04.029] [PMID: 29235755]
[105]
Skiba J, Kowalczyk A, Stączek P, et al. Luminescent fac-[Re(CO)3(phen)] carboxylato complexes with non-steroidal anti-inflammatory drugs: synthesis and mechanistic insights into the in vitro anticancer activity of fac-[Re(CO)3(phen)(aspirin) New J Chem 2019; 43: 573-83.
[http://dx.doi.org/10.1039/C8NJ05494K]
[106]
Fricker SP. Cysteine proteases as targets for metal-based drugs. Metallomics 2010; 2(6): 366-77.
[http://dx.doi.org/10.1039/b924677k] [PMID: 21072382]
[107]
Huisman M, Kodanko JP, Arora K, et al. Affinity-enhanced luminescent Re(I)- and Ru(II)-based inhibitors of the cysteine protease cathepsin L. Inorg Chem 2018; 57(13): 7881-91.
[http://dx.doi.org/10.1021/acs.inorgchem.8b00978] [PMID: 29882662]
[108]
Ye R-R, Tan C-P, Lin Y-N, Ji L-N, Mao Z-W. A phosphorescent Rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction. Chem Commun (Camb) 2015; 51(39): 8353-6.
[http://dx.doi.org/10.1039/C5CC02354H] [PMID: 25882790]
[109]
Muñoz-Osses M, Godoy F, Fierro A, Gómez A, Metzler-Nolte N. New organometallic imines of Rhenium(I) as potential ligands of GSK-3β: synthesis, characterization and biological studies. Dalton Trans 2018; 47: 1233-42.
[http://dx.doi.org/10.1039/C7DT04344A] [PMID: 29299575]
[110]
Mull ES, Sattigeri VJ, Rodriguez AL, Katzenellenbogen JA. Aryl cyclopentadienyl tricarbonyl rhenium complexes: novel ligands for the estrogen receptor with potential use as estrogen radiopharmaceuticals. Bioorg Med Chem 2002; 10(5): 1381-98.
[http://dx.doi.org/10.1016/S0968-0896(01)00406-0] [PMID: 11886802]
[111]
Wolohan P, Reichert DE. CoMSIA and docking study of rhenium based estrogen receptor ligand analogs. Steroids 2007; 72(3): 247-60.
[http://dx.doi.org/10.1016/j.steroids.2006.11.011] [PMID: 17280694]
[112]
Hapuarachchige S, Bryant BK, Arterburn JB. Synthesis of (Pyridin-2-yl)hydrazone Rhenium(I) tricarbonyl complexes that exhibit pH-sensitive fluorescence. Chem Het Compd 2014; 50: 254-63.
[http://dx.doi.org/10.1007/s10593-014-1469-4]
[113]
Proverbio M, Quartapelle Procopio E, Panigati M, et al. Luminescent conjugates between dinuclear rhenium complexes and 17α-ethynylestradiol: synthesis, photophysical characterization, and cell imaging. Org Biomol Chem 2019; 17(3): 509-18.
[http://dx.doi.org/10.1039/C8OB02472C] [PMID: 30569048]
[114]
Viola-Villegas N, Rabideau AE, Cesnavicious J, Zubieta J, Doyle RP. Targeting the folate receptor (FR): imaging and cytotoxicity of ReI conjugates in FR-overexpressing cancer cells. ChemMedChem 2008; 3(9): 1387-94.
[http://dx.doi.org/10.1002/cmdc.200800125] [PMID: 18651631]
[115]
Kaplanis M, Stamatakis G, Papakonstantinou VD, Paravatou-Petsotas M, Demopoulos CA, Mitsopoulou CA. Re(I) tricarbonyl complex of 1,10-phenanthroline-5,6-dione: DNA binding, cytotoxicity, anti-inflammatory and anti-coagulant effects towards platelet activating factor. J Inorg Biochem 2014; 135: 1-9.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.02.003] [PMID: 24632342]
[116]
Lu G, Hillier SM, Maresca KP, et al. Synthesis and SAR of novel Re/99mTc-labeled benzenesulfonamide carbonic anhydrase IX inhibitors for molecular imaging of tumor hypoxia. J Med Chem 2013; 56(2): 510-20.
[http://dx.doi.org/10.1021/jm3015348] [PMID: 23234246]
[117]
Burai R, Ramesh C, Nayak TK, et al. Synthesis and characterization of tricarbonyl-Re/Tc(I) chelate probes targeting the G protein-coupled estrogen receptor GPER/GPR30. PLoS One 2012; 7(10) e46861
[http://dx.doi.org/10.1371/journal.pone.0046861] [PMID: 23077529]
[118]
Leonidova A, Pierroz V, Adams LA, et al. Enhanced cytotoxicity through conjugation of a “Clickable” luminescent Re(I) complex to a cell-penetrating lipopeptide. ACS Med Chem Lett 2014; 5(7): 809-14.
[http://dx.doi.org/10.1021/ml500158w] [PMID: 25050170]
[119]
Jiang H, Kasten BB, Liu H, et al. Novel, cysteine-modified chelation strategy for the incorporation of [M(I)(CO)(3)](+) (M = Re, (99m)Tc) in an α-MSH peptide. Bioconjug Chem 2012; 23(11): 2300-12.
[http://dx.doi.org/10.1021/bc300509k] [PMID: 23110503]
[120]
Mosi R, Baird IR, Cox J, et al. Rhenium inhibitors of cathepsin B (ReO(SYS)X (where Y = S, py; X = Cl, Br, SPhOMe-p)): synthesis and mechanism of inhibition. J Med Chem 2006; 49(17): 5262-72.
[http://dx.doi.org/10.1021/jm060357z] [PMID: 16913715]
[121]
Giffard D, Fischer-Fodor E, Vlad C, Achimas-Cadariu P, Smith GS. Synthesis and antitumour evaluation of mono- and multinuclear [2+1] tricarbonylrhenium(I) complexes. Eur J Med Chem 2018; 157: 773-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.011] [PMID: 30142613]
[122]
Simpson PV, Casari I, Paternoster S, Skelton BW, Falasca M, Massi M. Defining the anti-cancer activity of tricarbonyl rhenium complexes: induction of G2/M cell cycle arrest and blockade of aurora-A kinase phosphorylation. Chemistry 2017; 23(27): 6518-21.
[http://dx.doi.org/10.1002/chem.201701208] [PMID: 28337805]
[123]
Oliveira BL, Moreira IS, Fernandes PA, Ramos MJ, Santos I, Correia JDG. Theoretical studies on the binding of Rhenium(I) complexes to inducible nitric oxide synthase. J Mol Graph Model 2013; 45: 13-25.
[http://dx.doi.org/10.1016/j.jmgm.2013.07.007] [PMID: 23995452]
[124]
Oliveira BL, Raposinho PD, Mendes F, et al. Re and Tc tricarbonyl complexes: from the suppression of NO biosynthesis in macrophages to in vivo targeting of inducible nitric oxide synthase. Bioconjug Chem 2010; 21(12): 2168-72.
[http://dx.doi.org/10.1021/bc100291e] [PMID: 21043515]
[125]
Bartholomä MD, Vortherms AR, Hillier S, et al. Synthesis, cytotoxicity, and insight into the mode of action of Re(CO)3 thymidine complexes. ChemMedChem 2010; 5(9): 1513-29.
[http://dx.doi.org/10.1002/cmdc.201000196] [PMID: 20652929]
[126]
Struthers H, Hagenbach A, Abram U, Schibli R. Organometallic [Re(CO)3]+ and [Re(CO)2(NO)]2+ labeled substrates for human thymidine kinase 1. Inorg Chem 2009; 48(12): 5154-63.
[http://dx.doi.org/10.1021/ic9000126] [PMID: 19400575]
[127]
Desbouis D, Struthers H, Spiwok V, Küster T, Schibli R. Synthesis, in vitro, and in silico evaluation of organometallic technetium and rhenium thymidine complexes with retained substrate activity toward human thymidine kinase type 1. J Med Chem 2008; 51(21): 6689-98.
[http://dx.doi.org/10.1021/jm800530p] [PMID: 18837546]
[128]
König M, Siegmund D, Raszeja LJ, Prokop A, Metzler-Nolte N. Resistance-breaking profiling and gene expression analysis on an organometallic ReI-phenanthridine complex reveal parallel activation of two apoptotic pathways. MedChemComm 2017; 9(1): 173-80.
[http://dx.doi.org/10.1039/C7MD00545H] [PMID: 30108911]
[129]
Ye RR, Tan CP, Chen MH, Hao L, Ji LN, Mao ZW. Mono- and dinuclear phosphorescent Rhenium(I) complexes: impact of subcellular localization on anticancer mechanisms. Chemistry 2016; 22(23): 7800-9.
[http://dx.doi.org/10.1002/chem.201505160] [PMID: 27106876]
[130]
Kowalski K, Szczupak Ł, Bernaś T, Czerwieniec R. Luminescent Rhenium(I)-chromone bioconjugate: synthesis, photophysical properties, and confocal luminescence microscopy investigation. J Organomet Chem 2015; 782: 124-30.
[http://dx.doi.org/10.1016/j.jorganchem.2015.01.017]
[131]
Nunes P, Morais GR, Palma E, et al. Isostructural Re(I)/(99m)Tc(I) tricarbonyl complexes for cancer theranostics. Org Biomol Chem 2015; 13(18): 5182-94.
[http://dx.doi.org/10.1039/C5OB00124B] [PMID: 25849043]
[132]
Clède S, Lambert F, Sandt C, et al. A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties. Chem Commun (Camb) 2012; 48(62): 7729-31.
[http://dx.doi.org/10.1039/c2cc32163g] [PMID: 22739549]
[133]
Wedding JL, Harris HH, Bader CA, et al. Intracellular distribution and stability of a luminescent Rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging. Metallomics 2017; 9(4): 382-90.
[http://dx.doi.org/10.1039/C6MT00243A] [PMID: 27909710]
[134]
North AJ, Hayne DJ, Schieber C, et al. Toward hypoxia-selective rhenium and technetium tricarbonyl complexes. Inorg Chem 2015; 54(19): 9594-610.
[http://dx.doi.org/10.1021/acs.inorgchem.5b01691] [PMID: 26375592]
[135]
Choi SJ, Brylev KA, Xu JZ, et al. Cellular uptake and cytotoxicity of octahedral rhenium cluster complexes. J Inorg Biochem 2008; 102(11): 1991-6.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.07.013] [PMID: 18783832]
[136]
Knopf KM, Murphy BL, MacMillan SN, et al. In vitro anticancer activity and in vivo biodistribution of Rhenium(I) tricarbonyl aqua complexes. J Am Chem Soc 2017; 139(40): 14302-14.
[http://dx.doi.org/10.1021/jacs.7b08640] [PMID: 28948792]
[137]
Wirth S, Wallek AU, Zernickel A, et al. Tautomerization of 2-nitroso-N-arylanilines by coordination as N,N′-chelate ligands to rhenium(I) complexes and the anticancer activity of newly synthesized oximine rhenium(I) complexes against human melanoma and leukemia cells in vitro. J Inorg Biochem 2010; 104(7): 774-89.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.03.014] [PMID: 20421133]
[138]
Huang R, Langille G, Gill RK, et al. Synthesis, characterization, and biological studies of emissive rhenium-glutamine conjugates. J Biol Inorg Chem 2013; 18(7): 831-44.
[http://dx.doi.org/10.1007/s00775-013-1023-3] [PMID: 23925425]
[139]
Czaplewska JA, Theil F, Altuntas E, et al. Glycoconjugated Rhenium(I) and 99m-Technetium(I) carbonyl complexes from pyridyltriazole ligands obtained by “click chemistry”. Eur J Inorg Chem 2014; 2014: 6290-7.
[http://dx.doi.org/10.1002/ejic.201402881]
[140]
Ho J, Lee WY, Koh KJ, Lee PP, Yan YK. Rhenium(I) tricarbonyl complexes of salicylaldehyde semicarbazones: synthesis, crystal structures and cytotoxicity. J Inorg Biochem 2013; 119: 10-20.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.10.011] [PMID: 23168308]
[141]
Kumar CA, Nagarajaprakash R, Victoria W, Veena V, Sakthivel N, Manimaran B. Synthesis, characterisation and cytotoxicity studies of Manganese(I) and Rhenium(I) based metallacrown ethers. Inorg Chem Commun 2016; 64: 39-44.
[http://dx.doi.org/10.1016/j.inoche.2015.12.011]
[142]
Rojas-Mancilla E, Oyarce A, Verdugo V, Zheng Z, Ramírez-Tagle R. The cluster [Re6Se8I6]3- induces low hemolysis of human erythrocytes in vitro: protective effect of albumin. Int J Mol Sci 2015; 16(1): 1728-35.
[http://dx.doi.org/10.3390/ijms16011728] [PMID: 25590300]
[143]
Uehara T, Koike M, Nakata H, et al. In vivo recognition of cyclopentadienyltricarbonylrhenium (CpTR) derivatives. Nucl Med Biol 2003; 30(3): 327-34.
[http://dx.doi.org/10.1016/S0969-8051(02)00437-7] [PMID: 12745024]
[144]
Zobi F, Blacque O, Jacobs RA, Schaub MC, Bogdanova AY. 17 e- rhenium dicarbonyl CO-releasing molecules on a cobalamin scaffold for biological application. Dalton Trans 2012; 41(2): 370-8.
[http://dx.doi.org/10.1039/C1DT10649J] [PMID: 21881676]
[145]
Shtemenko AV, Collery P, Shtemenko NI, Domasevitch KV, Zabitskaya ED, Golichenko AA. Synthesis, characterization, in vivo antitumor properties of the cluster rhenium compound with GABA ligands and its synergism with cisplatin. Dalton Trans 2009; 26(26): 5132-6.
[http://dx.doi.org/10.1039/b821041a] [PMID: 19562173]
[146]
Shtemenko N, Collery P, Shtemenko A. Dichlorotetra-μ-isobutyratodirhenium(III): enhancement of cisplatin action and RBC-stabilizing properties. Anticancer Res 2007; 27(4B): 2487-92.
[PMID: 17695543]
[147]
Shtemenko N, Collery P, Shtemenko A. Synergistic effect of cisplatin and cis-rhenium (III) diadamantate on tumor growth. eds Alpoim MC,Vasconcellos Morais P, Santos MA, Cristovao AJ, Centeno JA, Collery P. In: Metal Ions in Biology and Medicine. Paris: John Libbey Eurotext 2006; 9: pp. 374-81.
[148]
Li Z, Shtemenko NI, Yegorova DY, et al. Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improved in vivo anticancer activity. J Liposome Res 2015; 25(1): 78-87.
[http://dx.doi.org/10.3109/08982104.2014.954127] [PMID: 25203608]
[149]
Shtemenko A, Shtemenko N. Rhenium-platinum antitumor systems. Ukr Biochem J 2017; 89: 5-30.
[http://dx.doi.org/10.15407/ubj89.02.005]
[150]
He L, Pan Z-Y, Qin W-W, Li Y, Tan C-P, Mao Z-W. Impairment of the autophagy-related lysosomal degradation pathway by an anticancer Rhenium(I) complex. Dalton Trans 2019; 48(13): 4398-404.
[http://dx.doi.org/10.1039/C9DT00322C] [PMID: 30864598]
[151]
Liu C, Zhou L, Wei F, et al. Versatile strategy to generate a rhodamine triplet state as mitochondria-targeting visible-light photosensitizers for efficient photodynamic therapy. ACS Appl Mater Interfaces 2019; 11(9): 8797-806.
[http://dx.doi.org/10.1021/acsami.8b20224] [PMID: 30730131]
[152]
Grapperhaus CA, Ouch K, Mashuta MS. Redox-regulated ethylene binding to a rhenium-thiolate complex. J Am Chem Soc 2009; 131(1): 64-5.
[http://dx.doi.org/10.1021/ja8086483] [PMID: 19072280]
[153]
Collery P, Veena V, Harikrishnan A, Desmaele D. The rhenium(I)-diselenoether anticancer drug targets ROS, TGF-β1, VEGF-A, and IGF-1 in an in vitro experimental model of triple-negative breast cancers. Invest New Drugs 2019.
[http://dx.doi.org/10.1007/s10637-019-00727-1] [PMID: 30632005]
[154]
Bahhnassy A, Mohanad M, Shaarawy S, et al. Transforming growth factor-β, insulin-like growth factor I/insulin-like growth factor I receptor and vascular endothelial growth factor-A: prognostic and predictive markers in triple-negative and non-triple-negative breast cancer. Mol Med Rep 2015; 12(1): 851-64.
[http://dx.doi.org/10.3892/mmr.2015.3560] [PMID: 25824321]
[155]
Bartucci M, Morelli C, Mauro L, Andò S, Surmacz E. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res 2001; 61(18): 6747-54.
[PMID: 11559546]
[156]
Thielemann A, Baszczuk A, Kopczyński Z, Kopczyński P, Grodecka-Gazdecka S. Clinical usefulness of assessing VEGF and soluble receptors sVEGFR-1 and sVEGFR-2 in women with breast cancer. Ann Agric Environ Med 2013; 20(2): 293-7.
[PMID: 23772579]
[157]
Ikeda M, Morimoto M, Tajimi M, et al. A phase 1b study of transforming growth factor-beta receptor I inhibitor galunisertib in combination with sorafenib in Japanese patients with unresectable hepatocellular carcinoma. Invest New Drugs 2019; 37(1): 118-26.
[http://dx.doi.org/10.1007/s10637-018-0636-3] [PMID: 29995286]
[158]
Collery P, Bastian G, Santoni F, et al. Uptake and efflux of rhenium in cells exposed to rhenium diseleno-ether and tissue distribution of rhenium and selenium after rhenium diseleno-ether treatment in mice. Anticancer Res 2014; 34(4): 1679-89.
[PMID: 24692697]
[159]
Collery P, Santoni F, Mohsen A, Mignard C, Desmaele D. Negative impact of total body irradiation on the antitumor activity of Rhenium-(I)-diselenoether. Anticancer Res 2016; 36(11): 5813-9.
[http://dx.doi.org/10.21873/anticanres.11165] [PMID: 27793903]
[160]
Collery P, Santoni F, Ciccolini J, Tran TN, Mohsen A, Desmaele D. Dose effect of Rhenium (I)-diselenoether as anticancer drug in resistant breast tumor-bearing mice after repeated administrations. Anticancer Res 2016; 36(11): 6051-7.
[http://dx.doi.org/10.21873/anticanres.11194] [PMID: 27793932]
[161]
Collery P, Mohsen A, Kermagoret A, et al. Combination of three metals for the treatment of cancer: gallium, rhenium and platinum. 1. Determination of the optimal schedule of treatment. Anticancer Res 2012; 32(7): 2769-81.
[PMID: 22753737]
[162]
Collery P. Strategies for the development of selenium-based anticancer drugs. J Trace Elem Med Biol 2018; 50: 498-507.
[http://dx.doi.org/10.1016/j.jtemb.2018.02.024] [PMID: 29548612]