Recent Advances in Developing K-Ras Plasma Membrane Localization Inhibitors

Page: [2114 - 2127] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The Ras proteins play an important role in cell growth, differentiation, proliferation and survival by regulating diverse signaling pathways. Oncogenic mutant K-Ras is the most frequently mutated class of Ras superfamily that is highly prevalent in many human cancers. Despite intensive efforts to combat various K-Ras-mutant-driven cancers, no effective K-Ras-specific inhibitors have yet been approved for clinical use to date. Since K-Ras proteins must be associated to the plasma membrane for their function, targeting K-Ras plasma membrane localization represents a logical and potentially tractable therapeutic approach. Here, we summarize the recent advances in the development of K-Ras plasma membrane localization inhibitors including natural product-based inhibitors achieved from high throughput screening, fragment-based drug design, virtual screening, and drug repurposing as well as hit-to-lead optimizations.

Keywords: RAS, K-Ras, K-Ras mutation, Plasma membrane localization inhibitors, Cancer, Drug discovery.

Graphical Abstract

[1]
Wiesmüller, L.; Wittinghofer, F. Signal transduction pathways involving Ras. Mini review. Cell. Signal., 1994, 6(3), 247-267.
[http://dx.doi.org/10.1016/0898-6568(94)90030-2] [PMID: 7917783]
[2]
Bryant, K.L.; Mancias, J.D.; Kimmelman, A.C.; Der, C.J. KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci., 2014, 39(2), 91-100.
[http://dx.doi.org/10.1016/j.tibs.2013.12.004] [PMID: 24388967]
[3]
Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer, 2011, 11(11), 761-774.
[http://dx.doi.org/10.1038/nrc3106] [PMID: 21993244]
[4]
Cox, A.D.; Der, C.J. Ras history: The saga continues. Small GTPases, 2010, 1(1), 2-27.
[http://dx.doi.org/10.4161/sgtp.1.1.12178] [PMID: 21686117]
[5]
Drosten, M.; Dhawahir, A.; Sum, E.Y.; Urosevic, J.; Lechuga, C.G.; Esteban, L.M.; Castellano, E.; Guerra, C.; Santos, E.; Barbacid, M. Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J., 2010, 29(6), 1091-1104.
[http://dx.doi.org/10.1038/emboj.2010.7] [PMID: 20150892]
[6]
Crespo, P.; León, J. Ras proteins in the control of the cell cycle and cell differentiation. Cell. Mol. Life Sci., 2000, 57(11), 1613-1636.
[http://dx.doi.org/10.1007/PL00000645] [PMID: 11092455]
[7]
Rojas, A.M.; Fuentes, G.; Rausell, A.; Valencia, A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell Biol., 2012, 196(2), 189-201.
[http://dx.doi.org/10.1083/jcb.201103008] [PMID: 22270915]
[8]
Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE, 2004, 2004(250), RE13.
[http://dx.doi.org/ 10.1126/STKE.2502004RE13] [PMID: 15367757]
[9]
Harvey, J.J. An unidentified virus which causes the rapid production of tumours in mice. Nature, 1964, 204, 1104-1105.
[http://dx.doi.org/10.1038/2041104b0] [PMID: 14243400]
[10]
Chang, E.H.; Gonda, M.A.; Ellis, R.W.; Scolnick, E.M.; Lowy, D.R. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc. Natl. Acad. Sci. USA, 1982, 79(16), 4848-4852.
[http://dx.doi.org/10.1073/pnas.79.16.4848] [PMID: 6289320]
[11]
Zhang, Z.; Wang, Y.; Vikis, H.G.; Johnson, L.; Liu, G.; Li, J.; Anderson, M.W.; Sills, R.C.; Hong, H.L.; Devereux, T.R.; Jacks, T.; Guan, K.L.; You, M. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat. Genet., 2001, 29(1), 25-33.
[http://dx.doi.org/10.1038/ng721] [PMID: 11528387]
[12]
Gysin, S.; Salt, M.; Young, A.; McCormick, F. Therapeutic strategies for targeting ras proteins. Genes Cancer, 2011, 2(3), 359-372.
[http://dx.doi.org/10.1177/1947601911412376] [PMID: 21779505]
[13]
Stephen, A.G.; Esposito, D.; Bagni, R.K.; McCormick, F. Dragging ras back in the ring. Cancer Cell, 2014, 25(3), 272-281.
[http://dx.doi.org/10.1016/j.ccr.2014.02.017] [PMID: 24651010]
[14]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[15]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
[16]
Castellano, E.; Santos, E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer, 2011, 2(3), 216-231.
[http://dx.doi.org/10.1177/1947601911408081] [PMID: 21779495]
[17]
Fernández-Medarde, A.; Santos, E. Ras in cancer and developmental diseases. Genes Cancer, 2011, 2(3), 344-358.
[http://dx.doi.org/10.1177/1947601911411084] [PMID: 21779504]
[18]
Zimmermann, G.; Papke, B.; Ismail, S.; Vartak, N.; Chandra, A.; Hoffmann, M.; Hahn, S.A.; Triola, G.; Wittinghofer, A.; Bastiaens, P.I.; Waldmann, H. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature, 2013, 497(7451), 638-642.
[http://dx.doi.org/10.1038/nature12205] [PMID: 23698361]
[19]
Leshchiner, E.S.; Parkhitko, A.; Bird, G.H.; Luccarelli, J.; Bellairs, J.A.; Escudero, S.; Opoku-Nsiah, K.; Godes, M.; Perrimon, N.; Walensky, L.D. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1761-1766.
[http://dx.doi.org/10.1073/pnas.1413185112] [PMID: 25624485]
[20]
Winter, J.J.; Anderson, M.; Blades, K.; Brassington, C.; Breeze, A.L.; Chresta, C.; Embrey, K.; Fairley, G.; Faulder, P.; Finlay, M.R.; Kettle, J.G.; Nowak, T.; Overman, R.; Patel, S.J.; Perkins, P.; Spadola, L.; Tart, J.; Tucker, J.A.; Wrigley, G. Small molecule binding sites on the Ras: SOS complex can be exploited for inhibition of Ras activation. J. Med. Chem., 2015, 58(5), 2265-2274.
[http://dx.doi.org/10.1021/jm501660t] [PMID: 25695162]
[21]
Adjei, A.A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl. Cancer Inst., 2001, 93(14), 1062-1074.
[http://dx.doi.org/10.1093/jnci/93.14.1062] [PMID: 11459867]
[22]
Shima, F.; Matsumoto, S.; Yoshikawa, Y.; Kawamura, T.; Isa, M.; Kataoka, T. Current status of the development of Ras inhibitors. J. Biochem., 2015, 158(2), 91-99.
[http://dx.doi.org/10.1093/jb/mvv060] [PMID: 26100833]
[23]
Brock, E.J.; Ji, K.; Reiners, J.J.; Mattingly, R.R. How to target activated Ras proteins: direct inhibition vs. induced mislocalization. Mini Rev. Med. Chem., 2016, 16(5), 358-369.
[http://dx.doi.org/10.2174/1389557515666151001154002] [PMID: 26423696]
[24]
Upadhyaya, P.; Bedewy, W.; Pei, D. Direct inhibitors of Ras-effector protein interactions. Mini Rev. Med. Chem., 2016, 16(5), 376-382.
[http://dx.doi.org/10.2174/1389557515666151001141713] [PMID: 26423701]
[25]
Quah, S.Y.; Tan, M.S.; Teh, Y.H.; Stanslas, J. Pharmacological modulation of oncogenic Ras by natural products and their derivatives: Renewed hope in the discovery of novel anti-Ras drugs. Pharmacol. Ther., 2016, 162, 35-57.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.010] [PMID: 27016467]
[26]
Burns, M.C.; Sun, Q.; Daniels, R.N.; Camper, D.; Kennedy, J.P.; Phan, J.; Olejniczak, E.T.; Lee, T.; Waterson, A.G.; Rossanese, O.W.; Fesik, S.W. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc. Natl. Acad. Sci. USA, 2014, 111(9), 3401-3406.
[http://dx.doi.org/10.1073/pnas.1315798111] [PMID: 24550516]
[27]
Schöpel, M.; Jockers, K.F.; Düppe, P.M.; Autzen, J.; Potheraveedu, V.N.; Ince, S.; Yip, K.T.; Heumann, R.; Herrmann, C.; Scherkenbeck, J.; Stoll, R. Bisphenol A binds to Ras proteins and competes with guanine nucleotide exchange: implications for GTPase-selective antagonists. J. Med. Chem., 2013, 56(23), 9664-9672.
[http://dx.doi.org/10.1021/jm401291q] [PMID: 24266771]
[28]
Fanelli, F.; Raimondi, F. Nucleotide binding affects intrinsic dynamics and structural communication in Ras GTPases. Curr. Pharm. Des., 2013, 19(23), 4214-4225.
[http://dx.doi.org/10.2174/1381612811319230006] [PMID: 23170885]
[29]
Sun, Q.; Burke, J.P.; Phan, J.; Burns, M.C.; Olejniczak, E.T.; Waterson, A.G.; Lee, T.; Rossanese, O.W.; Fesik, S.W. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl., 2012, 51(25), 6140-6143.
[http://dx.doi.org/10.1002/anie.201201358] [PMID: 22566140]
[30]
Ye, N.; Zhou, J. KRAS- an evolving cancer target. Austin J. Cancer Clin. Res., 2014, 1(1), 1004.
[PMID: 27642639]
[31]
Wang, Y.; Kaiser, C.E.; Frett, B.; Li, H.Y. Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators. J. Med. Chem., 2013, 56(13), 5219-5230.
[http://dx.doi.org/10.1021/jm3017706] [PMID: 23566315]
[32]
Cho, K.J.; van der Hoeven, D.; Hancock, J.F. Inhibitors of K-Ras plasma membrane localization. Enzymes, 2013, 33(Pt A), 249-265.
[http://dx.doi.org/10.1016/B978-0-12-416749-0.00011-7]
[33]
Friday, B.B.; Adjei, A.A. K-ras as a target for cancer therapy. Biochim. Biophys. Acta, 2005, 1756(2), 127-144.
[http://dx.doi.org/10.1016//j.bbcan.2005.08.001] [PMID: 16139957]
[34]
Lu, S.; Jang, H.; Gu, S.; Zhang, J.; Nussinov, R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem. Soc. Rev., 2016, 45(18), 4929-4952.
[http://dx.doi.org/10.1039/C5CS00911A] [PMID: 27396271]
[35]
Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 2014, 13(11), 828-851.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
[36]
Hancock, J.F. Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol., 2003, 4(5), 373-384.
[http://dx.doi.org/10.1038/nrm1105] [PMID: 12728271]
[37]
Cox, A.D.; Der, C.J.; Philips, M.R. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res., 2015, 21(8), 1819-1827.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3214] [PMID: 25878363]
[38]
Sperka, T.; Geissler, K.J.; Merkel, U.; Scholl, I.; Rubio, I.; Herrlich, P.; Morrison, H.L. Activation of Ras requires the ERM-dependent link of actin to the plasma membrane. PLoS One, 2011, 6(11)e27511
[http://dx.doi.org/10.1371/journal.pone.0027511] [PMID: 22132106]
[39]
Chavan, T.S.; Muratcioglu, S.; Marszalek, R.; Jang, H.; Keskin, O.; Gursoy, A.; Nussinov, R.; Gaponenko, V. Plasma membrane regulates Ras signaling networks. Cell. Logist., 2016, 5(4)e1136374
[http://dx.doi.org/10.1080/21592799.2015.1136374] [PMID: 27054048]
[40]
Tamanoi, F.; Lu, J. Recent progress in developing small molecule inhibitors designed to interfere with ras membrane association: toward inhibiting K-Ras and N-Ras functions. Enzymes, 2013, 34(Pt. B), 181-200.
[41]
Schubbert, S.; Shannon, K.; Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer, 2007, 7(4), 295-308.
[http://dx.doi.org/10.1038/nrc2109] [PMID: 17384584]
[42]
ten Klooster, J.P.; Hordijk, P.L. Targeting and localized signalling by small GTPases. Biol. Cell, 2007, 99(1), 1-12.
[http://dx.doi.org/10.1042/BC20060071] [PMID: 17155934]
[43]
Prior, I.A.; Muncke, C.; Parton, R.G.; Hancock, J.F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol., 2003, 160(2), 165-170.
[http://dx.doi.org/10.1083/jcb.200209091] [PMID: 12527752]
[44]
Chiu, V.K.; Bivona, T.; Hach, A.; Sajous, J.B.; Silletti, J.; Wiener, H.; Johnson, R.L., II; Cox, A.D.; Philips, M.R. Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol., 2002, 4(5), 343-350.
[http://dx.doi.org/10.1038/ncb783] [PMID: 11988737]
[45]
Hancock, J.F.; Magee, A.I.; Childs, J.E.; Marshall, C.J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell, 1989, 57(7), 1167-1177.
[http://dx.doi.org/10.1016/0092-8674(89)90054-8] [PMID: 2661017]
[46]
Hancock, J.F.; Paterson, H.; Marshall, C.J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 1990, 63(1), 133-139.
[http://dx.doi.org/10.1016/0092-8674(90)90294-O] [PMID: 2208277]
[47]
Apolloni, A.; Prior, I.A.; Lindsay, M.; Parton, R.G.; Hancock, J.F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol., 2000, 20(7), 2475-2487.
[http://dx.doi.org/10.1128/MCB.20.7.2475-2487.2000] [PMID: 10713171]
[48]
Willumsen, B.M.; Christensen, A.; Hubbert, N.L.; Papageorge, A.G.; Lowy, D.R. The p21 ras C-terminus is required for transformation and membrane association. Nature, 1984, 310(5978), 583-586.
[http://dx.doi.org/10.1038/310583a0] [PMID: 6087162]
[49]
Jackson, J.H.; Cochrane, C.G.; Bourne, J.R.; Solski, P.A.; Buss, J.E.; Der, C.J. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proc. Natl. Acad. Sci. USA, 1990, 87(8), 3042-3046.
[http://dx.doi.org/10.1073/pnas.87.8.3042] [PMID: 2183224]
[50]
Baker, T.L.; Booden, M.A.; Buss, J.E. S-Nitrosocysteine increases palmitate turnover on Ha-Ras in NIH 3T3 cells. J. Biol. Chem., 2000, 275(29), 22037-22047.
[http://dx.doi.org/10.1074/jbc.M001813200] [PMID: 10801823]
[51]
Rocks, O.; Peyker, A.; Kahms, M.; Verveer, P.J.; Koerner, C.; Lumbierres, M.; Kuhlmann, J.; Waldmann, H.; Wittinghofer, A.; Bastiaens, P.I. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science, 2005, 307(5716), 1746-1752.
[http://dx.doi.org/10.1126/science.1105654] [PMID: 15705808]
[52]
Zhang, F.L.; Kirschmeier, P.; Carr, D.; James, L.; Bond, R.W.; Wang, L.; Patton, R.; Windsor, W.T.; Syto, R.; Zhang, R.; Bishop, W.R. Characterization of Ha-ras, N-ras, Ki-Ras4A, and Ki-Ras4B as in vitro substrates for farnesyl protein transferase and geranylgeranyl protein transferase type I. J. Biol. Chem., 1997, 272(15), 10232-10239.
[http://dx.doi.org/10.1074/jbc.272.15.10232] [PMID: 9092572]
[53]
Rowell, C.A.; Kowalczyk, J.J.; Lewis, M.D.; Garcia, A.M. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J. Biol. Chem., 1997, 272(22), 14093-14097.
[http://dx.doi.org/10.1074/jbc.272.22.14093] [PMID: 9162034]
[54]
Whyte, D.B.; Kirschmeier, P.; Hockenberry, T.N.; Nunez-Oliva, I.; James, L.; Catino, J.J.; Bishop, W.R.; Pai, J.K. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem., 1997, 272(22), 14459-14464.
[http://dx.doi.org/10.1074/jbc.272.22.14459] [PMID: 9162087]
[55]
Chandra, A.; Grecco, H.E.; Pisupati, V.; Perera, D.; Cassidy, L.; Skoulidis, F.; Ismail, S.A.; Hedberg, C.; Hanzal-Bayer, M.; Venkitaraman, A.R.; Wittinghofer, A.; Bastiaens, P.I. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol., 2011, 14(2), 148-158.
[http://dx.doi.org/10.1038/ncb2394] [PMID: 22179043]
[56]
Nikolova, S.; Guenther, A.; Savai, R.; Weissmann, N.; Ghofrani, H.A.; Konigshoff, M.; Eickelberg, O.; Klepetko, W.; Voswinckel, R.; Seeger, W.; Grimminger, F.; Schermuly, R.T.; Pullamsetti, S.S. Phosphodiesterase 6 subunits are expressed and altered in idiopathic pulmonary fibrosis. Respir. Res., 2010, 11, 146.
[http://dx.doi.org/10.1186/1465-9921-11-146] [PMID: 20979602]
[57]
Nancy, V.; Callebaut, I.; El Marjou, A.; de Gunzburg, J. The delta subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem., 2002, 277(17), 15076-15084.
[http://dx.doi.org/10.1074/jbc.M109983200] [PMID: 11786539]
[58]
Ismail, S.A.; Chen, Y.X.; Rusinova, A.; Chandra, A.; Bierbaum, M.; Gremer, L.; Triola, G.; Waldmann, H.; Bastiaens, P.I.; Wittinghofer, A. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat. Chem. Biol., 2011, 7(12), 942-949.
[http://dx.doi.org/10.1038/nchembio.686] [PMID: 22002721]
[59]
Zhang, H.; Liu, X.H.; Zhang, K.; Chen, C.K.; Frederick, J.M.; Prestwich, G.D.; Baehr, W. Photoreceptor cGMP phosphodiesterase delta subunit (PDEdelta) functions as a prenyl-binding protein. J. Biol. Chem., 2004, 279(1), 407-413.
[http://dx.doi.org/10.1074/jbc.M306559200] [PMID: 14561760]
[60]
Chen, Y.X.; Koch, S.; Uhlenbrock, K.; Weise, K.; Das, D.; Gremer, L.; Brunsveld, L.; Wittinghofer, A.; Winter, R.; Triola, G.; Waldmann, H. Synthesis of the Rheb and K-Ras4B GTPases. Angew. Chem. Int. Ed. Engl., 2010, 49(35), 6090-6095.
[http://dx.doi.org/10.1002/anie.201001884] [PMID: 20652921]
[61]
Cherfils, J.; Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev., 2013, 93(1), 269-309.
[http://dx.doi.org/10.1152/physrev.00003.2012] [PMID: 23303910]
[62]
Gibbs, J.B.; Oliff, A.; Kohl, N.E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell, 1994, 77(2), 175-178.
[http://dx.doi.org/10.1016/0092-8674(94)90308-5] [PMID: 8168127]
[63]
Kim, R.; Rine, J.; Kim, S.H. Prenylation of mammalian Ras protein in Xenopus oocytes. Mol. Cell. Biol., 1990, 10(11), 5945-5949.
[http://dx.doi.org/10.1128/MCB.10.11.5945] [PMID: 2233726]
[64]
Gibbs, J.B.; Oliff, A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu. Rev. Pharmacol. Toxicol., 1997, 37, 143-166.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.143] [PMID: 9131250]
[65]
Konstantinopoulos, P.A.; Karamouzis, M.V.; Papavassiliou, A.G. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat. Rev. Drug Discov., 2007, 6(7), 541-555.
[http://dx.doi.org/10.1038/nrd2221] [PMID: 17585331]
[66]
Mohammed, I.; Hampton, S.E.; Ashall, L.; Hildebrandt, E.R.; Kutlik, R.A.; Manandhar, S.P.; Floyd, B.J.; Smith, H.E.; Dozier, J.K.; Distefano, M.D.; Schmidt, W.K.; Dore, T.M. 8-Hydroxyquinoline-based inhibitors of the Rce1 protease disrupt Ras membrane localization in human cells. Bioorg. Med. Chem., 2016, 24(2), 160-178.
[http://dx.doi.org/10.1016/j.bmc.2015.11.043] [PMID: 26706114]
[67]
Jazieh, K.; Molina, J.; Allred, J.; Yin, J.; Reid, J.; Goetz, M.; Lim, V.S.; Kaufmann, S.H.; Adjei, A. A phase I study of the farnesyltransferase inhibitor Tipifarnib in combination with the epidermal growth factor tyrosine kinase inhibitor Erlotinib in patients with advanced solid tumors. Invest. New Drugs, 2018, 37(2), 307-314.
[PMID: 30171497]
[68]
Nghiemphu, P.L.; Ebiana, V.A.; Wen, P.; Gilbert, M.; Abrey, L.E.; Lieberman, F.; DeAngelis, L.M.; Robins, H.I.; Yung, W.K.A.; Chang, S.; Drappatz, J.; Mehta, M.P.; Levin, V.A.; Aldape, K.; Dancey, J.E.; Wright, J.J.; Prados, M.; Kuhn, J.; Cloughesy, T.F. Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02. J. Neurooncol., 2018, 136(1), 79-86.
[http://dx.doi.org/10.1007/s11060-017-2624-4] [PMID: 28988377]
[69]
Yam, C.; Murthy, R.K.; Valero, V.; Szklaruk, J.; Shroff, G.S.; Stalzer, C.J.; Buzdar, A.U.; Murray, J.L.; Yang, W.; Hortobagyi, G.N.; Moulder, S.L.; Arun, B. A phase II study of tipifarnib and gemcitabine in metastatic breast cancer. Invest. New Drugs, 2018, 36(2), 299-306.
[http://dx.doi.org/10.1007/s10637-018-0564-2] [PMID: 29374384]
[70]
Witzig, T.E.; Tang, H.; Micallef, I.N.; Ansell, S.M.; Link, B.K.; Inwards, D.J.; Porrata, L.F.; Johnston, P.B.; Colgan, J.P.; Markovic, S.N.; Nowakowski, G.S.; Thompson, C.A.; Allmer, C.; Maurer, M.J.; Gupta, M.; Weiner, G.; Hohl, R.; Kurtin, P.J.; Ding, H.; Loegering, D.; Schneider, P.; Peterson, K.; Habermann, T.M.; Kaufmann, S.H. Multi-institutional phase 2 study of the farnesyltransferase inhibitor tipifarnib (R115777) in patients with relapsed and refractory lymphomas. Blood, 2011, 118(18), 4882-4889.
[http://dx.doi.org/10.1182/blood-2011-02-334904] [PMID: 21725056]
[71]
Marciano, D.; Ben-Baruch, G.; Marom, M.; Egozi, Y.; Haklai, R.; Kloog, Y. Farnesyl derivatives of rigid carboxylic acids-inhibitors of ras-dependent cell growth. J. Med. Chem., 1995, 38(8), 1267-1272.
[http://dx.doi.org/10.1021/jm00008a004] [PMID: 7731012]
[72]
Rotblat, B.; Niv, H.; André, S.; Kaltner, H.; Gabius, H.J.; Kloog, Y. Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res., 2004, 64(9), 3112-3118.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0026] [PMID: 15126348]
[73]
Riely, G.J.; Johnson, M.L.; Medina, C.; Rizvi, N.A.; Miller, V.A.; Kris, M.G.; Pietanza, M.C.; Azzoli, C.G.; Krug, L.M.; Pao, W.; Ginsberg, M.S. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. J. Thorac. Oncol., 2011, 6(8), 1435-1437.
[http://dx.doi.org/10.1097/JTO.0b013e318223c099] [PMID: 21847063]
[74]
Badar, T.; Cortes, J. E.; Ravandi, F.; O'Brien, S.; Verstovsek, S.; Garcia-Manero, G.; Kantarjian, H.; Borthakur, G. Phase I study of S-trans, trans-farnesylthiosalicylic acid (salirasib), a novel oral RAS inhibitor in patients with refractory hematologic malignancies. Clin. Lymphoma Myeloma Leuk., 2015, 15(7), 433-438, e432.
[http://dx.doi.org/10.1016/j.clml.2015.02.018] [PMID: 25795639]
[75]
Tsimberidou, A.M.; Rudek, M.A.; Hong, D.; Ng, C.S.; Blair, J.; Goldsweig, H.; Kurzrock, R. Phase 1 first-in-human clinical study of S-trans,trans-farnesylthiosalicylic acid (salirasib) in patients with solid tumors. Cancer Chemother. Pharmacol., 2010, 65(2), 235-241.
[http://dx.doi.org/10.1007/s00280-009-1027-4] [PMID: 19484470]
[76]
Papke, B.; Murarka, S.; Vogel, H.A.; Martín-Gago, P.; Kovacevic, M.; Truxius, D.C.; Fansa, E.K.; Ismail, S.; Zimmermann, G.; Heinelt, K.; Schultz-Fademrecht, C.; Al Saabi, A.; Baumann, M.; Nussbaumer, P.; Wittinghofer, A.; Waldmann, H.; Bastiaens, P.I. Identification of pyrazolopyridazinones as PDEδ inhibitors. Nat. Commun., 2016, 7, 11360.
[http://dx.doi.org/10.1038/ncomms11360] [PMID: 27094677]
[77]
Zimmermann, G.; Schultz-Fademrecht, C.; Küchler, P.; Murarka, S.; Ismail, S.; Triola, G.; Nussbaumer, P.; Wittinghofer, A.; Waldmann, H. Structure guided design and kinetic analysis of highly potent benzimidazole inhibitors targeting the PDEδ prenyl binding site. J. Med. Chem., 2014, 57(12), 5435-5448.
[http://dx.doi.org/10.1021/jm500632s] [PMID: 24884780]
[78]
Jiang, Y.; Zhuang, C.; Chen, L.; Lu, J.; Dong, G.; Miao, Z.; Zhang, W.; Li, J.; Sheng, C. Structural biology-inspired discovery of novel KRAS-PDEδ inhibitors. J. Med. Chem., 2017, 60(22), 9400-9406.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01243] [PMID: 28929751]
[79]
Murarka, S.; Martín-Gago, P.; Schultz-Fademrecht, C.; Al Saabi, A.; Baumann, M.; Fansa, E.K.; Ismail, S.; Nussbaumer, P.; Wittinghofer, A.; Waldmann, H. Development of pyridazinone chemotypes targeting the PDEδ prenyl binding site. Chemistry, 2017, 23(25), 6083-6093.
[http://dx.doi.org/10.1002/chem.201603222] [PMID: 27809361]
[80]
Martín-Gago, P.; Fansa, E.K.; Klein, C.H.; Murarka, S.; Janning, P.; Schürmann, M.; Metz, M.; Ismail, S.; Schultz-Fademrecht, C.; Baumann, M.; Bastiaens, P.I.; Wittinghofer, A.; Waldmann, H.A. PDE6δ-KRas inhibitor chemotype with up to seven h-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2. Angew. Chem. Int. Ed. Engl., 2017, 56(9), 2423-2428.
[http://dx.doi.org/10.1002/anie.201610957] [PMID: 28106325]
[81]
Martín-Gago, P.; Fansa, E.K.; Wittinghofer, A.; Waldmann, H. Structure-based development of PDEδ inhibitors. Biol. Chem., 2017, 398(5-6), 535-545.
[http://dx.doi.org/10.1515/hsz-2016-0272] [PMID: 27935847]
[82]
Chen, L.; Zhuang, C.; Lu, J.; Jiang, Y.; Sheng, C. Discovery of novel KRAS-PDEδ inhibitors by fragment-based drug design. J. Med. Chem., 2018, 61(6), 2604-2610.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00057] [PMID: 29510040]
[83]
Chen, D.; Chen, Y.; Lian, F.; Chen, L.; Li, Y.; Cao, D.; Wang, X.; Chen, L.; Li, J.; Meng, T.; Huang, M.; Geng, M.; Shen, J.; Zhang, N.; Xiong, B. Fragment-based drug discovery of triazole inhibitors to block PDEδ-RAS protein-protein interaction. Eur. J. Med. Chem., 2019, 163, 597-609.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.018] [PMID: 30562696]
[84]
Cruz-Nova, P.; Schnoor, M.; Correa-Basurto, J.; Bello, M.; Briseño-Diaz, P.; Rojo-Domínguez, A.; Ortiz-Mendoza, C.M.; Guerrero-Aguirre, J.; García-Vázquez, F.J.; Hernández-Rivas, R.; Thompson-Bonilla, M.D.R.; Vargas, M. The small organic molecule C19 binds and strengthens the KRAS4b-PDEδ complex and inhibits growth of colorectal cancer cells in vitro and in vivo. BMC Cancer, 2018, 18(1), 1056.
[http://dx.doi.org/10.1186/s12885-018-4968-3] [PMID: 30382908]
[85]
Casique-Aguirre, D.; Briseño-Díaz, P.; García-Gutiérrez, P.; la Rosa, C.H.G.; Quintero-Barceinas, R.S.; Rojo-Domínguez, A.; Vergara, I.; Medina, L.A.; Correa-Basurto, J.; Bello, M.; Hernández-Rivas, R. Del RocioThompson-Bonilla, M.; Vargas, M. KRas4B-PDE6δ complex stabilization by small molecules obtained by virtual screening affects Ras signaling in pancreatic cancer. BMC Cancer, 2018, 18(1), 1299.
[http://dx.doi.org/10.1186/s12885-018-5142-7] [PMID: 30594165]
[86]
Leung, E.L.; Luo, L.X.; Li, Y.; Liu, Z.Q.; Li, L.L.; Shi, D.F.; Xie, Y.; Huang, M.; Lu, L.L.; Duan, F.G.; Huang, J.M.; Fan, X.X.; Yuan, Z.W.; Ding, J.; Yao, X.J.; Ward, D.C.; Liu, L. Identification of a new inhibitor of KRAS-PDEδ interaction targeting KRAS mutant nonsmall cell lung cancer. Int. J. Cancer, 2019, 145(5), 1334-1345.
[http://dx.doi.org/10.1002/ijc.32222] [PMID: 30786019]
[87]
Gupta, S.C.; Sung, B.; Prasad, S.; Webb, L.J.; Aggarwal, B.B. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol. Sci., 2013, 34(9), 508-517.
[http://dx.doi.org/10.1016/j.tips.2013.06.005] [PMID: 23928289]
[88]
van der Hoeven, D.; Cho, K.J.; Ma, X.; Chigurupati, S.; Parton, R.G.; Hancock, J.F. Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission. Mol. Cell. Biol., 2013, 33(2), 237-251.
[http://dx.doi.org/10.1128/MCB.00884-12] [PMID: 23129805]
[89]
Zhou, Y.; Wong, C.O.; Cho, K.J.; van der Hoeven, D.; Liang, H.; Thakur, D.P.; Luo, J.; Babic, M.; Zinsmaier, K.E.; Zhu, M.X.; Hu, H.; Venkatachalam, K.; Hancock, J.F. SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science, 2015, 349(6250), 873-876.
[http://dx.doi.org/10.1126/science.aaa5619] [PMID: 26293964]
[90]
Hancock, J.F.; van der Hoeven, D.; Cho, K.J.; Holland, G.W. Fendiline derivatives and methods of use thereof., WO2014031755A1, February 27 2014.
[91]
Aldea, M.; Craciun, L.; Tomuleasa, C.; Berindan-Neagoe, I.; Kacso, G.; Florian, I.S.; Crivii, C. Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery. Tumour Biol., 2014, 35(6), 5101-5110.
[http://dx.doi.org/10.1007/s13277-014-1676-8] [PMID: 24504677]
[92]
Sarwar, M.S.; Zhang, H.J.; Tsang, S.W. Perspectives of plant natural products in inhibition of cancer invasion and metastasis by regulating multiple signaling pathways. Curr. Med. Chem., 2018, 25(38), 5057-5087.
[http://dx.doi.org/10.2174/0929867324666170918123413] [PMID: 28925869]
[93]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[94]
Lee, K.H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod., 2010, 73(3), 500-516.
[http://dx.doi.org/10.1021/np900821e] [PMID: 20187635]
[95]
Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep., 2014, 31(11), 1612-1661.
[http://dx.doi.org/10.1039/C4NP00064A] [PMID: 25204227]
[96]
Tian, S.; Wang, J.; Li, Y.; Xu, X.; Hou, T. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol. Pharm., 2012, 9(10), 2875-2886.
[http://dx.doi.org/10.1021/mp300198d] [PMID: 22738405]
[97]
Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchya, H.; Takahashi, Y.; Masuma, R. A new alkaloid AM-2282 of Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1977, 30(4), 275-282.
[http://dx.doi.org/10.7164/antibiotics.30.275] [PMID: 863788]
[98]
Osada, H.; Koshino, H.; Kudo, T.; Onose, R.; Isono, K. A new inhibitor of protein kinase C, RK-1409 (7-oxostaurosporine). I. Taxonomy and biological activity. J. Antibiot. (Tokyo), 1992, 45(2), 189-194.
[http://dx.doi.org/10.7164/antibiotics.45.189] [PMID: 1556009]
[99]
Cho, K.J.; Park, J.H.; Piggott, A.M.; Salim, A.A.; Gorfe, A.A.; Parton, R.G.; Capon, R.J.; Lacey, E.; Hancock, J.F. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J. Biol. Chem., 2012, 287(52), 43573-43584.
[http://dx.doi.org/10.1074/jbc.M112.424457] [PMID: 23124205]
[100]
Sausville, E.A.; Arbuck, S.G.; Messmann, R.; Headlee, D.; Bauer, K.S.; Lush, R.M.; Murgo, A.; Figg, W.D.; Lahusen, T.; Jaken, S.; Jing, X.; Roberge, M.; Fuse, E.; Kuwabara, T.; Senderowicz, A.M. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J. Clin. Oncol., 2001, 19(8), 2319-2333.
[http://dx.doi.org/10.1200/JCO.2001.19.8.2319] [PMID: 11304786]
[101]
Li, T.; Christensen, S.D.; Frankel, P.H.; Margolin, K.A.; Agarwala, S.S.; Luu, T.; Mack, P.C.; Lara, P.N., Jr; Gandara, D.R. A phase II study of cell cycle inhibitor UCN-01 in patients with metastatic melanoma: a california cancer consortium trial. Invest. New Drugs, 2012, 30(2), 741-748.
[http://dx.doi.org/10.1007/s10637-010-9562-8] [PMID: 20967484]
[102]
Hotte, S.J.; Oza, A.; Winquist, E.W.; Moore, M.; Chen, E.X.; Brown, S.; Pond, G.R.; Dancey, J.E.; Hirte, H.W. Phase I trial of UCN-01 in combination with topotecan in patients with advanced solid cancers: a princess margaret hospital phase II consortium study. Ann. Oncol., 2006, 17(2), 334-340.
[http://dx.doi.org/10.1093/annonc/mdj076] [PMID: 16284058]
[103]
Edelman, M.J.; Bauer, K.S., Jr; Wu, S.; Smith, R.; Bisacia, S.; Dancey, J. Phase I and pharmacokinetic study of 7-hydroxystaurosporine and carboplatin in advanced solid tumors. Clin. Cancer Res., 2007, 13(9), 2667-2674.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1832] [PMID: 17473198]
[104]
Marti, G.E.; Stetler-Stevenson, M.; Grant, N.D.; White, T.; Figg, W.D.; Tohnya, T.; Jaffe, E.S.; Dunleavy, K.; Janik, J.E.; Steinberg, S.M.; Wilson, W.H. Phase I trial of 7-hydroxystaurosporine and fludararbine phosphate: in vivo evidence of 7-hydroxystaurosporine induced apoptosis in chronic lymphocytic leukemia. Leuk. Lymphoma, 2011, 52(12), 2284-2292.
[http://dx.doi.org/10.3109/10428194.2011.589547] [PMID: 21745173]
[105]
Cassinelli, G.; Grein, A.; Orezzi, P.; Pennella, P.; Sanfilippo, A. New antibiotics produced by Streptoverticillium orinoci, n. sp. Arch. Mikrobiol., 1967, 55(4), 358-368.
[http://dx.doi.org/10.1007/BF00406442] [PMID: 5593974]
[106]
Salim, A.A.; Cho, K-J.; Tan, L.; Quezada, M.; Lacey, E.; Hancock, J.F.; Capon, R.J. Rare Streptomyces N-formyl amino-salicylamides inhibit oncogenic K-Ras. Org. Lett., 2014, 16(19), 5036-5039.
[http://dx.doi.org/10.1021/ol502376e] [PMID: 25238489]
[107]
Vanner, S.A.; Li, X.; Zvanych, R.; Torchia, J.; Sang, J.; Andrews, D.W.; Magarvey, N.A. Chemical and biosynthetic evolution of the antimycin-type depsipeptides. Mol. Biosyst., 2013, 9(11), 2712-2719.
[http://dx.doi.org/10.1039/c3mb70219g] [PMID: 23989727]
[108]
Chen, L.; Li, Y.; Yu, H.; Zhang, L.; Hou, T. Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov. Today, 2012, 17(7-8), 343-351.
[http://dx.doi.org/10.1016/j.drudis.2011.11.003] [PMID: 22119877]
[109]
Chen, L.; Li, Y.; Zhao, Q.; Peng, H.; Hou, T. ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques. Mol. Pharm., 2011, 8(3), 889-900.
[http://dx.doi.org/10.1021/mp100465q] [PMID: 21413792]
[110]
Li, D.; Chen, L.; Li, Y.; Tian, S.; Sun, H.; Hou, T. ADMET evaluation in drug discovery. 13. Development of in silico prediction models for P-glycoprotein substrates. Mol. Pharm., 2014, 11(3), 716-726.
[http://dx.doi.org/10.1021/mp400450m] [PMID: 24499501]
[111]
Smith, R.M.; Peterson, W.H. McCOY, E. Oligomycin, a new antifungal antibiotic. Antibiot Chemother (Northfield), 1954, 4(9), 962-970.
[PMID: 24543225]
[112]
Salim, A.A.; Tan, L.; Huang, X.C.; Cho, K.J.; Lacey, E.; Hancock, J.F.; Capon, R.J. Oligomycins as inhibitors of K-Ras plasma membrane localisation. Org. Biomol. Chem., 2016, 14(2), 711-715.
[http://dx.doi.org/10.1039/C5OB02020D] [PMID: 26565618]
[113]
Salim, A.A.; Xiao, X.; Cho, K-J.; Piggott, A.M.; Lacey, E.; Hancock, J.F.; Capon, R.J. Rare Streptomyces sp. polyketides as modulators of K-Ras localisation. Org. Biomol. Chem., 2014, 12(27), 4872-4878.
[http://dx.doi.org/10.1039/C4OB00745J] [PMID: 24875924]
[114]
Tan, L.; Cho, K.J.; Neupane, P.; Capon, R.J.; Hancock, J.F. An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth. J. Biol. Chem., 2018, 293(35), 13696-13706.
[http://dx.doi.org/10.1074/jbc.RA118.003907] [PMID: 29970615]
[115]
Baines, A.T.; Xu, D.; Der, C.J. Inhibition of Ras for cancer treatment: the search continues. Future Med. Chem., 2011, 3(14), 1787-1808.
[http://dx.doi.org/10.4155/fmc.11.121] [PMID: 22004085]
[116]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Farnesyltransferase inhibitors: a detailed chemical view on an elusive biological problem. Curr. Med. Chem., 2008, 15(15), 1478-1492.
[http://dx.doi.org/ 10.2174/092986708784638825]
[117]
Baehr, W. Membrane protein transport in photoreceptors: the function of PDEδ: the Proctor lecture. Invest. Ophthalmol. Vis. Sci., 2014, 55(12), 8653-8666.
[http://dx.doi.org/10.1167/iovs.14-16066] [PMID: 25550383]
[118]
Wang, S.; Li, Y.; Wang, J.; Chen, L.; Zhang, L.; Yu, H.; Hou, T. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Mol. Pharm., 2012, 9(4), 996-1010.
[http://dx.doi.org/10.1021/mp300023x] [PMID: 22380484]
[119]
Tian, S.; Li, Y.; Wang, J.; Zhang, J.; Hou, T. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol. Pharm., 2011, 8(3), 841-851.
[http://dx.doi.org/10.1021/mp100444g] [PMID: 21548635]
[120]
Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10.
[http://dx.doi.org/10.1016/j.addr.2015.01.009] [PMID: 25666163]
[121]
Wang, S.; Sun, H.; Liu, H.; Li, D.; Li, Y.; Hou, T. ADMET evaluation in drug discovery. 16. Predicting hERG Blockers by combining multiple pharmacophores and machine learning approaches. Mol. Pharm., 2016, 13(8), 2855-2866.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00471] [PMID: 27379394]
[122]
Lerner, E.C.; Qian, Y.; Blaskovich, M.A.; Fossum, R.D.; Vogt, A.; Sun, J.; Cox, A.D.; Der, C.J.; Hamilton, A.D.; Sebti, S.M. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J. Biol. Chem., 1995, 270(45), 26802-26806.
[http://dx.doi.org/10.1074/jbc.270.45.26802] [PMID: 7592920]