Synthesis and Characterization of Novel Azole Functionalized Poly(glycidyl methacrylate)s for Antibacterial and Anticandidal Activity

Page: [1002 - 1009] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Presently, rise in the infectious diseases and subsequent development of drug resistance, is a global threat to human health. However, much efforts are being made by scientists, to develop novel antimicrobials, and also to improve the efficacy of available drugs, in order to combat the lifethreatening infections.

Objective: Synthesis and characterization of azole functional polymer systems for antimicrobial applications.

Materials and Methods: Poly(glycidyl methacrylate) (PGMA), was produced by free radical polymerization of the monomer, glycidyl methacrylate (GMA). Different azole functional PGMAs were produced, through chemical modification with imidazole (Im), 1H-1,2,4-triazole (Tri) and 3-amino-1,2,4-triazole (ATri), to get PGMA-Imi, PGMA-Tri and PGMA-ATri, respectively. The structure was confirmed by Fourier transform infrared spectroscopy (FT-IR), thermal properties were investigated by Thermogravimetric Analysis (TGA), and surface morphology was studied by scanning electron microscopy (SEM). Newly synthesized derivatives were further explored, for their antibacterial and anticandidal activities.

Results: All the three synthesized and characterized derivatives, displayed a significant activity against the tested microorganisms. The minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC), recorded against Staphylococcus aureus (S. aureus), was 0.5 &1mg/ml for PGMA-Imi, followed by PGMA-ATri & PGMA-Tri, respectively, followed by E. coli with, 1 & 2 mg/ml, 4 & 8 mg/ml, 4& 8 mg/ml, respectively, whereas the maximum MIC & MFC was recorded against C. albicans i.e., 8 & 16 mg/ml, 4 & 8 mg/ml ,4 & 8 mg/ml for PGMA-ATri, PGMA-Tri, PGMA-Imi, respectively.

Conclusion: In the present work, we report on the state-of-the-art, azole functional polymer systems for antimicrobial applications. These findings suggest that the synthesized azole functional polymer films have antimicrobial properties, which could be potential candidates for coating applications in the biomedical and wastewater treatment field.

Keywords: Antibacterial, anticandidal, azole, biomedical, polymer, drug.

Graphical Abstract

[1]
Alkharsah, K.R.; Rehman, S.; Alkhamis, F.; Alnimr, A.; Diab, A.; Al-Ali, A.K. Comparative and molecular analysis of MRSA isolates from infection sites and carrier colonization sites. Ann. Clin. Microbiol. Antimicrob., 2018, 17(1), 7.
[http://dx.doi.org/10.1186/s12941-018-0260-2] [PMID: 29544544]
[2]
Liang, Z.; Zhu, M.; Yang, Y-W.; Gao, H. Antimicrobial activities of polymeric quaternary ammonium salts from poly(glycidyl methacrylate)s. Polym. Adv. Technol., 2014, 25(1), 117-122.
[http://dx.doi.org/10.1002/pat.3212]
[3]
Mange, Y.J.; Isloor, A.M.; Malladi, S.; Isloor, S.; Fun, H-K. Synthesis and antimicrobial activities of some novel 1,2,4-triazole derivatives. Arab. J. Chem., 2013, 6(2), 177-181.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.033]
[4]
Padalkar, V.S.; Borse, B.N.; Gupta, V.D.; Phatangare, K.R.; Patil, V.S.; Umape, P.G.; Sekar, N. Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives. Arab. J. Chem., 2016, 9, S1125-S1130.
[http://dx.doi.org/10.1016/j.arabjc.2011.12.006]
[5]
Bastarrachea, L.J.; Denis-Rohr, A.; Goddard, J.M. Antimicrobial food equipment coatings: applications and challenges. Annu. Rev. Food Sci. Technol., 2015, 6, 97-118.
[http://dx.doi.org/10.1146/annurev-food-022814-015453] [PMID: 25422880]
[6]
Bello-Vieda, N.J.; Pastrana, H.F.; Garavito, M.F.; Ávila, A.G.; Celis, A.M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J.J. Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules, 2018, 23(2), 361.
[http://dx.doi.org/10.3390/molecules23020361] [PMID: 29419803]
[7]
Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol., 2008, 124(1), 91-97.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.02.028] [PMID: 18378032]
[8]
Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol., 2010, 144(1), 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[9]
Lenoir, S.; Pagnoulle, C.; Galleni, M.; Compère, P.; Jérôme, R.; Detrembleur, C. Polyolefin matrixes with permanent antibacterial activity: preparation, antibacterial activity, and action mode of the active species. Biomacromolecules, 2006, 7(8), 2291-2296.
[http://dx.doi.org/10.1021/bm050850c] [PMID: 16903673]
[10]
Mauriello, G. Control of Microbial Activity Using Antimicrobial Packaging. In: Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; , 2016; pp. 141-152.
[http://dx.doi.org/10.1016/B978-0-12-800723-5.00011-5]
[11]
Rehman, S. Endophytes: The producers of important functional metabolites. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(5), 377-391.
[http://dx.doi.org/10.20546/ijcmas.2016.505.039]
[12]
Tümer, M.; Köksal, H.; Sener, M.K.; Serin, S. Antimicrobial activity studies of the binuclear metal complexes derived from tridentate Schiff base ligands. Transition Met. Chem, 1999, 24(4), 414-420.
[http://dx.doi.org/10.1023/A:1006973823926]
[13]
Jiang, S.; Wang, L.; Yu, H.; Chen, Y. Preparation of crosslinked polystyrenes with quaternary ammonium and their antibacterial behavior. React. Funct. Polym., 2005, 62(2), 209-213.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2004.11.002]
[14]
Sun, H.; Wu, C.; Dai, K.; Chang, J.; Tang, T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials, 2006, 27(33), 5651-5657.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.027] [PMID: 16904740]
[15]
Jeong, E.H.; Yang, J.; Youk, J.H. Preparation of polyurathane cationomer nanofiber mats for use in antimicrobial nanofiber applications. Mater. Lett., 2007, 61, 3991-3994.
[http://dx.doi.org/10.1016/j.matlet.2007.01.003]
[16]
Muzammil, E.M.; Khan, A.; Stuparu, M.C. Post-polymerization modification reactions of poly(glycidyl methacrylate)s. RSC Advances, 2017, 7(88), 55874-55884.
[http://dx.doi.org/10.1039/C7RA11093F]
[17]
Çelik, S.Ü.; Akbey, Ü.; Bozkurt, A.; Graf, R.; Spiess, H.W. Proton-Conducting Properties of Acid-Doped Poly(glycidyl methacrylate)-1,2,4-Triazole Systems. Macromol. Chem. Phys., 2008, 209(6), 593-603.
[http://dx.doi.org/10.1002/macp.200700457]
[18]
Ehlers, J-E.; Rondan, N.G.; Huynh, L.K.; Pham, H.; Marks, M.; Truong, T.N. Theoretical study on mechanisms of the epoxy−amine curing reaction. Macromolecules, 2007, 40(12), 4370-4377.
[19]
Yusuf, A.; Çelik, S.Ü.; Bozkurt, A. Synthesis and anhydrous proton conductivity of doped azole functional PGMA-hBN nano-flakes. Synth. Met., 2018, 241, 1-6.
[20]
Hirose, S.; Hatakeyama, T.; Izuta, Y.; Hatakeyama, H. TG-FTIR studies on lignin-based polycaprolactones. J. Therm. Anal. Calorim., 2002, 70(3), 853-860.
[http://dx.doi.org/10.1023/A:1022212421525]
[21]
Aslan, A.; Çelik, S.Ü.; Bozkurt, A. Proton-conducting properties of the membranes based on poly(vinyl phosphonic acid) grafted poly(glycidyl methacrylate). Solid State Ion., 2009, 180(23-25), 1240-1245.
[http://dx.doi.org/10.1016/j.ssi.2009.07.003]
[22]
Basoglu, S.; Yolal, M.; Demirci, S.; Demirbas, N.; Bektas, H.; Karaoglu, S.A. Design, synthesis and antimicrobial activities of some azole derivatives. Acta Pol. Pharm., 2013, 70(2), 229-236.
[PMID: 23614278]
[23]
Khabnadideh, S.; Rezaei, Z.; Ghasemi, Y.; Montazeri-Najafabady, N. Antibacterial activity of some new azole compounds. Antiinfect. Agents, 2012, 10(1), 26-33.
[24]
Malik, M.A.; Al-Thabaiti, S.A.; Malik, M.A. Synthesis, structure optimization and antifungal screening of novel tetrazole ring bearing acyl-hydrazones. Int. J. Mol. Sci., 2012, 13(9), 10880-10898.
[http://dx.doi.org/10.3390/ijms130910880] [PMID: 23109826]
[25]
Fang, B.; Zhou, C.H.; Rao, X.C. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2010, 45(9), 4388-4398.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.012] [PMID: 20598399]
[26]
Abdullayev, Y.A.; Abbasov, V.M.; Talybova, A.H.; Tagizade, Z.Y.; Kochetkov, K.A.; Marzouk, A.A.; Akhmadova, S.Z. Synthesıs and antımıcrobıal actıvıty of tetrasubstıtuted ımıdazoles. Processes Petrochem. Oil Refin, 2017, 18(1), 69-74.
[27]
Chi, W.; Qin, C.; Zeng, L.; Li, W.; Wang, W. Microbiocidal activity of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. J. Appl. Polym. Sci., 2007, 103(6), 3851-3856.
[http://dx.doi.org/10.1002/app.25476]
[28]
Sharma, J.; Rosiana, S.; Razzaq, I.; Shapiro, R.S. Linking cellular morphogenesis with antifungal treatment and susceptibility in Candida pathogens. J. Fungi (Basel), 2019, 5(1), 17.
[http://dx.doi.org/10.3390/jof5010017] [PMID: 30795580]
[29]
Rostom, S.A.; Faidallah, H.M.; Al-Saadi, M.S. A facile synthesis of some 3-cyano-1, 4, 6-trisubstituted-2 (1H)-pyridinones and their biological evaluation as anticancer agents. Med. Chem. Res., 2011, 20(8), 1260-1272.
[http://dx.doi.org/10.1007/s00044-010-9469-0]
[30]
Prakash, T.B.; Reddy, L.M.; Padmaja, A.; Padmavathi, V. Synthesis and antimicrobial activity of azole derivatives. Chem. Pharm. Bull., 2013, 61(5), 516-523.
[31]
Moore, B.D.; Sherrington, D.C.; Zitsmanis, A. Conversion of a glycidyl methacrylatet resin into a thiirane analogue and subsequent immobilisation of aliphatic amine and azole ligands. J. Mater. Chem., 1992, 2(12), 1231-1236.
[http://dx.doi.org/10.1039/jm9920201231]
[32]
Jalal, M.; Ansari, M.A.; Ali, S.G.; Khan, H.M.; Rehman, S. Anticandidal activity of bioinspired ZnO NPs: Effect on growth, cell morphology and key virulence attributes of Candida species. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 912-925.
[33]
Rehman, S.; Mir, T.; Kour, A.; Qazi, P.H.; Sultan, P.; Shawl, A.S. In vitro antimicrobial studies of Nodulisporium specie: An endophytic fungus. J. Yeast Fungal Res., 2011, 2(4), 53-58.
[34]
Khan, S.A.; Rasool, N.; Riaz, M.; Nadeem, R.; Rashid, U.; Rizwan, K.; Zubair, M.; Bukhari, I.H.; Gulzar, T. Evaluation of antioxidant and cytotoxicity studies of Clerodendrum inerme. Asian J. Chem., 2013, 25(13), 7457-7462.
[http://dx.doi.org/10.14233/ajchem.2013.14831]
[35]
Nehra, P.; Chauhan, R.P.; Garg, N.; Verma, K. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br. J. Biomed. Sci., 2018, 75(1), 13-18.
[http://dx.doi.org/10.1080/09674845.2017.1347362] [PMID: 28945174]