Astrocytes: From the Physiology to the Disease

Page: [675 - 698] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Astrocytes are key cells for adequate brain formation and regulation of cerebral blood flow as well as for the maintenance of neuronal metabolism, neurotransmitter synthesis and exocytosis, and synaptic transmission. Many of these functions are intrinsically related to neurodegeneration, allowing refocusing on the role of astrocytes in physiological and neurodegenerative states. Indeed, emerging evidence in the field indicates that abnormalities in the astrocytic function are involved in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In the present review, we highlight the physiological role of astrocytes in the CNS, including their communication with other cells in the brain. Furthermore, we discuss exciting findings and novel experimental approaches that elucidate the role of astrocytes in multiple neurological disorders.

Keywords: Astrocytes, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, neuroinflammation.

[1]
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 119(1): 7-35. 2010
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[2]
Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6): 957-67. 2017
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[3]
Almad A, Maragakis NJ. A stocked toolbox for understanding the role of astrocytes in disease. Nat Rev Neurol 14(6): 351-62. 2018
[http://dx.doi.org/10.1038/s41582-018-0010-2] [PMID: 29769699]
[4]
Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7): 942-52. 2015
[http://dx.doi.org/10.1038/nn.4043] [PMID: 26108722]
[5]
Shigetomi E, Patel S, Khakh BS. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol 26(4): 300-12. 2016
[http://dx.doi.org/10.1016/j.tcb.2016.01.003] [PMID: 26896246]
[6]
Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 81(4): 728-39. 2014
[http://dx.doi.org/10.1016/j.neuron.2014.02.007] [PMID: 24559669]
[7]
Chung W-S, Allen NJ, Eroglu C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9)a020370 2015
[http://dx.doi.org/10.1101/cshperspect.a020370] [PMID: 25663667]
[8]
Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72(1): 335-55. 2010
[http://dx.doi.org/10.1146/annurev-physiol-021909-135843] [PMID: 20148679]
[9]
Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2): 229-48. 2014
[http://dx.doi.org/10.1016/j.neuron.2013.12.034] [PMID: 24462092]
[10]
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 61(12): 1939-58. 2013
[http://dx.doi.org/10.1002/glia.22575] [PMID: 24123158]
[11]
Molofsky AV, Deneen B. Astrocyte development: a guide for the perplexed. Glia 63(8): 1320-9. 2015
[http://dx.doi.org/10.1002/glia.22836] [PMID: 25963996]
[12]
Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3): 323-45. 2016
[http://dx.doi.org/10.1007/s00401-015-1513-1] [PMID: 26671410]
[13]
Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8): 421-31. 2009
[http://dx.doi.org/10.1016/j.tins.2009.05.001] [PMID: 19615761]
[14]
Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5): 249-63. 2015
[http://dx.doi.org/10.1038/nrn3898] [PMID: 25891508]
[15]
Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Tereda M, et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103(46): 17513-8. 2006
[http://dx.doi.org/10.1073/pnas.0602841103] [PMID: 17090684]
[16]
Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16(5): 580-6. 2013
[http://dx.doi.org/10.1038/nn.3371] [PMID: 23542688]
[17]
Kang W, Hébert JM. Signaling pathways in reactive astrocytes, a genetic perspective. Mol Neurobiol 43(3): 147-54. 2011
[http://dx.doi.org/10.1007/s12035-011-8163-7] [PMID: 21234816]
[18]
Gallo V, Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron 83(2): 283-308. 2014
[http://dx.doi.org/10.1016/j.neuron.2014.06.010] [PMID: 25033178]
[19]
Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133(3): 510-22. 2008
[http://dx.doi.org/10.1016/j.cell.2008.02.046] [PMID: 18455991]
[20]
Zhao X, Chen Y, Zhu Q, Huang H, Teng P, Zheng K, et al. Control of astrocyte progenitor specification, migration and maturation by Nkx6.1 homeodomain transcription factor. PLoS One 9(10)e109171 2014
[http://dx.doi.org/10.1371/journal.pone.0109171] [PMID: 25285789]
[21]
Tsai H-H, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092): 358-62. 2012
[http://dx.doi.org/10.1126/science.1222381] [PMID: 22745251]
[22]
Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18(1): 31-41. 2017
[http://dx.doi.org/10.1038/nrn.2016.159] [PMID: 27904142]
[23]
John Lin C-C, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J, et al. Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci 20(3): 396-405. 2017
[http://dx.doi.org/10.1038/nn.4493] [PMID: 28166219]
[24]
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638): 481-7. 2017
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[25]
Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6): 957-67. 2017
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[26]
Haydon PG. GLIA: listening and talking to the synapse. Nat Rev Neurosci 2(3): 185-93. 2001
[http://dx.doi.org/10.1038/35058528] [PMID: 11256079]
[27]
Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8): 626-40. 2005
[http://dx.doi.org/10.1038/nrn1722] [PMID: 16025096]
[28]
Ben Achour S, Pascual O. Astrocyte-neuron communication: functional consequences. Neurochem Res 37(11): 2464-73. 2012
[http://dx.doi.org/10.1007/s11064-012-0807-0] [PMID: 22669630]
[29]
Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3): 430-40. 2008
[http://dx.doi.org/10.1016/j.neuron.2008.10.013] [PMID: 18995817]
[30]
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer’s Disease. Front Aging Neurosci 10: 114. 2018
[http://dx.doi.org/10.3389/fnagi.2018.00114] [PMID: 29922147]
[31]
Fujii Y, Maekawa S, Morita M. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels. Sci Rep 7(1): 13115. 2017
[http://dx.doi.org/10.1038/s41598-017-13243-0] [PMID: 29030562]
[32]
Khakh BS, McCarthy KD. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7(4)a020404 2015
[http://dx.doi.org/10.1101/cshperspect.a020404] [PMID: 25605709]
[33]
Srinivasan R, Lu T-Y, Chai H, Xu J, Huang BS, Golshani P, et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92(6): 1181-95. 2016
[http://dx.doi.org/10.1016/j.neuron.2016.11.030] [PMID: 27939582]
[34]
Tan L, Li Q, Xie XS. Olfactory sensory neurons transiently express multiple olfactory receptors during development. Mol Syst Biol 11(12): 844. 2015
[http://dx.doi.org/10.15252/msb.20156639] [PMID: 26646940]
[35]
Srinivasan R, Huang BS, Venugopal S, Johnston AD. Chai H1, Zeng H, et al.Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo. Nat Neurosci 18(5): 708-17. 2015
[http://dx.doi.org/10.1038/nn.4001] [PMID: 25894291]
[36]
Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327(5970): 1250-4. 2010
[http://dx.doi.org/10.1126/science.1184821] [PMID: 20203048]
[37]
Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, et al. Astrocytic IP3 Rs: contribution to Ca2+ signalling and hippocampal LTP. Glia 65(3): 502-13. 2017
[http://dx.doi.org/10.1002/glia.23107] [PMID: 28063222]
[38]
Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82(6): 1263-70. 2014
[http://dx.doi.org/10.1016/j.neuron.2014.04.038] [PMID: 24945771]
[39]
Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, et al. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6): 387-94. 2013
[http://dx.doi.org/10.1016/j.ceca.2013.09.001] [PMID: 24138901]
[40]
Yang J, Luo X, Huang X, Ning Q, Xie M, Wang W. Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. J Neurochem 131(3): 383-94. 2014
[http://dx.doi.org/10.1111/jnc.12819] [PMID: 25040798]
[41]
Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci USA 106(30): 12524-9. 2009
[http://dx.doi.org/10.1073/pnas.0903328106] [PMID: 19592509]
[42]
Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12(10): 1285-92. 2009
[http://dx.doi.org/10.1038/nn.2394] [PMID: 19734893]
[43]
Ashton RS, Conway A, Pangarkar C, Bergen J, Lim KI, Shah P, et al. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci 15(10): 1399-406. 2012
[http://dx.doi.org/10.1038/nn.3212] [PMID: 22983209]
[44]
Navarrete M, Araque A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68(1): 113-26. 2010
[http://dx.doi.org/10.1016/j.neuron.2010.08.043] [PMID: 20920795]
[45]
Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148(5): 1039-50. 2012
[http://dx.doi.org/10.1016/j.cell.2012.01.037] [PMID: 22385967]
[46]
Navarrete M, Díez A, Araque A. Astrocytes in endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 369(1654)20130599 2014
[http://dx.doi.org/10.1098/rstb.2013.0599] [PMID: 25225093]
[47]
Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR III, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7): 1596-609. 2013
[http://dx.doi.org/10.1016/j.cell.2013.11.030] [PMID: 24360280]
[48]
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726): 1314-8. 2005
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[49]
Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron 77(1): 10-8. 2013
[http://dx.doi.org/10.1016/j.neuron.2012.12.023] [PMID: 23312512]
[50]
Tremblay M-È, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11)e1000527 2010
[http://dx.doi.org/10.1371/journal.pbio.1000527] [PMID: 21072242]
[51]
Stevens MC, Kiehl KA, Pearlson GD, Calhoun VD. Functional neural networks underlying response inhibition in adolescents and adults. Behav Brain Res 181(1): 12-22. 2007
[http://dx.doi.org/10.1016/j.bbr.2007.03.023] [PMID: 17467816]
[52]
Liddelow S, Barres B. SnapShot: astrocytes in health and disease. Cell 162(5): 1170-1170.e1. 2015
[http://dx.doi.org/10.1016/j.cell.2015.08.029] [PMID: 26317476]
[53]
Chung W-S, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480): 394-400. 2013
[http://dx.doi.org/10.1038/nature12776] [PMID: 24270812]
[54]
Yates D. Glia: a toxic reaction. Nat Rev Neurosci 18(3): 130. 2017
[http://dx.doi.org/10.1038/nrn.2017.13] [PMID: 28148955]
[55]
Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109(4): E197-205. 2012
[http://dx.doi.org/10.1073/pnas.1111098109] [PMID: 22167804]
[56]
Abudara V, Roux L, Dallérac G, Matias I, Dulong J, Mothet JP, et al. Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes. Glia 63(5): 795-811. 2015
[http://dx.doi.org/10.1002/glia.22785] [PMID: 25643695]
[57]
Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5): 300-12. 2014
[http://dx.doi.org/10.1038/nrn3722] [PMID: 24713688]
[58]
Nave K-A, Werner HB. Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30(1): 503-33. 2014
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013101] [PMID: 25288117]
[59]
Yeung MSY, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159(4): 766-74. 2014
[http://dx.doi.org/10.1016/j.cell.2014.10.011] [PMID: 25417154]
[60]
Noble M, Murray K. Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO J 3(10): 2243-7. 1984
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02122.x] [PMID: 6542000]
[61]
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol 4: 71. 2016
[PMID: 27551677]
[62]
Wang H, Song G, Chuang H, Chiu C, Abdelmaksood A, Ye Y, et al. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol 312058738418801406 2018
[http://dx.doi.org/10.1177/2058738418801406] [PMID: 30309271]
[63]
Gaudet AD, Fonken LK. Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15(3): 554-77. 2018
[http://dx.doi.org/10.1007/s13311-018-0630-7] [PMID: 29728852]
[64]
Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598): 195-200. 2016
[http://dx.doi.org/10.1038/nature17623] [PMID: 27027288]
[65]
Ghézali G, Calvo C-F, Pillet L-E, Llense F, Ezan P, Pannasch U, et al. Connexin 30 controls astroglial polarization during postnatal brain development. Development 145(4)dev155275 2018
[http://dx.doi.org/10.1242/dev.155275] [PMID: 29475972]
[66]
Orthmann-Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35(1): 101-16. 2008
[http://dx.doi.org/10.1007/s12031-007-9027-5] [PMID: 18236012]
[67]
Papaneophytou CP, Georgiou E, Karaiskos C, Sargiannidou I, Markoullis K, Freidin MM, et al. Regulatory role of oligodendrocyte gap junctions in inflammatory demyelination. Glia 66(12): 2589-603. 2018
[http://dx.doi.org/10.1002/glia.23513] [PMID: 30325069]
[68]
Mayorquin LC, Rodriguez AV, Sutachan J-J, Albarracín SL. Connexin-mediated functional and metabolic coupling between astrocytes and neurons. Front Mol Neurosci 11: 118. 2018
[http://dx.doi.org/10.3389/fnmol.2018.00118] [PMID: 29695954]
[69]
Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, et al. Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci USA 108(20): 8467-72. 2011
[http://dx.doi.org/10.1073/pnas.1016650108] [PMID: 21536893]
[70]
Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2): 87-99. 2010
[http://dx.doi.org/10.1038/nrn2757] [PMID: 20087359]
[71]
Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6): 629-38. 2002
[http://dx.doi.org/10.1046/j.1469-7580.2002.00064.x] [PMID: 12162730]
[72]
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1): 41-53. 2006
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[73]
Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38(6): 323-37. 2002
[http://dx.doi.org/10.1016/S1537-1891(02)00200-8] [PMID: 12529927]
[74]
Ludwin SK, Rao VTs, Moore CS, Antel JP. Astrocytes in multiple sclerosis. Mult Scler 22(9): 1114-24. 2016
[http://dx.doi.org/10.1177/1352458516643396] [PMID: 27207458]
[75]
Verkman AS. Aquaporin water channels and endothelial cell function. J Anat 200(6): 617-27. 2002
[http://dx.doi.org/10.1046/j.1469-7580.2002.00058.x] [PMID: 12162729]
[76]
Verkman AS, Yang B, Song Y, Manley GT, Ma T. Role of water channels in fluid transport studied by phenotype analysis of aquaporin knockout mice. Exp Physiol 85(Spec No): 233S-41S. 2000
[http://dx.doi.org/10.1111/j.1469-445X.2000.tb00028.x] [PMID: 10795927]
[77]
Verkman AS. Physiological importance of aquaporin water channels. Ann Med 34(3): 192-200. 2002
[http://dx.doi.org/10.1080/ann.34.3.192.200] [PMID: 12173689]
[78]
Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25(1): 25-39. 2005
[http://dx.doi.org/10.1007/s10571-004-1375-x] [PMID: 15962507]
[79]
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, et al. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 108: 1-20. 2013
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.001] [PMID: 23851106]
[80]
Lee S-W, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, et al. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9(7): 900-6. 2003
[http://dx.doi.org/10.1038/nm889] [PMID: 12808449]
[81]
Trujillo-Estrada L, Jimenez S, De Castro V, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer’s disease pathology. Acta Neuropathol Commun 1(1): 73. 2013
[http://dx.doi.org/10.1186/2051-5960-1-73] [PMID: 24252759]
[82]
Baglietto-Vargas D, Sánchez-Mejias E, Navarro V, Jimenez S, Trujillo-Estrada L, Gómez-Arboledas A, et al. Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer’s disease. Sci Rep 7(1): 10085. 2017
[http://dx.doi.org/10.1038/s41598-017-10353-7] [PMID: 28855626]
[83]
Trujillo-Estrada L, Nguyen C, da Cunha C, Cai L, Forner S, Martini AC, et al. Tau underlies synaptic and cognitive deficits for type 1, but not type 2 diabetes mouse models. Aging Cell 18(3)e12919 2019
[http://dx.doi.org/10.1111/acel.12919] [PMID: 30809950]
[84]
Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, Navarro V, Nuñez-Diaz C, Sanchez-Varo R, et al. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia 66(3): 637-53. 2018
[http://dx.doi.org/10.1002/glia.23270] [PMID: 29178139]
[85]
Bagheri M, Rezakhani A, Roghani M, Joghataei MT, Mohseni S. Protocol for three-dimensional confocal morphometric analysis of astrocytes. J Vis Exp (106): e53113 2015
[http://dx.doi.org/10.3791/53113] [PMID: 26709729]
[86]
Guo D, Zou J, Rensing N, Wong M. In vivo two-photon imaging of astrocytes in GFAP-GFP transgenic mice. PLoS One 12(1)e0170005 2017
[http://dx.doi.org/10.1371/journal.pone.0170005] [PMID: 28107381]
[87]
Kelly P, Hudry E, Hou SS, Bacskai BJ. In Vivo two photon imaging of astrocytic structure and function in Alzheimer’s disease. Front Aging Neurosci 10: 219. 2018
[http://dx.doi.org/10.3389/fnagi.2018.00219] [PMID: 30072889]
[88]
Galea E, Morrison W, Hudry E, Arbel-Ornath M, Bacskai BJ, Gómez-Isla T, et al. Topological analyses in APP/PS1 mice reveal that astrocytes do not migrate to amyloid-β plaques. Proc Natl Acad Sci USA 112(51): 15556-61. 2015
[http://dx.doi.org/10.1073/pnas.1516779112] [PMID: 26644572]
[89]
Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918): 1211-5. 2009
[http://dx.doi.org/10.1126/science.1169096] [PMID: 19251629]
[90]
Shigetomi E, Hirayama YJ, Ikenaka K, Tanaka KF, Koizumi S. Role of purinergic receptor P2Y1 in spatiotemporal Ca2+ dynamics in astrocytes. J Neurosci 38(6): 1383-95. 2018
[http://dx.doi.org/10.1523/JNEUROSCI.2625-17.2017] [PMID: 29305530]
[91]
Dibaj P, Steffens H, Zschüntzsch J, Kirchhoff F, Schomburg ED, Neusch C. In vivo imaging reveals rapid morphological reactions of astrocytes towards focal lesions in an ALS mouse model. Neurosci Lett 497(2): 148-51. 2011
[http://dx.doi.org/10.1016/j.neulet.2011.04.049] [PMID: 21539893]
[92]
Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7(3): 205-9. 2013
[http://dx.doi.org/10.1038/nphoton.2012.336] [PMID: 24353743]
[93]
Vann KT, Xiong Z-G. Optogenetics for neurodegenerative diseases. Int J Physiol Pathophysiol Pharmacol 8(1): 1-8. 2016
[PMID: 27186317]
[94]
Xie AX, Petravicz J, McCarthy KD. Molecular approaches for manipulating astrocytic signaling in vivo. Front Cell Neurosci 9: 144. 2015
[http://dx.doi.org/10.3389/fncel.2015.00144] [PMID: 25941472]
[95]
Yamashita A, Hamada A, Suhara Y, Kawabe R, Yanase M, Kuzumaki N, et al. Astrocytic activation in the anterior cingulate cortex is critical for sleep disorder under neuropathic pain. Synapse 68(6): 235-47. 2014
[http://dx.doi.org/10.1002/syn.21733] [PMID: 24488840]
[96]
Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, et al. Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991): 571-5. 2010
[http://dx.doi.org/10.1126/science.1190721] [PMID: 20647426]
[97]
Perea G, Yang A, Boyden ES, Sur M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5(1): 3262. 2014
[http://dx.doi.org/10.1038/ncomms4262] [PMID: 24500276]
[98]
Roth BL. DREADDs for Neuroscientists. Neuron 89(4): 683-94. 2016
[http://dx.doi.org/10.1016/j.neuron.2016.01.040] [PMID: 26889809]
[99]
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104(12): 5163-8. 2007
[http://dx.doi.org/10.1073/pnas.0700293104] [PMID: 17360345]
[100]
Agulhon C, Boyt KM, Xie AX, Friocourt F, Roth BL, McCarthy KD. Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. J Physiol 591(22): 5599-609. 2013
[http://dx.doi.org/10.1113/jphysiol.2013.261289] [PMID: 24042499]
[101]
Yang L, Qi Y, Yang Y. Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep 11(5): 798-807. 2015
[http://dx.doi.org/10.1016/j.celrep.2015.04.002] [PMID: 25921535]
[102]
Martin-Fernandez M, Jamison S, Robin LM, Zhao Z, Martin ED, Aguilar J, et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 20(11): 1540-8. 2017
[http://dx.doi.org/10.1038/nn.4649] [PMID: 28945222]
[103]
Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174(1): 59-71.e14. 2018
[http://dx.doi.org/10.1016/j.cell.2018.05.002] [PMID: 29804835]
[104]
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1): 57-63. 2009
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[105]
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol 17(1): 13. 2016
[http://dx.doi.org/10.1186/s13059-016-0881-8] [PMID: 26813401]
[106]
Ofengeim D, Giagtzoglou N, Huh D, Zou C, Yuan J. Single-cell RNA sequencing: unraveling the brain one cell at a time. Trends Mol Med 23(6): 563-76. 2017
[http://dx.doi.org/10.1016/j.molmed.2017.04.006] [PMID: 28501348]
[107]
Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22(1): 269-85. 2018
[http://dx.doi.org/10.1016/j.celrep.2017.12.039] [PMID: 29298427]
[108]
Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115(8): E1896-905. 2018
[http://dx.doi.org/10.1073/pnas.1800165115] [PMID: 29437957]
[109]
Xin W, Schuebel KE, Jair K-W, Cimbro R, De Biase LM, Goldman D, et al. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology 44(2): 344-55. 2019
[PMID: 30054584]
[110]
Miller SJ, Zhang P-W, Glatzer J, Rothstein JD. Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. J Neurogenet 31(1-2): 37-48. 2017
[http://dx.doi.org/10.1080/01677063.2016.1260128] [PMID: 28019127]
[111]
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 7: 272. 2013
[http://dx.doi.org/10.3389/fncel.2013.00272] [PMID: 24399932]
[112]
Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature 494(7435): 90-4. 2013
[http://dx.doi.org/10.1038/nature11748] [PMID: 23242137]
[113]
Petravicz J, Fiacco TA, McCarthy KD. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci 28(19): 4967-73. 2008
[http://dx.doi.org/10.1523/JNEUROSCI.5572-07.2008] [PMID: 18463250]
[114]
Chen N, Sugihara H, Sharma J. Perea G, Petravicz J, Le C, Sur M, et al. Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci USA 109(41): E2832-41. 2012
[http://dx.doi.org/10.1073/pnas.1206557109] [PMID: 23012414]
[115]
Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M, et al. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 40(7): 1569-79. 2015
[http://dx.doi.org/10.1038/npp.2015.26] [PMID: 25662838]
[116]
Abu-Ghanem Y, Cohen H, Buskila Y, Grauer E, Amitai Y. Enhanced stress reactivity in nitric oxide synthase type 2 mutant mice: findings in support of astrocytic nitrosative modulation of behavior. Neuroscience 156(2): 257-65. 2008
[http://dx.doi.org/10.1016/j.neuroscience.2008.07.043] [PMID: 18723080]
[117]
Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27(42): 11354-65. 2007
[http://dx.doi.org/10.1523/JNEUROSCI.0723-07.2007] [PMID: 17942730]
[118]
Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol Metab 9: 141-55. 2018
[http://dx.doi.org/10.1016/j.molmet.2018.01.013] [PMID: 29398615]
[119]
Liu C-C, Zhao N, Fu Y, Wang N, Linares C, Tsai CW, et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron 96(5): 1024-1032.e3. 2017
[http://dx.doi.org/10.1016/j.neuron.2017.11.013] [PMID: 29216449]
[120]
Chandrasekhar A, Bera AK. Hemichannels: permeants and their effect on development, physiology and death. Cell Biochem Funct 30(2): 89-100. 2012
[http://dx.doi.org/10.1002/cbf.2794] [PMID: 22392438]
[121]
Chever O, Lee C-Y, Rouach N. Astroglial connexin43 hemichannels tune basal excitatory synaptic transmission. J Neurosci 34(34): 11228-32. 2014
[http://dx.doi.org/10.1523/JNEUROSCI.0015-14.2014] [PMID: 25143604]
[122]
Chever O, Pannasch U, Ezan P, Rouach N. Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Philos Trans R Soc Lond B Biol Sci 369(1654)20130596 2014
[http://dx.doi.org/10.1098/rstb.2013.0596] [PMID: 25225090]
[123]
Ren R, Zhang L, Wang M. Specific deletion connexin43 in astrocyte ameliorates cognitive dysfunction in APP/PS1 mice. Life Sci 208: 175-91. 2018
[http://dx.doi.org/10.1016/j.lfs.2018.07.033] [PMID: 30031059]
[124]
Ouali Alami N, Schurr C, Olde Heuvel F, Tang L, Li Q, Tasdogan A, et al. NF-κB activation in astrocytes drives a stage-specific beneficial neuroimmunological response in ALS. EMBO J 37(16): e98697 2018
[http://dx.doi.org/10.15252/embj.201798697] [PMID: 29875132]
[125]
Kelley KW, Ben Haim L, Schirmer L. Tyzack GE2, Tolman M3, Miller JG, et al. Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 98(2): 306-319.e7. 2018
[http://dx.doi.org/10.1016/j.neuron.2018.03.010] [PMID: 29606582]
[126]
Zhang W, Jiao B, Zhou M, Zhou T, Shen L. Modeling Alzheimer’s disease with induced pluripotent stem cells: current challenges and future concerns. Stem Cells Int 20167828049 2016
[http://dx.doi.org/10.1155/2016/7828049] [PMID: 27313629]
[127]
Yang J, Li S, He X-B, Cheng C, Le W. Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener 11(1): 39. 2016
[http://dx.doi.org/10.1186/s13024-016-0106-3] [PMID: 27184028]
[128]
Mungenast AE, Siegert S, Tsai L-H. Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 73: 13-31. 2016
[http://dx.doi.org/10.1016/j.mcn.2015.11.010] [PMID: 26657644]
[129]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4): 663-76. 2006
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[130]
Lin Y-T, Seo J, Gao F, Feldman HM, Wen HL, Penney J, et al. APOE4 causes widespread molecular and cellular alterations associated with alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98(6): 1294. 2018
[http://dx.doi.org/10.1016/j.neuron.2018.06.011] [PMID: 29953873]
[131]
Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M, et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports 9(6): 1885-97. 2017
[http://dx.doi.org/10.1016/j.stemcr.2017.10.016] [PMID: 29153989]
[132]
Lundin A, Delsing L, Clausen M. Ricchiuto P3, Sanchez J3, Sabirsh A, et al.Human iPS-derived astroglia from a stable neural precursor state show improved functionality compared with conventional astrocytic models. Stem Cell Reports 10(3): 1030-45. 2018
[http://dx.doi.org/10.1016/j.stemcr.2018.01.021] [PMID: 29456185]
[133]
Santos R, Vadodaria KC, Jaeger BN, Mei A, Lefcochilos-Fogelquist S, Mendes APD, et al. Differentiation of inflammation-responsive astrocytes from glial progenitors generated from human induced pluripotent stem cells. Stem Cell Reports 8(6): 1757-69. 2017
[http://dx.doi.org/10.1016/j.stemcr.2017.05.011] [PMID: 28591655]
[134]
Nagata E, Sawa A, Ross CA, Snyder SH. Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts. Neuroreport 15(8): 1325-8. 2004
[http://dx.doi.org/10.1097/01.wnr.0000127073.66692.8f] [PMID: 15167559]
[135]
Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13(5): 567-76. 2010
[http://dx.doi.org/10.1038/nn.2528] [PMID: 20383138]
[136]
Juopperi TA, Kim WR, Chiang C-H, Yu H, Margolis RL, Ross CA, et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5(1): 17. 2012
[http://dx.doi.org/10.1186/1756-6606-5-17] [PMID: 22613578]
[137]
Hall CE, Yao Z, Choi M, Tyzack GE, Serio A, Luisier R, et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related als. Cell Rep 19(9): 1739-49. 2017
[http://dx.doi.org/10.1016/j.celrep.2017.05.024] [PMID: 28564594]
[138]
Qian K, Huang H, Peterson A, Hu B, Maragakis NJ, Ming GL, et al. Sporadic ALS astrocytes induce neuronal degeneration in vivo. Stem Cell Reports 8(4): 843-55. 2017
[http://dx.doi.org/10.1016/j.stemcr.2017.03.003] [PMID: 28366455]
[139]
Tyzack GE, Hall CE, Sibley CR, Cymes T, Forostyak S, Carlino G, et al. A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models. Nat Commun 8(1): 1164. 2017
[http://dx.doi.org/10.1038/s41467-017-01283-z] [PMID: 29079839]
[140]
Verkhratsky A, Rodríguez JJ, Parpura V. Astroglia in neurological diseases. Future Neurol 8(2): 149-58. 2013
[http://dx.doi.org/10.2217/fnl.12.90] [PMID: 23658503]
[141]
Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 15(11): 1691-700. 2008
[http://dx.doi.org/10.1038/cdd.2008.99] [PMID: 18617894]
[142]
Ben Haim L, Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9: 278. 2015
[http://dx.doi.org/10.3389/fncel.2015.00278] [PMID: 26283915]
[143]
Springer S, Erlewein R, Naegele T, Becker I, Auer D, Grodd W, et al. Alexander disease--classification revisited and isolation of a neonatal form. Neuropediatrics 31(2): 86-92. 2000
[http://dx.doi.org/10.1055/s-2000-7479] [PMID: 10832583]
[144]
Russo LS Jr, Aron A, Anderson PJ. Alexander’s disease: a report and reappraisal. Neurology 26(7): 607-14. 1976
[http://dx.doi.org/10.1212/WNL.26.7.607] [PMID: 180453]
[145]
van der Knaap MS, Ramesh V, Schiffmann R, Blaser S, Kyllerman M, Gholkar A, et al. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology 66(4): 494-8. 2006
[http://dx.doi.org/10.1212/01.wnl.0000198770.80743.37] [PMID: 16505300]
[146]
Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27(1): 117-20. 2001
[http://dx.doi.org/10.1038/83679] [PMID: 11138011]
[147]
Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE. Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143(2): 487-95. 1993
[PMID: 8393618]
[148]
Sosunov AA, Guilfoyle E, Wu X, McKhann GM, Goldman JE. Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in Alexander disease. J Neurosci 33(17): 7439-50. 2013
[http://dx.doi.org/10.1523/JNEUROSCI.4506-12.2013] [PMID: 23616550]
[149]
Tang G, Perng MD, Wilk S, Quinlan R, Goldman JE. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J Biol Chem 285(14): 10527-37. 2010
[http://dx.doi.org/10.1074/jbc.M109.067975] [PMID: 20110364]
[150]
Olabarria M, Goldman JE. Disorders of astrocytes: alexander disease as a model. Annu Rev Pathol 12(1): 131-52. 2017
[http://dx.doi.org/10.1146/annurev-pathol-052016-100218] [PMID: 28135564]
[151]
Tian R, Wu X, Hagemann TL, Sosunov AA, Messing A, McKhann GM, et al. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol 69(4): 335-45. 2010
[http://dx.doi.org/10.1097/NEN.0b013e3181d3cb52] [PMID: 20448479]
[152]
Hagemann TL, Gaeta SA, Smith MA, Johnson DA, Johnson JA, Messing A. Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet 14(16): 2443-58. 2005
[http://dx.doi.org/10.1093/hmg/ddi248] [PMID: 16014634]
[153]
Olabarria M, Putilina M, Riemer EC, Goldman JE. Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathol 130(4): 469-86. 2015
[http://dx.doi.org/10.1007/s00401-015-1469-1] [PMID: 26296699]
[154]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 362(4): 329-44. 2010
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[155]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054): 184-5. 1992
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[156]
Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol 16(3): 229-36. 2015
[http://dx.doi.org/10.1038/ni.3102] [PMID: 25689443]
[157]
Moreno-Gonzalez I, Baglietto-Vargas D, Sanchez-Varo R, et al. Extracellular amyloid-beta and cytotoxic glial activation induce significant entorhinal neuron loss in young PS1(M146L)/APP(751SL) mice. J Alzheimers Dis 18(4): 755-76. 2009
[http://dx.doi.org/10.3233/JAD-2009-1192] [PMID: 19661615]
[158]
Yeh C-Y, Vadhwana B, Verkhratsky A, Rodríguez JJ. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 3(5): 271-9. 2011
[http://dx.doi.org/10.1042/AN20110025] [PMID: 22103264]
[159]
Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31(4): 578-90. 2010
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.015] [PMID: 18586353]
[160]
Serrano-Pozo A, Gómez-Isla T, Growdon JH, Frosch MP, Hyman BT. A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am J Pathol 182(6): 2332-44. 2013
[http://dx.doi.org/10.1016/j.ajpath.2013.02.031] [PMID: 23602650]
[161]
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci 32(18): 6391-410. 2012
[http://dx.doi.org/10.1523/JNEUROSCI.6221-11.2012] [PMID: 22553043]
[162]
Osborn LM, Kamphuis W, Wadman WJ, Hol EM. Astrogliosis: an integral player in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 144: 121-41. 2016
[http://dx.doi.org/10.1016/j.pneurobio.2016.01.001] [PMID: 26797041]
[163]
Doméné A, Cavanagh C, Page G, Bodard D, Klein C, Delarasse C, et al. Expression of phenotypic astrocyte marker is increased in a transgenic mouse model of Alzheimer’s disease versus age-matched controls: a presymptomatic stage study. Int J Alzheimers Dis 20165696241 2016
[http://dx.doi.org/10.1155/2016/5696241] [PMID: 27672476]
[164]
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11): 4050-8. 2000
[http://dx.doi.org/10.1523/JNEUROSCI.20-11-04050.2000] [PMID: 10818140]
[165]
Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, et al. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 32(46): 16129-40. 2012
[http://dx.doi.org/10.1523/JNEUROSCI.2323-12.2012] [PMID: 23152597]
[166]
Fernandez AM, Jimenez S, Mecha M, Dávila D, Guaza C, Vitorica J, et al. Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology. Mol Psychiatry 17(7): 705-18. 2012
[http://dx.doi.org/10.1038/mp.2011.128] [PMID: 22005929]
[167]
Tan J, Town T, Crawford F, Mori T, DelleDonne A, Crescentini R, et al. Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat Neurosci 5(12): 1288-93. 2002
[http://dx.doi.org/10.1038/nn968] [PMID: 12402041]
[168]
Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 27(1): 187-98. 2013
[http://dx.doi.org/10.1096/fj.12-208660] [PMID: 23038755]
[169]
Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 95(12): 2430-47. 2017
[http://dx.doi.org/10.1002/jnr.24075] [PMID: 28467650]
[170]
González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 10: 427. 2017
[http://dx.doi.org/10.3389/fnmol.2017.00427] [PMID: 29311817]
[171]
Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11(1): 97-116. 2007
[http://dx.doi.org/10.3233/JAD-2007-11113] [PMID: 17361039]
[172]
Xiu J, Nordberg A, Zhang J-T, Guan Z-Z. Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the α7, α4 and β2 subunits in response to nanomolar concentrations of the β-amyloid peptide(1-42). Neurochem Int 47(4): 281-90. 2005
[http://dx.doi.org/10.1016/j.neuint.2005.04.023] [PMID: 15955596]
[173]
Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang H-Y. Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971(2): 197-209. 2003
[http://dx.doi.org/10.1016/S0006-8993(03)02361-8] [PMID: 12706236]
[174]
Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arévalo-Serrano J, Gonzalo-Ruiz A. Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in the rat brain. Exp Neurol 236(2): 215-27. 2012
[http://dx.doi.org/10.1016/j.expneurol.2012.05.004] [PMID: 22617488]
[175]
Apelt J, Schliebs R. Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res 894(1): 21-30. 2001
[http://dx.doi.org/10.1016/S0006-8993(00)03176-0] [PMID: 11245811]
[176]
Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, et al. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 20(6): 581-9. 1999
[http://dx.doi.org/10.1016/S0197-4580(99)00065-2] [PMID: 10674423]
[177]
Lian H, Litvinchuk A, Chiang AC-A, Aithmitti N, Jankowsky JL, Zheng H. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci 36(2): 577-89. 2016
[http://dx.doi.org/10.1523/JNEUROSCI.2117-15.2016] [PMID: 26758846]
[178]
Liao Y-F, Wang B-J, Cheng H-T, Kuo L-H, Wolfe MS. Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 279(47): 49523-32. 2004
[http://dx.doi.org/10.1074/jbc.M402034200] [PMID: 15347683]
[179]
Yang J, Zhang R, Shi C, Mao C, Yang Z, Suo Z, et al. AQP4 association with amyloid deposition and astrocyte pathology in the Tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis 57(1): 157-69. 2017
[http://dx.doi.org/10.3233/JAD-160957] [PMID: 28222512]
[180]
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147)147ra111 2012
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[181]
Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, et al. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34(29): 9607-20. 2014
[http://dx.doi.org/10.1523/JNEUROSCI.3788-13.2014] [PMID: 25031402]
[182]
Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, et al. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol Aging 22(1): 49-61. 2001
[http://dx.doi.org/10.1016/S0197-4580(00)00181-0] [PMID: 11164276]
[183]
Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4): 453-7. 2003
[http://dx.doi.org/10.1038/nm838] [PMID: 12612547]
[184]
Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10(7): 719-26. 2004
[http://dx.doi.org/10.1038/nm1058] [PMID: 15195085]
[185]
Nielsen HM, Mulder SD, Beliën JAM, Musters RJP, Eikelenboom P, Veerhuis R. Astrocytic A beta 1-42 uptake is determined by A beta-aggregation state and the presence of amyloid-associated proteins. Glia 58(10): 1235-46. 2010
[http://dx.doi.org/10.1002/glia.21004] [PMID: 20544859]
[186]
Söllvander S, Nikitidou E, Brolin R, Söderberg L, Sehlin D, Lannfelt L, et al. Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegener 11(1): 38. 2016
[http://dx.doi.org/10.1186/s13024-016-0098-z] [PMID: 27176225]
[187]
Pihlaja R, Koistinaho J, Malm T, Sikkilä H, Vainio S, Koistinaho M. Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56(2): 154-63. 2008
[http://dx.doi.org/10.1002/glia.20599] [PMID: 18004725]
[188]
Jones RS, Minogue AM, Connor TJ, Lynch MA. Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J Neuroimmune Pharmacol 8(1): 301-11. 2013
[http://dx.doi.org/10.1007/s11481-012-9427-3] [PMID: 23238794]
[189]
Sokolowski JD, Nobles SL, Heffron DS, Park D, Ravichandran KS, Mandell JW. Brain-specific angiogenesis inhibitor-1 expression in astrocytes and neurons: implications for its dual function as an apoptotic engulfment receptor. Brain Behav Immun 25(5): 915-21. 2011
[http://dx.doi.org/10.1016/j.bbi.2010.09.021] [PMID: 20888903]
[190]
Provias J, Jeynes B. The role of the blood-brain barrier in the pathogenesis of senile plaques in Alzheimer’s disease. Int J Alzheimers Dis 2014191863. 2014
[http://dx.doi.org/10.1155/2014/191863] [PMID: 25309772]
[191]
Husemann J, Silverstein SC. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain. Am J Pathol 158(3): 825-32. 2001
[http://dx.doi.org/10.1016/S0002-9440(10)64030-8] [PMID: 11238031]
[192]
Villarreal A, Seoane R, González Torres A, Rosciszewski G, Angelo MF, Rossi A, et al. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 131(2): 190-205. 2014
[http://dx.doi.org/10.1111/jnc.12790] [PMID: 24923428]
[193]
Mohajeri MH, Wollmer MA, Nitsch RM. Abeta 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J Biol Chem 277(38): 35460-5. 2002
[http://dx.doi.org/10.1074/jbc.M202899200] [PMID: 12105192]
[194]
Apelt J, Ach K, Schliebs R. Aging-related down-regulation of neprilysin, a putative beta-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of beta-amyloid plaques. Neurosci Lett 339(3): 183-6. 2003
[http://dx.doi.org/10.1016/S0304-3940(03)00030-2] [PMID: 12633883]
[195]
Yin K-J, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43): 10939-48. 2006
[http://dx.doi.org/10.1523/JNEUROSCI.2085-06.2006] [PMID: 17065436]
[196]
Grehan S, Tse E, Taylor JM. Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci 21(3): 812-22. 2001
[http://dx.doi.org/10.1523/JNEUROSCI.21-03-00812.2001] [PMID: 11157067]
[197]
Mulder SD, Nielsen HM, Blankenstein MA, Eikelenboom P, Veerhuis R. Apolipoproteins E and J interfere with amyloid-beta uptake by primary human astrocytes and microglia in vitro. Glia 62(4): 493-503. 2014
[http://dx.doi.org/10.1002/glia.22619] [PMID: 24446231]
[198]
Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 123(1): 53-70. 2012
[http://dx.doi.org/10.1007/s00401-011-0896-x] [PMID: 22020633]
[199]
Torres M, Jimenez S, Sanchez-Varo R, Navarro V, Trujillo-Estrada L, Sanchez-Mejias E, et al. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus. Mol Neurodegener 7: 59. 2012
[http://dx.doi.org/10.1186/1750-1326-7-59] [PMID: 23173743]
[200]
Sadleir KR, Kandalepas PC, Buggia-Prévot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol 132(2): 235-56. 2016
[http://dx.doi.org/10.1007/s00401-016-1558-9] [PMID: 26993139]
[201]
Masgrau R, Guaza C, Ransohoff RM, Galea E. Should We Stop Saying ‘Glia’ and ‘Neuroinflammation’? Trends Mol Med 23(6): 486-500. 2017
[http://dx.doi.org/10.1016/j.molmed.2017.04.005] [PMID: 28499701]
[202]
Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nuñez-Diaz C, et al. Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 132(6): 897-916. 2016
[http://dx.doi.org/10.1007/s00401-016-1630-5] [PMID: 27743026]
[203]
Navarro V, Sanchez-Mejias E, Jimenez S, Munoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer’s disease: activated, dysfunctional or degenerative. Front Aging Neurosci 10: 140. 2018
[http://dx.doi.org/10.3389/fnagi.2018.00140] [PMID: 29867449]
[204]
Jones VC, Atkinson-Dell R, Verkhratsky A, Mohamet L. Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis 8(3)e2696 2017
[http://dx.doi.org/10.1038/cddis.2017.89] [PMID: 28333144]
[205]
Agid Y. Parkinson’s disease: pathophysiology. Lancet 337(8753): 1321-4. 1991
[http://dx.doi.org/10.1016/0140-6736(91)92989-F] [PMID: 1674304]
[206]
Witjas T, Kaphan E, Azulay JP, Blin O, Ceccaldi M, Pouget J, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology 59(3): 408-13. 2002
[http://dx.doi.org/10.1212/WNL.59.3.408] [PMID: 12177375]
[207]
Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW. Astrocytes and Parkinson’s disease. Prog Brain Res 94: 429-36. 1992
[http://dx.doi.org/10.1016/S0079-6123(08)61770-7] [PMID: 1287728]
[208]
Booth HDE, Hirst WD, Wade-Martins R. The Role of Astrocyte Dysfunction in Parkinson’s Disease Pathogenesis. Trends Neurosci 40(6): 358-70. 2017
[http://dx.doi.org/10.1016/j.tins.2017.04.001] [PMID: 28527591]
[209]
Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127(Pt 2): 420-30. 2004
[http://dx.doi.org/10.1093/brain/awh054] [PMID: 14662519]
[210]
Kim J-M, Cha S-H, Choi YR, Jou I, Joe E-H, Park SM. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep 6(1): 28823. 2016
[http://dx.doi.org/10.1038/srep28823] [PMID: 27346864]
[211]
Butchbach MER, Tian G, Guo H, Lin C-LG. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function. J Biol Chem 279(33): 34388-96. 2004
[http://dx.doi.org/10.1074/jbc.M403938200] [PMID: 15187084]
[212]
Soni N, Reddy BVK, Kumar P. GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol Biochem Behav 127: 70-81. 2014
[http://dx.doi.org/10.1016/j.pbb.2014.10.001] [PMID: 25312503]
[213]
Danbolt NC. Glutamate uptake. Prog Neurobiol 65(1): 1-105. 2001
[http://dx.doi.org/10.1016/S0301-0082(00)00067-8] [PMID: 11369436]
[214]
Gu X-L, Long C-X, Sun L, Xie C, Lin X, Cai H. Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain 3(1): 12. 2010
[http://dx.doi.org/10.1186/1756-6606-3-12] [PMID: 20409326]
[215]
Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114(3): 231-41. 2007
[http://dx.doi.org/10.1007/s00401-007-0244-3] [PMID: 17576580]
[216]
Rannikko EH, Weber SS, Kahle PJ. Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci 16(1): 57. 2015
[http://dx.doi.org/10.1186/s12868-015-0192-0] [PMID: 26346361]
[217]
Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, et al. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61(3): 349-60. 2013
[http://dx.doi.org/10.1002/glia.22437] [PMID: 23108585]
[218]
Lee H-J, Suk J-E, Patrick C, Bae EJ, Cho JH, Rho S, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12): 9262-72. 2010
[http://dx.doi.org/10.1074/jbc.M109.081125] [PMID: 20071342]
[219]
Ashley AK, Hinds AI, Hanneman WH, Tjalkens RB, Legare ME. DJ-1 mutation decreases astroglial release of inflammatory mediators. Neurotoxicology 52: 198-203. 2016
[http://dx.doi.org/10.1016/j.neuro.2015.12.007] [PMID: 26691871]
[220]
Kim JH, Choi DJ, Jeong HK, Kim J, Kim DW, Choi SY, et al. DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: A novel anti-inflammatory function of DJ-1. Neurobiol Dis 60: 1-10. 2013
[http://dx.doi.org/10.1016/j.nbd.2013.08.007] [PMID: 23969237]
[221]
Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49(1): 28-38. 2014
[http://dx.doi.org/10.1007/s12035-013-8483-x] [PMID: 23783559]
[222]
Lev N, Barhum Y, Ben-Zur T, Melamed E, Steiner I, Offen D. Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity. J Mol Neurosci 50(3): 542-50. 2013
[http://dx.doi.org/10.1007/s12031-013-9984-9] [PMID: 23536331]
[223]
Mullett SJ, Hinkle DA. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity. J Neurochem 117(3): 375-87. 2011
[http://dx.doi.org/10.1111/j.1471-4159.2011.07175.x] [PMID: 21219333]
[224]
Solano RM, Casarejos MJ, Menéndez-Cuervo J, Rodriguez-Navarro JA, García de Yébenes J, Mena MA. Glial dysfunction in parkin null mice: effects of aging. J Neurosci 28(3): 598-611. 2008
[http://dx.doi.org/10.1523/JNEUROSCI.4609-07.2008] [PMID: 18199761]
[225]
Niranjan R, Nath C, Shukla R. The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radic Res 44(11): 1304-16. 2010
[http://dx.doi.org/10.3109/10715762.2010.501080] [PMID: 20815783]
[226]
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6): 971-83. 1993
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[227]
Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6): 559-77. 1985
[http://dx.doi.org/10.1097/00005072-198511000-00003] [PMID: 2932539]
[228]
Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel J-PG, Faull RL. The Neuropathology of Huntington’s Disease. Curr Top Behav Neurosci 22: 33-80. 2015
[http://dx.doi.org/10.1007/7854_2014_354]
[229]
Jansen AHP, van Hal M, Op den Kelder IC, Meier RT, de Ruiter AA, Schut MH, et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65(1): 50-61. 2017
[http://dx.doi.org/10.1002/glia.23050] [PMID: 27615381]
[230]
Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-J. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171(6): 1001-12. 2005
[http://dx.doi.org/10.1083/jcb.200508072] [PMID: 16365166]
[231]
Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci 40(7): 422-37. 2017
[http://dx.doi.org/10.1016/j.tins.2017.05.002] [PMID: 28578789]
[232]
Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19(15): 3053-67. 2010
[http://dx.doi.org/10.1093/hmg/ddq212] [PMID: 20494921]
[233]
Gu X, André VM, Cepeda C. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2(1): 8. 2007
[http://dx.doi.org/10.1186/1750-1326-2-8] [PMID: 17470275]
[234]
Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, et al. Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10(2): 137-44. 2001
[http://dx.doi.org/10.1093/hmg/10.2.137] [PMID: 11152661]
[235]
Bradford J, Shin J-Y, Roberts M, Wang CE, Sheng G, Li S, et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 285(14): 10653-61. 2010
[http://dx.doi.org/10.1074/jbc.M109.083287] [PMID: 20145253]
[236]
Ben Haim L, Ceyzériat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 35(6): 2817-29. 2015
[http://dx.doi.org/10.1523/JNEUROSCI.3516-14.2015] [PMID: 25673868]
[237]
Arzberger T, Krampfl K, Leimgruber S, Weindl A. Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease--an in situ hybridization study. J Neuropathol Exp Neurol 56(4): 440-54. 1997
[http://dx.doi.org/10.1097/00005072-199704000-00013] [PMID: 9100675]
[238]
Hassel B, Tessler S, Faull RLM, Emson PC. Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res 33(2): 232-7. 2008
[http://dx.doi.org/10.1007/s11064-007-9463-1] [PMID: 17726644]
[239]
Lee W, Reyes RC, Gottipati MK, Lewis K, Lesort M, Parpura V, et al. Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington’s disease mouse model. Neurobiol Dis 58: 192-9. 2013
[http://dx.doi.org/10.1016/j.nbd.2013.06.002] [PMID: 23756199]
[240]
Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5): 694-703. 2014
[http://dx.doi.org/10.1038/nn.3691] [PMID: 24686787]
[241]
Jiang R, Diaz-Castro B, Looger LL, Khakh BS. Dysfunctional calcium and glutamate signaling in striatal astrocytes from huntington’s disease model mice. J Neurosci 36(12): 3453-70. 2016
[http://dx.doi.org/10.1523/JNEUROSCI.3693-15.2016] [PMID: 27013675]
[242]
Valenza M, Marullo M, Di Paolo E, Cesana E, Zuccato C, Biella G, et al. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington’s disease. Cell Death Differ 22(4): 690-702. 2015
[http://dx.doi.org/10.1038/cdd.2014.162] [PMID: 25301063]
[243]
Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, et al. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain 139(Pt 3): 953-70. 2016
[http://dx.doi.org/10.1093/brain/awv384] [PMID: 26912634]
[244]
Hsiao H-Y, Chen Y-C, Huang C-H, Chen CC, Hsu YH, Chen HM, et al. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 78(2): 178-92. 2015
[http://dx.doi.org/10.1002/ana.24428] [PMID: 25914140]
[245]
Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326(22): 1464-8. 1992
[http://dx.doi.org/10.1056/NEJM199205283262204] [PMID: 1349424]
[246]
Yamanaka K, Komine O. The multi-dimensional roles of astrocytes in ALS. Neurosci Res 126: 31-8. 2018
[http://dx.doi.org/10.1016/j.neures.2017.09.011] [PMID: 29054467]
[247]
Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, et al. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev 47(1-3): 263-74. 2004
[http://dx.doi.org/10.1016/j.brainresrev.2004.05.003] [PMID: 15572176]
[248]
Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27(1): 723-49. 2004
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144244] [PMID: 15217349]
[249]
Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 11(11): 1294-301. 2008
[http://dx.doi.org/10.1038/nn.2210] [PMID: 18931666]
[250]
Papadeas ST, Kraig SE, O’Banion C, Lepore AC, Maragakis NJ. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci USA 108(43): 17803-8. 2011
[http://dx.doi.org/10.1073/pnas.1103141108] [PMID: 21969586]
[251]
Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA 99(3): 1604-9. 2002
[http://dx.doi.org/10.1073/pnas.032539299] [PMID: 11818550]
[252]
Pardo AC, Wong V, Benson LM, Dykes M, Tanaka K, Rothstein JD, et al. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp Neurol 201(1): 120-30. 2006
[http://dx.doi.org/10.1016/j.expneurol.2006.03.028] [PMID: 16753145]
[253]
Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38(1): 73-84. 1995
[http://dx.doi.org/10.1002/ana.410380114] [PMID: 7611729]
[254]
Van Damme P, Bogaert E, Dewil M, Hersmus N, Kiraly D, Scheveneels W, et al. Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci USA 104(37): 14825-30. 2007
[http://dx.doi.org/10.1073/pnas.0705046104] [PMID: 17804792]
[255]
Brambilla L, Guidotti G, Martorana F, Iyer AM, Aronica E, Valori CF, et al. Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degeneration and disease progression in amyotrophic lateral sclerosis. Hum Mol Genet 25(14): 3080-95. 2016
[http://dx.doi.org/10.1093/hmg/ddw161] [PMID: 27288458]
[256]
Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de León A, et al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 28(16): 4115-22. 2008
[http://dx.doi.org/10.1523/JNEUROSCI.5308-07.2008] [PMID: 18417691]
[257]
Madji Hounoum B, Mavel S, Coque E, Patin F, Vourc’h P, Marouillat S, et al. Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling. Glia 65(4): 592-605. 2017
[http://dx.doi.org/10.1002/glia.23114] [PMID: 28139855]
[258]
Das PK, Rambukkana A, Baas JG, Groothuis DG, Halperin M. Enzyme-linked immunosorbent assay for distinguishing serological responses of lepromatous and tuberculoid leprosies to the 29/33-kilodalton doublet and 64-kilodalton antigens of Mycobacterium tuberculosis. J Clin Microbiol 28(2): 379-82. 1990
[PMID: 2107205]
[259]
Endo F, Komine O, Fujimori-Tonou N, Katsuno M, Jin S, Watanabe S, et al. Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep 11(4): 592-604. 2015
[http://dx.doi.org/10.1016/j.celrep.2015.03.053] [PMID: 25892237]
[260]
Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5): 615-22. 2007
[http://dx.doi.org/10.1038/nn1876] [PMID: 17435755]
[261]
Haidet-Phillips AM, Gross SK, Williams T, Tuteja A, Sherman A, Ko M, et al. Altered astrocytic expression of TDP-43 does not influence motor neuron survival. Exp Neurol 250: 250-9. 2013
[http://dx.doi.org/10.1016/j.expneurol.2013.10.004] [PMID: 24120466]
[262]
Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81(5): 1001-8. 2014
[http://dx.doi.org/10.1016/j.neuron.2014.01.011] [PMID: 24508385]
[263]
Song S, Miranda CJ, Braun L, Meyer K, Frakes AE, Ferraiuolo L, et al. Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nat Med 22(4): 397-403. 2016
[http://dx.doi.org/10.1038/nm.4052] [PMID: 26928464]
[264]
Kawamata H, Ng SK, Diaz N, Burstein S, Morel L, Osgood A, et al. Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis. J Neurosci 34(6): 2331-48. 2014
[http://dx.doi.org/10.1523/JNEUROSCI.2689-13.2014] [PMID: 24501372]
[265]
Almad AA, Doreswamy A, Gross SK, Richard JP, Huo Y, Haughey N, et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia 64(7): 1154-69. 2016
[http://dx.doi.org/10.1002/glia.22989] [PMID: 27083773]
[266]
Arranz AM, De Strooper B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 18(4): 406-14. 2019
[http://dx.doi.org/10.1016/S1474-4422(18)30490-3] [PMID: 30795987]
[267]
Verkhratsky A, Steardo L, Parpura V, Montana V. Translational potential of astrocytes in brain disorders. Prog Neurobiol 144: 188-205. 2016
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.003] [PMID: 26386136]
[268]
Robinson SR. Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36(4-5): 471-82. 2000
[http://dx.doi.org/10.1016/S0197-0186(99)00150-3] [PMID: 10733015]
[269]
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 136: 139-56. 2018
[http://dx.doi.org/10.1016/j.brainresbull.2017.02.001] [PMID: 28212850]
[270]
Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79(2): 77-89. 2010
[http://dx.doi.org/10.1016/j.bcp.2009.09.014] [PMID: 19765548]
[271]
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12): 638-47. 2009
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[272]
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4): 1077-98. 2014
[http://dx.doi.org/10.1152/physrev.00041.2013] [PMID: 25287860]